

A CACHE DESIGN METHOD FOR SPATIAL
INFORMATION VISUALIZATION IN 3D REAL-TIME RENDERING ENGINE

Xuefeng Daia, Hanjiang Xionga, Xianwei Zhenga

a State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University,

129 Luoyu Road, Wuhan, 430079, China – daixuefeng203@126.com
KEY WORDS: Memory cache, Disk cache, 3D Rendering Engine, Multi-thread, Replacement policy

ABSTRACT:

A well-designed cache system has positive impacts on the 3D real-time rendering engine. As the amount of visualization data

getting larger, the effects become more obvious. They are the base of the 3D real-time rendering engine to smoothly browsing
through the data, which is out of the core memory, or from the internet. In this article, a new kind of caches which are based on multi
threads and large file are introduced. The memory cache consists of three parts, the rendering cache, the pre-rendering cache and the
elimination cache. The rendering cache stores the data that is rendering in the engine; the data that is dispatched according to the
position of the view point in the horizontal and vertical directions is stored in the pre-rendering cache; the data that is eliminated
from the previous cache is stored in the eliminate cache and is going to write to the disk cache. Multi large files are used in the disk
cache. When a disk cache file size reaches the limit length（128M is the top in the experiment）, no item will be eliminated from
the file, but a new large cache file will be created. If the large file number is greater than the maximum number that is pre-set, the
earliest file will be deleted from the disk. In this way, only one file is opened for writing and reading, and the rest are read-only so
the disk cache can be used in a high asynchronous way. The size of the large file is limited in order to map to the core memory to
save loading time. Multi-thread is used to update the cache data. The threads are used to load data to the rendering cache as soon as
possible for rendering, to load data to the pre-rendering cache for rendering next few frames, and to load data to the elimination
cache which is not necessary for the moment. In our experiment, two threads are designed. The first thread is to organize the memory
cache according to the view point, and created two threads: the adding list and the deleting list, the adding list index the data that
should be loaded to the pre-rendering cache immediately, the deleting list index the data that is no longer visible in the rendering
scene and should be moved to the eliminate cache; the other thread is to move the data in the memory and disk cache according to
the adding and the deleting list, and create the download requests when the data is indexed in the adding but cannot be found either
in memory cache or disk cache, eliminate cache data is moved to the disk cache when the adding list and deleting are empty. The
cache designed as described above in our experiment shows reliable and efficient, and the data loading time and files I/O time
decreased sharply, especially when the rendering data getting larger.

1． INTRODUCTION

A well-designed cache system has positive impacts on the 3D
real-time rendering engine, it can make the scene rendering
smoothly, especially in the visualization of the mass geographic
data. Data caching is an important technique for improving data
availability and access latency [1]. A cache system can be
complicated when considered with the real-time rendering
engine, both memory and disk cache should be taken into
account, and the replacement policy could differ. The main
purpose of the cache system is to prepare the data that need
most in the rendering engine.
The core of the cache system is the replacement policy. LRU[2]
is one of the best-known replacement policies, This algorithm to
choose the most long visit is not being replaced as a block by
block, it takes into account the temporal locality[3] rather than
spatial locality. O’ Nell and others propose LRU-k[4],this
algorithm to choose last but k visit is not being replaced as a
block by block, actually, LRU is a special case of LRU-k when
k equals 1.LRU-k has to store additional information, but how
long it will be stored is not be solved well. Megiddo and others
propose ARC[5]. This strategy use two LRU queues to manager
the page cache, one queue is used to manage the pages which
only be visited once, the other is used to manager the pages
which are visited more than once, this strategy can adjust the
size of the two queues according to the temporal or spatial
locality. In [6] and [7] dynamic caching mechanisms are
discussed, in [8–11] cooperative proxy caching is examined.

In the real-time rendering engine, cache replacement policy

should be considered with the scene information. In our policy,
each data item in the cache has a weigh value which is
calculated dynamically, and the data item is replaced by the
weigh value, it will be discussed in 2.1.4 and 2.2.2. Our cache
system is consists of three parts, memory cache, disk cache and
multi- threading mechanism.

2． CACHE SYSTEM

2.1 Memory cache

Figure 1. Data transfer in memory cache

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

107

2.1.1 Rendering Cache: The data stored in the rendering
cache which has the status of Loaded should be copied to the
video memory for the 3D scene rendering immediately. The
status of the data items will be set to “PreUnLoad” after the
copy is complete.

2.1.2 Pre-rendering Cache: The data items stored in the Pre-
rendering cache should have the status of “PreLoad” and comes
primarily from three sources. The first one is from the disk
cache. This kind of data could have been used before, and
should be reload to the memory cache from the disk cache; the
second one is from the cache download thread. This kind of data
is not existed in local machine, and should be run it off the
server, new empty data items with status of “PreDownLoad”
will be created and added to the download list, when the
download is completed, data items should be decompressed and
parsed as well as status resetting before loading to the Pre-
rendering cache; the third one is from the elimination cache.
The status of this kind of data is reset to “PreLoad” before
writing to the disk cache by the cache dispatch thread, and
should be transferred to Pre-rendering cache. In figure 1, data
item 3 in the rendering cache has been loaded into the video
memory, and its status has been set as “PreUnLoad”, it will be
transfer to the Elimination cache in the next few frames, the
status of data item N in the Elimination cache has been set as
“PreLoad”, and it will be transfer to the Pre-Rendering cache,
all the data item has the status “PreLoad” in the Pre-Rendering
cache will be move to the Rendering cache after the Rendering
cache is ready.

2.1.3 Elimination Cache: The data eliminated from the
rendering cache is stored in the elimination cache which has the
status of “PreUnLoad”. Data in this cache will be written to the
disk cache gradually if the status keeps unchanged. The data
items in this cache should also be rapid retrieval because they
may be reloaded to the Pre-rendering cache before written to the
disk cache. The elimination cache should be locked when
written data to the disk cache to control the possible conflicts
between parallel threads. As we know, disk I/O operation is a
very time-consuming process, if there is too much data to be
written to the disk cache, the elimination cache will be locked
for a long time, which may cause low efficiency of the
rendering engine. Two different strategies have been introduced
for this problem. The first one, control the number of the data
item that written to the disk cache each time, we define a
constant N as the maximum data item number, only N data
items at top written to the disk cache each time, and the lock
time can be controlled by the definition of N; the second one,
instead of lock the whole elimination cache, only N data item is
locked while the rest data still ready for retrieval or status
resetting, the status of the locked data items will be set as
“UnLoad”.

2.1.4 Memory Cache Elimination Methods: There are two
kinds of elimination in the memory cache. The first one,
eliminate the data from rendering cache to the elimination cache,
in the rendering engine, view-dependent frustum culling and
clipping are performed, and an elimination list is created. The
first kind of elimination is based on the elimination list. The
status of the eliminated data will be set as “PreUnLoad”, the
eliminated data stay in the memory cache temporary and still
has a chance to have the status reset in the next few frames; the
second one, eliminate the data from the memory cache to the
disk cache, this kind of elimination will erase the data items
from the memory cache and written them into the disk cache
files, and the status will be set as “UnLoad”, the elimination is
based on the weight of the data item which can be calculated by
formula 1. In the formula, D means the distance between the
data item geometry center and the view point, if the camera in
the rendering engine moving in the horizontal direction, the D
value should be recalculated; L means the difference value of
the data item LOD level and scene LOD level, if the camera in
the rendering engine moving in the vertical direction, L value
should be recalculated; C means the render priority of different
type of data, which is decided by rendering engine. The weight
of the data item in the elimination cache should be recalculated
each frame because the weight could change in every frame.

D LW C
M


  (1)

Where W = Elimination weight
 D = View distance
 L = Level difference
 M = normalization parameter

2.2 Disk Cache

All the data eliminated from the memory cache is stored in the
disk cache files, the status of all the data in disk cache is
“UnLoad”.

2.2.1 Index Files And Data Files: Disk cache consists of few
index files and data files; there is a one-to-one relationship
between the index file and data file. The index file records the
index information of data items, which stored in the data file.
Each data file has a constant size of S, which is 128M in our
experiment system, so the data file can be loaded to the memory
by memory mapping method in order to reduce I/O time
consuming. A single data item should only exist in one of the
data files. When eliminating data from the memory cache to the
disk cache, the index file should be checked before written any
data into the disk cache, if the data item already existed in the
disk cache, the data item can be erased from the memory cache
directly.

2.2.2 Disk Cache Eliminate Method: Since disk I/O operation
is a very time-consuming process, data transfer in the disk cache
should be avoided. In the experiment system, a single data item
is not allowed to transfer or delete. Since disk space is much
larger than the memory space, disk cache elimination occurs
infrequently, so eliminate method is much simpler than the
memory cache. When the disk cache elimination happens, the
earliest data file and index file is deleted from the disk. Figure 2
shows how data stored in the disk cache, and data stored in the
disk cache has the status of “UnLoad”. Disk cache consists of

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

108

several block files, each block has an index file and a data file,
and all the blocks have the same size.

Figure 2. Data stored in disk cache

2.3 Multi-threading mechanisM

The cache system is managed by multi- threading mechanism,
all the threads, which managed the cache system are divided
into three types in the experiment system: dispatch threads, data
threads and download threads.

2.3.1 The Dispatch Thread: The main task of the dispatch
thread is to reset the status of data items and create a
download list by some logical calculations. Dispatch threads
get rendering information from the rendering engine, reset
data items’ status for data threads and create a download list
for download threads. The rendering information includes
camera position, view-dependent frustum culling and clipping
results and so on. In the figure 3,we can see how the dispatch
thread works. In the first step, it gets rendering information
from the real-time rendering engine, in the second step,
according to the rendering information, the add and delete list
can be create, the data item that no longer needed will be add
to the delete list, while the data is going to be used in the next
frames but not in the rendering cache is add to the add list, in
the third step, if a data item in the add list cannot be found in
the disk cache or memory cache, then it will be move to the
download list, and wait for the download thread download,
this step is not necessary if all the data items have been stored
in the cache, in the last step, the status of all the data items
recorded in the add, delete and download list will be reset.

Figure 3. The Dispatch thread

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

109

2.3.2 The Data Thread: The main task of data thread is
transferring the data items according to the status identification.
In the memory cache, the data thread move data items whose
status is “PreUnLoad” from rendering cache to the elimination
cache; move data items whose status are “PreLoad” from the
elimination cache to the Pre-rendering cache; move the data
items whose status is “UnLoad” to the disk cache. In the disk
cache, data thread deletes the data file and index file if they are
eliminated by the disk cache; create a memory-mapped file
from the data file if necessary. In figure 4, the data thread also
has some steps to do, first step, according to the data status,
move the data which has the status of “PreLoad” from
PreLoading cache to the Rendering cache, in the second step,
move the data which has the status of “PreUnLoad” from the
Rendering cache to the Elimination cache, in the third step, the
data items in the Elimination cache could have the chance to be
reused, visit the Elimination cache, move data items which have
the status of “PreLoad” to the Pre-Rendering cache, in the
fourth step, if the Elimination cache is running out, data items
will be move to the disk cache by the weight value (section
2.1.4), and the status will be set as “UnLoad”, in the last step, if
the disk cache is larger than pre-set, the disk cache file will be
deleted according to the disk cache elimination method (section
2.2.2).

Figure 4. The data thread

2.3.3 The Download Thread

Download threads are managed by the thread pool. As shown in
figure 5, download threads have two tasks; the first one is to
download the data according to the download list, and the
second one is decompressing or parsing the data, which is
downloaded from the server.

Figure 5. The download thread

3． EXPERIMENTS AND RESULTS

According to the strategy discussed above, an experiment cache
system is implemented. Figure 6 shows the over view of the
experiment system, the rendering engine includes serveral
moduals as follows: “CommonObject” modual, “SystemObject”
modual, “SceneObject” modual, “CameraObject” modual,
“TerrainObject” modual, ”AnnoObject” modual, and “Viewer”
modual, the cache system get rendering information from the
CameraObject modual, and prepare data for the SceneObject
modual.

The experiment shows rendering engine based on this cache
system can load data faster and view data smoother compare to
the same engine based on the cache system which uses small
disk cache files, especially as the cache data become larger and
larger.

Figure 6. experiment system over view

4． CONCLUSIONS AND FUTURE WORK

This paper proposes a cache system tightly integrated in the
real-time rendering engine. Take advantage of the scene
rendering information, the cache system could precise control
the data item status, prepare the data most needed. The results
presents in section 3 confirm the effect replacement policy.

As future work, we plan make further improvement on the
data download control and the optimization of thread policy

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

110

5． REFERENCES

[1]. M. J. Franklin, Caching and Memory Management in
Client-Server Database Systems, Ph.d. Thesis, Dept. of
Computer Science, University of Wisconsin, 1993.

[2]Mattson R L, Gecsei J, Slutz D R. Evaluation techniques for
storage hierarchies. IBM System Journal, 9(2), pp. 78-117.

[3]Denning P J The working set model for program behavior.
Communications of the ACM, 1l(5), pp. 323-333.

[4]O’Neil E J. O’Neil P E，Weikum G．The LRU-K page
replacement algorithm for database disk buffering [C] Proc of
the ACM SIGMOD 1993．New York：ACM, pp. 1-10.

[5] Megiddo N, Modha D S. ARC: A self-tuning,low overhead
replacement cache[c] Proc of the 2nd USENIX Corf on File and
Storage Technology．San Francisco, CA: USENlX, pp. 115-
130

[6]. Wu, K.-L., Yu, P.S., Wolf, J.L.: Segment-based proxy
caching of multimedia streams. In: Proceedings of the 2001
WWW Conference, Hong Kong, pages 36–44. An extended
version titled Segmentation of multimedia streams for proxy
caching will appear in IEEE Transactions on Multimedia.

[7]. Wu, K.-L., Yu, P.S., Wolf, J.L.: Segmentation of multimedia
streams for proxy caching. IEEE Trans. Multimedia. 6(5), pp. 770–
780.

[8]. Acharya, S., Smith, B.C.: Middleman: A video caching
proxy server. In: Proceedings of the NOSSDAV’00.

[9]. Paknicar, S., Kankanhalli, M., Ramakrishnan, K.R.,
Srinivasan, S.H.,Ngoh, L.H.:Acaching and streaming
framework for multimedia. In: Proceedings of ACMMultimedia,
California, pp. 13–20.

[10]. Chae, Y., Guo, K., Buddhikot, M.M., Suri, S., Zegura,
E.W Silo, rainbow, and caching token: schemes for scalable,
fault tolerant stream caching. IEEE J. Select. Areas Comm.
20(7),1328–1344 (2002)

[11]. Tewari, R., Dahlin, M., Vin, H., Kay, J.: Design
considerations for distributed caching on the Internet. In:
Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

111

