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ABSTRACT: 

 

Path finding solutions are becoming a major part of many GIS applications including location based services and web-based GIS 

services. Most traditional path finding solutions are based on shortest path algorithms that tend to minimize the cost of travel from 

one point to another. These algorithms make use of some cost criteria that is usually an attribute of the edges in the graph network. 

Providing one shortest path limits user’s flexibility when choosing a possible route, especially when more than one parameter is 

utilized to calculate cost (e.g., when length, number of traffic lights, and number of turns are used to calculate network cost.) K 

shortest path solutions tend to overcome this problem by providing second, third, and Kth shortest paths. These algorithms are 

efficient as long as the graphs edge weight does not change dynamically and no other parameters affect edge weights. In this paper 

we try to go beyond finding shortest paths based on some cost value, and provide all possible paths disregarding any parameter that 

may affect total cost. After finding all possible paths, we can rank the results by any parameter or combination of parameters, without 

a substantial increase in time complexity. 

 

 

 

1. BACKGROUND AND RELEVANCE 

 

1.1 Shortest Path Algorithms 

A best path through a network from an origin to a destination 

is a path having the least value (Hoffman and Pavley, 1959). 

Value (or weight) refers to any metric that describes the 

effort to traverse the path; such as length, time, cost, or 

roughness of the path, etc. These metrics can be assigned to 

the graph which describes the path network in an 

environment. However the best path is the one that 

minimizes the total value of the path. For some applications 

distance is the most important characteristic of a path, and 

can be extracted directly from geometry of the network; while 

for some other applications time may be the most important 

characteristic.  

 

Dijkstra's (1959) algorithm is one of the best known 

algorithms to find the shortest path. This algorithm works on 

a weighted graph in which the edges weights are non-

negative (Dreyfus, 1969). Most of the applications that try to 

find the shortest path rely on this algorithm. Dijkstra's (1959) 

algorithm is able to calculate all shortest paths from a single 

point to all other points in a network, which makes it a single 

source shortest path algorithm. 

 

 

1.2 K Shortest Path Algorithms 

However, sometimes it is desirable to know the second (third, 

etc.) shortest path in a network in addition to the first shortest 

path (Dreyfus, 1969). There may be different reasons behind 

finding the second (third, etc.) shortest path. Some 

applications require alternative routes to the shortest path for 

emergency reasons. Other applications may provide 

alternative paths that are not that different from the shortest 

path, but offer different characteristics. Also understanding 

the alternative paths from one point to another provides 

flexibility for applications and gives users the choice to select 

from a set of available paths.  

 

The problem of finding more than one shortest path is 

defined as the K shortest path problem (Hoffman and Pavley, 

1959). By definition, a solution to the K shortest paths 

problem returns a set of K shortest paths between two 

locations given a particular weighting function (Hoffman and 

Pavley, 1959). 

 

Shortest path and K shortest path algorithms can be 

considered as one-criteria algorithms (Dreyfus, 1969); since 

all affecting parameters should be modelled as weight of 

segments in the network. Modelling all parameters as a 

weight function restricts the flexibility of path finding 

solutions and limits combination of these solutions with other 

spatial analysis solutions.  

 

 

2. METHOD 

2.1 All Possible Paths 

The all possible paths solution, as a multi-criteria solution, is 

an alternative to the K shortest path solution in which the 
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value of K may range from a minimum (i.e. 1) to a maximum 

number of paths dynamically. The all possible paths method 

finds all paths that connect two nodes together in a network 

regardless of any parameters. In other words, any restrictions 

can be applied as a separate parameter on this solution, 

making it a multi-criteria solution. So the value of edges in a 

network is not the only parameter for path finding in this 

method, but a range of different parameters (criteria) can also 

be applied.  

 

 

2.2 Algorithm 

The all possible paths solution utilizes database operations to 

find and store all paths from one point (origin) to another 

(destination). For this purpose, we have to provide the 

database with start and end point of each edge in the network 

along with all characteristics of the edges that can be 

considered later as  parameters for detecting the best path. 

The process starts with an iteration in which the database 

tries to find all edges that start with the origin point. Then the 

algorithm joins those edges with all other edges for which the 

start point is equal to the end point of the current edge. This 

process iterates until the end point (destination) of the path is 

reached. 

 

To illustrate the algorithm we consider the graph in Figure 1. 

In this graph each point (node) has a unique ID and value of 

each segment is shown. However, this algorithm is 

independent from the value of segments.  

 

 
Figure 1. A sample graph 

 

The goal is to find all possible paths from point 1 to point 7 

in the network, assuming the network is a directed graph. In 

the database this directed graph can be stored as a table with 

at least 3 columns (ID, Start-Node-ID, End-Node-ID) plus 

additional cost related variables such as length, time, etc. 

Figure 2 shows the corresponding table for figure above.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Table storing graph 

 

In order to find all possible paths from point 1 to point 7, the 

table above is joined to itself repeatedly until the segment 

with destination as end node is reached. Through the join 

operation all records that have point 1 as the start node are 

selected and joined with records in the same table where end 

nodes of first set of records are equal to start nodes of second 

table. This process is repeated until records with point 7 as 

the end nodes are reached. Figure 3 illustrates this process.  

 

 

 
 

Figure 3.  Process of finding all possible paths from 1 to 7 

 

This process provides us with following results. There are 6 

possible paths from point 1 to point 7 and the paths are as 

follow: 

{1,2,6,7}   Cost=29 

{1,2,3,5,7}   Cost=35 

{1,2,3,7}  Cost=31 

{1,3,5,7}  Cost=32 

{1,3,7}   Cost=28 

{1,4,5,7}   Cost=38 

 

These paths can be ranked and stored in a database for future 

uses. Storing the results in a database is more useful for 

applications that require frequent access to the results.  
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3. DISCUSSION 

 

3.1 Results 

The complexity function is one of the best methods for 

comparing the results of different path finding algorithms, 

and is described as a function of time and memory use. Here, 

we consider three different algorithms and compare them 

using time complexity: Dijkstra's shortest path, K shortest 

paths and all possible paths.  

 

The worst-case running time for the Dijkstra algorithm on a 

graph with n nodes and m edges is O(n2) (Duckham and  

Worboys, 2004). However, time complexity for the K 

shortest simple path algorithm for a graph with n nodes and 

m edges is O(k(m + nlogn)) in undirected graphs and O(kn(m 

+ nlogn)) in directed graphs (Eppstein, 1999). 

 

The process of finding K shortest path when we have all 

possible paths saved in a database for a graph of n nodes and 

m edges includes search for the start node with O(logn) 

complexity (Duckham and Worboys, 2004), search for end 

node with O(logn) complexity (Duckham and Worboys, 

2004) and sorting the results with O(klogk) complexity in the 

worst case (Astrachan, 2003); which results in a worst case 

complexity of O(2logn+klogk), where k is the number of 

paths between two nodes. However in order to prepare a 

database of all possible paths we need to perform a pre-

processing phase. The pre-processing phase for a complete 

graph of n nodes and n(n-1)/2 edges has a running time of 

O(n(n-1)2). This value is the result of finding all possible 

paths from n sources to n-1 destination performing n-1 

(maximum number of edges in a path) joins in the database. 

 

 

3.2 Conclusion 

The all possible paths algorithm can be considered an 

umbrella solution that covers other network analysis tasks, 

such as accessibility analysis and travelling salesperson 

problem. The algorithm introduced in this paper is 

compatible with database operations, and the results can be 

stored in a database for future use, which can improve 

performance. The results of the all possible paths algorithm 

can be sorted based on one parameter (e.g., edge weight) or a 

combination of parameters where more than one parameter 

can affect the best paths (multi-criteria solution). Since the 

resulting routes are independent of the values of the edges, 

this solution provides appropriate results for situations in 

which the value changes dynamically, as the shortest paths do 

not need to be re-estimated when one or more weights for 

and edge changes.   

 

The all possible paths solution can also be utilized with other 

spatial analysis. For instance if users are looking for paths 

with some spatial restrictions, all possible paths can provide 

results that meet those spatial restrictions, by making use of 

various spatial operators that satisfy the desired restrictions. 

However, using other path finding algorithms (such as 

Dijkstra's algorithm), one has to model these restrictions as 

edge weights and then find the best path.  

 

The complexity analysis also shows that all possible paths 

can provide the opportunity for fast and efficient 

computation, assuming that pre-processing phase has been 

completed. When applied to dynamic networks this approach 

is clearly more efficient, because there is no need to re-

compute the shortest K paths.  

 

 

4. REFERENCES 

O. Astrachan, 2003, Bubble sort: an archaeological 

algorithmic analysis, SIGCSE Bull., vol. 35, pp. 1-5.  

 

E. W. Dijkstra, 1959, A note on two problems in connexion 

with graphs. Numerische Mathematik, vol.1, pp. 269-271 

 

S. E. Dreyfus, 1969, An appraisal of some shortest-path 

algorithms, Operations Research, vol. 17, no. 3, pp. 395-412.  

 

 M. Duckham and M. Worboys, 2004,  GIS: A Computing 

Perspective, 2nd ed., M. D. Michael Worboys, Ed. CRC 

PRESS LLC, pp 210-225. 

 

D. Eppstein, 1999, Finding the k shortest paths, SIAM J. 

Comput., vol. 28, pp. 652-673.  

 

W. Hoffman and R. Pavley, 1959, A method for the solution 

of the nth best path problem, J. ACM, vol. 6, pp. 506-514.  

 

 

 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

159


