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ABSTRACT: 

 

Computing the convex hull of a point set is requirement in the GIS applications. This paper studies on the problem of minimum 

convex hull and presents an improved algorithm for the minimum convex hull of planar scattered point set. It adopts approach that 

dividing the point set into several sub regions to get an initial convex hull boundary firstly. Then the points on the boundary, which 

cannot be vertices of the minimum convex hull, are removed one by one. Finally the concave points on the boundary, which cannot 

be vertices of the minimum convex hull, are withdrew. Experimental analysis shows the efficiency of the algorithm compared with 

other methods.  

 

 

                                                             

*  Corresponding author. 

1. INTRODUCTION 

A convex polygon, with every internal angle less than or equal 

to 180 degree, is a simple polygon whose interior is a convex 

set. This means that all the vertices of the polygon will point 

outwards, away from the interior of the shape (Zhou, 2005). 

The convex hull of a set Q of points is the smallest convex 

polygon P for which each point in Q is either on the boundary 

of P or in its interior (Cormen et al., 2009).  Computing the 

convex hull is a problem in computational geometry. It finds its 

practical applications in pattern recognition, image processing, 

statistics and GIS. It also serves as a tool to construct geometric 

shapes. Especially the minimum convex hull of a point set is 

requirement in the GIS applications such as area cut, TIN and 

DTM generation and area dynamic calculation. 

 

At present, many scholars have proposed a number of effective 

algorithms for computing the convex hull of a set of points in 

two and three dimensions, such as incremental, Graham’s scan, 

gift-wrapping aka Jarvis march and divide-and-conquer, and so 

on. Incremental method is to add points one at a time updating 

the hull as we proceed. Both Graham’s scan and gift-wrapping 

use a technique called “rotational sweep”, processing vertices 

in the order of the polar angles they form with a reference 

vertex. Divide-and-conquer method firstly divides point set 

into two subsets, and then recursively computes the convex 

hulls of the subsets before combining all of them. The time 

complexity of these algorithms can achieve O(nlogn) or O(nh). 

However, they are all involved in scanning all the points one 

by one, which result in much computational overhead. 

Normally, the minimum convex hull contains only a few points, 

and most of the points are in the interior of convex hull. There 

are some improved algorithms, which can enhance 

performance though excluding non-convex hull vertexes to 

reduce the analysis points of the minimum convex hull, such as 

grouping the set of points (Wang, 2002; Zhang et al., 2009), 

establishing the auxiliary grid field (Wang, 2010), and 

obtaining the extreme points (Yu et al., 2005; Wu et al., 2010; 

Cheng et al., 2009; Liu et al., 2011; Barber et al., 1996). 

However, these algorithms have some faults including memory 

or subjective factors, which lead to inefficiency, such grouping 

and subsets dividing, additional storage space and artificial 

threshold determined. 

 

Based on above, we present an improved algorithm to rapidly 

compute the minimum convex hull of a planar scattered point 

set in this paper. Firstly, the algorithm finds an initial convex 

hull boundary of the set of points by recursively dividing the 

set of points into sub regions. The boundary will be updated 

after each recursive division. Next, the points within the 

convex hull boundary are removed to avoid judgement. Finally, 

the concave points on the convex hull boundary are deleted to 

strike the minimum convex hull of the set of points. 

 

 

2. PRELIMINARY 

Definition 1 For a set of points S in 2-dimensional space, its 

convex hull is the smallest convex polygon containing S. 

 

Definition 2 (Initial convex hull boundary) The polygon P, 

which contains some internal points in addition to the smallest 

convex hull vertices of the point set S, is called the initial 

convex hull boundary of the point set. 

 

Definition 3 In all vertices of polygon, the one whose interior 

angle is less than π is convex point, the one whose interior 

angle is equal to π is called flat point, and the one whose 

interior angle greater than π is defined as concave point . 
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Theorem 1 (Decision theory of the position relationship 

between point and straight line) Let p, q, r, be the coordinates 

of any three distinct points on the plane, so  ,x yp p p , 

 ,x yq q q ,  ,x yr r r , pq  denotes a directed line segment 

from p to q, expressed as follow: 
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x y

x y

x y
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Further,        x x y y y y x xD q p r p q p r p        . 

Positional relationship of r and pq  can be judged by the size 

of D, shown in Figure 1: 

(1) If 0D  , the point r is located to the left side of pq ; 

(2) If 0D  , the point r is located to the right side of pq ; 

(3) If 0D  , three points (p, q, r) are collinear. 

Proof: Omitted. □ 
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right

p

q
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Figure 1. Judgement of the positional relation between point 

and straight line 

 

Theorem 2 (Decision theory of the convex and concave of 

point) Let
1ip 

,
ip ,

1ip 
 be three consecutive vertices of the 

polygon in a counter clockwise direction. For the common 

endpoint 
ip of 1i ip p  and 1i ip p  , the convex and concave will 

be to determined using the vector cross product method, in 

other words, by the sign of    1 1i i i ip p p p    which is cross 

product of 1i ip p and 1i ip p  . Let  1 1 1,i i ip x y   ,  ,i i ip x y , 

 1 1 1,i i ip x y   .  1 1, ,i i iS p p p 
 is convex and concave 

judgments function, and can be derived from following 

equation. 

         1 1 1 1 1 1, ,i i i i i i i i i i iS p p p x x y y x x y y             . 

As shown in Figure 2: 

(1) If  1 1, , 0i i iS p p p   , 
ip is convex point; 

(2) If  1 1, , 0i i iS p p p   , 
ip is flat point; 

(3) If  1 1, , 0i i iS p p p   , 
ip is concave point. 

Proof: Omitted. □ 

counterclockwise

1ip 

1ip 

ip

 

Figure 2. Judgement of the convex property or concave 

property of a point 

 

 

3. ALGORITHM DESCRIPTION 

3.1 Principle of the Algorithm 

Firstly, find the points with maximum and minimum x 

coordinates, as well as the point with maximum and minimum 

y coordinates in planar scattered point set. The four extreme 

points can be used to generate an initial boundary of the 

convex hull. After removing points within the initial boundary 

of the convex hull, the point set will be divided into two parts 

by the two extreme points at x coordinate direction. And then 

the point set is divided into three vertical regions by the x 

coordinate of two extreme points at y coordinate direction. 

Then all the three regions are recursively divided again 

according to the point with  maximum and minimum y 

coordinate in the region under the principle that is to determine 

whether the extreme point is bump or not by connecting the 

point and its two neighbour points on the initial boundary. If it 

is bump, we can add it onto the initial boundary, and then 

delete points within the initial boundary of the convex hull to 

get an initial boundary which contains all the vertices of the 

minimum convex hull. Finally, process the initial boundary 

again to get the final convex hull. 

 

3.2 Steps of the Algorithm  

Algorithm is as follows: 

(1) All points of the planar scattered point set are sorted in 

ascending order of x-coordinates to find the minimum point 

0Lp and the maximum point 
0Rp  of the point set based on 

their x coordinates, and thus the x coordinates of two extreme 

points are identified as the division border, which means the 

borders of the point set as shown in Figure 3 (1). At the 

meantime, the set of points is divided into two parts by 0 0L Rp p . 

 

(2) Find out the point
0Tp  with maximum y coordinate and 

0Bp  

with minimum y coordinate respectively, then divide the entire 

set of points into three vertical regions (left, centre, right) 

based on the x coordinates of these two points (if x-coordinates 

of 
0Tp and

0Bp  are the same, the entire set of points will be 

divided into two vertical regions (left, right)). As shown in 

Figure 3 (2), the points 0Lp , 0Rp , 0Tp and 0Bp , are the 

vertexes of the final convex hull. In this case, points located in 

this initial convex hull interior will be excluded from the 

vertexes of the final convex hull.  

 

(3) Recursively divide the left region: in the left region, repeat 

step 2 to find two adjacent vertices before and after the points 

1Tp and 1Bp from the points set located in the same side of 

1Tp and 1Bp . For example: if 1Tp  locates in left side of 0 0L Rp p , 

get the two adjacent vertices of 1Tp  from the vertexes which 

locates in left side of 0 0L Rp p  on the initial convex hull 

boundary, respectively. Based on Theorem 2, we can determine 

convexity of the point 1Tp  and the point 1Bp . If it is bump, add 

this point to the initial boundary, delete the points within the 

initial boundary, and then divide the regions where the point 

locates again by the x-coordinate of this point. Otherwise, the 
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boundary is no longer being divided, as shown in Figure 3 (3)-

(4). If the sub-region with lower level exists, recursively do the 

above operation until there is no any bumps or points in the 

sub-region. 

 

(4) If the sub-region contains only one point, obtain the two 

adjacent vertices in the same side of this point, and then 

determine the nature of its convexity according to the location 

of 
0 0L Rp p . If the bump, add this point to the initial boundary of 

convex hull and delete the points within the initial boundary of 

the convex hull, as shown in Figure 3(5).  

 

(5) Choose the point with the maximum y-coordinate and the 

point with the minimum y-coordinate in the sub-region. In case 

of a tie, if these points locate in the upper part of the point set, 

choose the point which is farther away from 
0Tp  in the x-

coordinate. Otherwise, take the point that is farther away from 

0Bp in the x-coordinate. 

 

(6) Repeat steps (3) - (5) operation in the second and third (if 

the third exist) vertical regions until to find the final initial 

boundary of the convex hull as shown in Figure 3 (7). 

 

(7) According to Theorem 2, the convex and concave properties 

of vertices on the initial boundary will be judged. 

 

(8) Delete the concave points on the initial boundary, the 

remaining points of the boundary are the all vertices of the 

final convex hull as shown in Figure 3(8). 
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Figure 3.  Generation process of the initial boundary 

 

3.3 Algorithm Analysis 

3.3.1 Conclusion: The initial boundary of the convex hull of 

the point set which is derived by the algorithm presented in 

this paper contains all points of the point set, that is to say, 

there is no any point outside of the boundary. 

 

Proof: Assumption that there is any point outside of the initial 

boundary of the convex hull, which is denoted as
Wp . Let the 

sub-region where it is located be
WpR , and let the sub-set of 

points on the initial boundary of the convex hull in this sub-

region be { ( , ) | 0 2}R i i iS p x y i   . Because Wp  is a point which 

is outside of the initial boundary of the convex hull ( W Rp S ), 

y coordinate of Wp  must be greater than y coordinate of the 

maximum point or less than the y coordinate of the minimum 

point in RS ,where Wp  is an extreme point of the sub-region 

WpR in the y coordinate. Whereas the vertices on the initial 

boundary, which derived in our algorithm, are all the extreme 

points in a sub-region at y coordinate direction (such as the 

points in RS  are the extreme points in the sub-region 
WpR at y 

coordinate direction). This situation is contradicted with 

assumption, so the initial boundary derived by our method is 

the boundary which contains all points of the point set. □ 

 

3.3.2 Time Complexity: Currently, the lower limit of time 

complexity of the convex hull is O(nlogn) (Yao, 1981). The 

time complexity of our algorithm for the extreme points is O(1). 

The key step is to divide the point set. The worst case is that 

all points are concentrated in the vertices and the horizontal 

boundary of a triangle or in the vertices and the horizontal 

diagonal of a diamond. In this case, the point set can be 

divided into n-1 sub-regions and the extreme points are stroked 

in the sub-regions respectively with the time complexity of 

O(n). The time complexity of determining the convex or 

concave property of the points and processing the adjacent 

point by sorting is O(nlogn). Since each update needs to delete 

the points within this initial boundary of the convex hull, the 

number of judge points should be less than n. Therefore the 

total time complexity of the algorithm is less than O(nlogn). 

 

 

4. EXPERIMENTAL COMPARISON OF 

ALGORITHMS 

We implement the classical Graham algorithm, divide-and-

conquer algorithm and the algorithm proposed in this paper in 

C# on an Intel Core i5-M450 2.40 GHz PC with a 2GB main 

memory and an ATI Mobility Radeon HD 545v GPU. We 

generate random points with number from 500 to 10,000 in the 

same range, and design three groups of test to evaluate the 

performance of above three algorithms. They are striking the 

minimum convex hull of random points in a round, a 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

65



 

rectangular and an irregular shape, respectively. Figure 4 

shows the convex hull of 1000 random points in three graphics 

respectively by using our algorithm. 

 

(1) (2) (3)
 

Figure 4.  The minimum convex hull of 1000 random points 

 

The time cost is calculated from the average value of overhead 

during striking a convex hull using the same points by 10 times. 

The results are shown in Table 1. 

 

As can be seen from Table 1, our algorithm beats classic 

algorithms in generating the minimum convex hull of the same 

point set. 

 

 

points 
Graham’s scan algorithm(ms) divide-and-conquer algorithm(ms) this paper’s algorithm(ms) 

round rectangular irregular round rectangular irregular round rectangular irregular 

500 22 21 10 18 17 11 18 15 10 

1000 69 56 25 39 38 20 36 32 18 

5000 945 973 318 516 530 186 354 356 139 

10000 3616 3668 1243 1836 1882 631 1245 1664 441 

 

Table 1.  Comparison of three algorithms 

 

5. CONCLUSION 

Convex hull problem is the classic problem in computational 

geometry. Corresponding convex hull algorithms have a wide 

range of applications in GIS, computer graphics and other 

fields. The proposed algorithm, first get the initial boundary of 

convex hull by dividing regions recursively, determines the 

vast majority of points within the boundary in the process of 

obtaining the initial boundary of the convex hull, and greatly 

improves efficiency for the final minimum convex hull by 

excluding these points. Experiments show that the algorithm is 

more efficiency than existing algorithms.  
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