

MULTI-CRITERIA PATH FINDING

Ehsan Mohammadi, Andrew Hunter

Geomatics Department, Schulich School of Engineering, University of Calgary

(emohamma, ahunter, @ucalgary.ca)

Commission II, WG II/7

KEY WORDS: GIS, Analysis, Network, Databases, Query, Parameters

ABSTRACT:

Path finding solutions are becoming a major part of many GIS applications including location based services and web-based GIS

services. Most traditional path finding solutions are based on shortest path algorithms that tend to minimize the cost of travel from

one point to another. These algorithms make use of some cost criteria that is usually an attribute of the edges in the graph network.

Providing one shortest path limits user’s flexibility when choosing a possible route, especially when more than one parameter is

utilized to calculate cost (e.g., when length, number of traffic lights, and number of turns are used to calculate network cost.) K

shortest path solutions tend to overcome this problem by providing second, third, and Kth shortest paths. These algorithms are

efficient as long as the graphs edge weight does not change dynamically and no other parameters affect edge weights. In this paper

we try to go beyond finding shortest paths based on some cost value, and provide all possible paths disregarding any parameter that

may affect total cost. After finding all possible paths, we can rank the results by any parameter or combination of parameters, without

a substantial increase in time complexity.

1. BACKGROUND AND RELEVANCE

1.1 Shortest Path Algorithms

A best path through a network from an origin to a destination

is a path having the least value (Hoffman and Pavley, 1959).

Value (or weight) refers to any metric that describes the

effort to traverse the path; such as length, time, cost, or

roughness of the path, etc. These metrics can be assigned to

the graph which describes the path network in an

environment. However the best path is the one that

minimizes the total value of the path. For some applications

distance is the most important characteristic of a path, and

can be extracted directly from geometry of the network; while

for some other applications time may be the most important

characteristic.

Dijkstra's (1959) algorithm is one of the best known

algorithms to find the shortest path. This algorithm works on

a weighted graph in which the edges weights are non-

negative (Dreyfus, 1969). Most of the applications that try to

find the shortest path rely on this algorithm. Dijkstra's (1959)

algorithm is able to calculate all shortest paths from a single

point to all other points in a network, which makes it a single

source shortest path algorithm.

1.2 K Shortest Path Algorithms

However, sometimes it is desirable to know the second (third,

etc.) shortest path in a network in addition to the first shortest

path (Dreyfus, 1969). There may be different reasons behind

finding the second (third, etc.) shortest path. Some

applications require alternative routes to the shortest path for

emergency reasons. Other applications may provide

alternative paths that are not that different from the shortest

path, but offer different characteristics. Also understanding

the alternative paths from one point to another provides

flexibility for applications and gives users the choice to select

from a set of available paths.

The problem of finding more than one shortest path is

defined as the K shortest path problem (Hoffman and Pavley,

1959). By definition, a solution to the K shortest paths

problem returns a set of K shortest paths between two

locations given a particular weighting function (Hoffman and

Pavley, 1959).

Shortest path and K shortest path algorithms can be

considered as one-criteria algorithms (Dreyfus, 1969); since

all affecting parameters should be modelled as weight of

segments in the network. Modelling all parameters as a

weight function restricts the flexibility of path finding

solutions and limits combination of these solutions with other

spatial analysis solutions.

2. METHOD

2.1 All Possible Paths

The all possible paths solution, as a multi-criteria solution, is

an alternative to the K shortest path solution in which the

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

157

value of K may range from a minimum (i.e. 1) to a maximum

number of paths dynamically. The all possible paths method

finds all paths that connect two nodes together in a network

regardless of any parameters. In other words, any restrictions

can be applied as a separate parameter on this solution,

making it a multi-criteria solution. So the value of edges in a

network is not the only parameter for path finding in this

method, but a range of different parameters (criteria) can also

be applied.

2.2 Algorithm

The all possible paths solution utilizes database operations to

find and store all paths from one point (origin) to another

(destination). For this purpose, we have to provide the

database with start and end point of each edge in the network

along with all characteristics of the edges that can be

considered later as parameters for detecting the best path.

The process starts with an iteration in which the database

tries to find all edges that start with the origin point. Then the

algorithm joins those edges with all other edges for which the

start point is equal to the end point of the current edge. This

process iterates until the end point (destination) of the path is

reached.

To illustrate the algorithm we consider the graph in Figure 1.

In this graph each point (node) has a unique ID and value of

each segment is shown. However, this algorithm is

independent from the value of segments.

Figure 1. A sample graph

The goal is to find all possible paths from point 1 to point 7

in the network, assuming the network is a directed graph. In

the database this directed graph can be stored as a table with

at least 3 columns (ID, Start-Node-ID, End-Node-ID) plus

additional cost related variables such as length, time, etc.

Figure 2 shows the corresponding table for figure above.

Figure 2. Table storing graph

In order to find all possible paths from point 1 to point 7, the

table above is joined to itself repeatedly until the segment

with destination as end node is reached. Through the join

operation all records that have point 1 as the start node are

selected and joined with records in the same table where end

nodes of first set of records are equal to start nodes of second

table. This process is repeated until records with point 7 as

the end nodes are reached. Figure 3 illustrates this process.

Figure 3. Process of finding all possible paths from 1 to 7

This process provides us with following results. There are 6

possible paths from point 1 to point 7 and the paths are as

follow:

{1,2,6,7} Cost=29

{1,2,3,5,7} Cost=35

{1,2,3,7} Cost=31

{1,3,5,7} Cost=32

{1,3,7} Cost=28

{1,4,5,7} Cost=38

These paths can be ranked and stored in a database for future

uses. Storing the results in a database is more useful for

applications that require frequent access to the results.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

158

3. DISCUSSION

3.1 Results

The complexity function is one of the best methods for

comparing the results of different path finding algorithms,

and is described as a function of time and memory use. Here,

we consider three different algorithms and compare them

using time complexity: Dijkstra's shortest path, K shortest

paths and all possible paths.

The worst-case running time for the Dijkstra algorithm on a

graph with n nodes and m edges is O(n2) (Duckham and

Worboys, 2004). However, time complexity for the K

shortest simple path algorithm for a graph with n nodes and

m edges is O(k(m + nlogn)) in undirected graphs and O(kn(m

+ nlogn)) in directed graphs (Eppstein, 1999).

The process of finding K shortest path when we have all

possible paths saved in a database for a graph of n nodes and

m edges includes search for the start node with O(logn)

complexity (Duckham and Worboys, 2004), search for end

node with O(logn) complexity (Duckham and Worboys,

2004) and sorting the results with O(klogk) complexity in the

worst case (Astrachan, 2003); which results in a worst case

complexity of O(2logn+klogk), where k is the number of

paths between two nodes. However in order to prepare a

database of all possible paths we need to perform a pre-

processing phase. The pre-processing phase for a complete

graph of n nodes and n(n-1)/2 edges has a running time of

O(n(n-1)2). This value is the result of finding all possible

paths from n sources to n-1 destination performing n-1

(maximum number of edges in a path) joins in the database.

3.2 Conclusion

The all possible paths algorithm can be considered an

umbrella solution that covers other network analysis tasks,

such as accessibility analysis and travelling salesperson

problem. The algorithm introduced in this paper is

compatible with database operations, and the results can be

stored in a database for future use, which can improve

performance. The results of the all possible paths algorithm

can be sorted based on one parameter (e.g., edge weight) or a

combination of parameters where more than one parameter

can affect the best paths (multi-criteria solution). Since the

resulting routes are independent of the values of the edges,

this solution provides appropriate results for situations in

which the value changes dynamically, as the shortest paths do

not need to be re-estimated when one or more weights for

and edge changes.

The all possible paths solution can also be utilized with other

spatial analysis. For instance if users are looking for paths

with some spatial restrictions, all possible paths can provide

results that meet those spatial restrictions, by making use of

various spatial operators that satisfy the desired restrictions.

However, using other path finding algorithms (such as

Dijkstra's algorithm), one has to model these restrictions as

edge weights and then find the best path.

The complexity analysis also shows that all possible paths

can provide the opportunity for fast and efficient

computation, assuming that pre-processing phase has been

completed. When applied to dynamic networks this approach

is clearly more efficient, because there is no need to re-

compute the shortest K paths.

4. REFERENCES

O. Astrachan, 2003, Bubble sort: an archaeological

algorithmic analysis, SIGCSE Bull., vol. 35, pp. 1-5.

E. W. Dijkstra, 1959, A note on two problems in connexion

with graphs. Numerische Mathematik, vol.1, pp. 269-271

S. E. Dreyfus, 1969, An appraisal of some shortest-path

algorithms, Operations Research, vol. 17, no. 3, pp. 395-412.

 M. Duckham and M. Worboys, 2004, GIS: A Computing

Perspective, 2nd ed., M. D. Michael Worboys, Ed. CRC

PRESS LLC, pp 210-225.

D. Eppstein, 1999, Finding the k shortest paths, SIAM J.

Comput., vol. 28, pp. 652-673.

W. Hoffman and R. Pavley, 1959, A method for the solution

of the nth best path problem, J. ACM, vol. 6, pp. 506-514.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

159

