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ABSTRACT:

Automated 3D building model generation continueattoact research interests in photogrammetry amapater vision. Airborne

Light Detection and Ranging (LIDAR) data with incseay point density and accuracy has been recogrigedvaluable source for
automated 3D building reconstruction. While consatbée achievements have been made in roof extradiimited research has
been carried out in modelling and reconstructiorwafis, which constitute important components diith building model. Low

point density and irregular point distribution dDIAR observations on vertical walls render thisktaemplex. This paper develops
a novel approach for wall reconstruction from airt® LIDAR data. The developed method commences wint cloud

segmentation using a region growing approach. peets for planar segments are selected througitipie component analysis,
and points in the neighbourhood are collected a@nened to form planar segments. Afterwards, se@tibased classification is
performed to identify roofs, walls and planar grdwsurfaces. For walls with sparse LIDAR observatiansearch is conducted in
the neighbourhood of each individual roof segmertdilect wall points, and the walls are then retorcted using geometrical and
topological constraints. Finally, walls which weret illuminated by the LIDAR sensor are determinéa oth reconstructed roof
data and neighbouring walls. This leads to the geioa of topologically consistent and geometrigaltcurate and complete 3D
building models. Experiments have been conductedidntest sites in the Netherlands and Australiavaluate the performance of
the proposed method. Results show that planar segroan be reliably extracted in the two reportext $étes, which have different

point density, and the building walls can be cdiyeeconstructed

1. INTRODUCTION

Digital building models are required in many gefeimation
applications. Airborne Light Detection and RangingDAR)

has become a major source of data for automateldlirogyi
reconstruction (Vosselman, 1999; Rottensteiner 8migse,
2002; Awrangjeb et al., 2010). With its increastohensity and
accuracy, point cloud data obtained from airborn®AR

systems offers ever greater potential for extract@pographic
objects, including buildings, in even more detaWhile

considerable achievements have been made in byildiof
extraction from airborne LIDAR, limited researchtdnthe
modelling and 3D reconstruction of vertical wallsshthus far
been carried out. However, walls are important comemts of a
full building model, and without walls a building agel is
incomplete and potentially deficient in required daling
detail. Yet, in certain applications such as cad aersonal
navigation, building walls are more important thranfs in city
models.

The main difficulty for wall reconstruction is thgpical low
density and irregular distribution of LIDAR points avertical
facades. In this paper a method for automated aidra and
reconstruction of vertical walls from airborne LIBAdata is
presented. The automated identification and lonatib wall
points, along with the development of new methanséliable
segmentation and classification of point clouds foasied the
focus of the reported research. These developnaeatdetailed
in Section 3, together with approaches for wallorestruction
and modelling. Two test sites have been employeevaduate
the developed algorithms and experimental resuétpeesented

115

if the walls are illuminated betLIDAR sensor.

in Section 4. A discussion of the developed apgro&
presented in Section 5, along with concluding rémnar

2. RELATED WORK

Automated building reconstruction from airborne KR data
has been an active research topic for more tharecads
(Vosselman and Dijkman, 2001). Since buildings aseally
composed of generally homogeneous planar or neaapl
surfaces (Hug, 1997; Oude Elberink, 2008), sigaificefforts
have been directed towards the development of itlhgas for
automated point cloud segmentation of planar sasfad-or
example, building roofs are generally reconstructby
exploring the spatial and topological relationswestn planar
roof segments.

Segments can be determined by region growing msthesing
edge-based approaches, or via clustering technidregion
growing approaches start with a selected seed,mzltulate its
properties, and compare them with adjacent poiatsed on
certain connectivity measurement to form the region
Vosselman and Dijkman (2001) explored the use ofigto
Transforms for planar surface detection. A randaimtpand its
certain neighbours were first selected and transédrinto 3D
Hough space. The point was then adopted as a séedipthe
case where all the neighbours in Hough space attd into
one point. The other strategy of seed selectioRANSAC
(Brenner, 2000; Schnabel et al., 2007). A comparafahe two
strategies has been reported by Tarsha-Kurdi e{(28107).
Normal vectors from neighbouring points also previtucial
information for segmentation. Sampath and Shan QRO1
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performed clustering based on normal vectors Iplyam the

k-Means algorithm and then extending the clusterh¢oedge
points to form segments while Kim and Medioni (2PL%ed a
hierarchical approach to cluster normals. Bae .€28l07) used
an edge detection approach for segmentation whecal |
curvature was employed for detection of edges. Leset

approaches have also been used for curve propagatid

segmentation (Kim and Shan, 2011).

Vertical wall extraction is attractive to some dpalions. Oude
Elberink (2008) compared positional differenceswesen roof
outline and ground plans. The result showed tHzD duilding
model can generally not be correctly formed by $ymp
projecting roof edges to the ground to form thetigar walls.
However, very limited efforts have been made so tiar
explicitly derive building walls from airborne LIDR data.
Dorninger and Nothegger (2007) introduced data mgini
approach for clustering wall seeds in feature spRoézinger et
al. (2009) used a Hough transform segmentationrigthgo for
extracting walls from both airborne and terrestriabbile
LIDAR data and compared the accuracy of the two sgata
Currently, mobile LIDAR data is being widely used fertical
walls reconstruction (Hammoudi et al., 2010; Raditeimer,
2010).

3. METHODOLOGY

The proposed approach for wall detection and reoactfon
consists of three stages, as indicated in Figur®rie of the
main requirements of the developed method is autmna
identification and location of wall points via inqued point
cloud segmentation and classification. Followings tktage,
wall surfaces are formed. The walls are then recoced and
their extents and corners are determined throughmggical
and topological modelling that is constrained byfratructure.

Airborne Region Segment Wall
LiDAR Growing | —» Classification —Reconstruction
Data (Section 3.1) (section 3.2) (section 3.3)

Figure 1. Workflow of the proposed methodology.

3.1 Segmentation

The developed point cloud segmentation approadbvisl the
region growing principle. The major contributiond the
presented work include optimal determination ofrgeaange
and robust selection of seed points. In the appemof region
growing, the selection of seed points and the detation of
the search radius are critical (Brenner, 2000; ¥iosan and
Dijkman, 2001). Randomly selected seed points neswlt in
incorrect results or too many unnecessary smalinsets. A
larger search range may pick up points outsidestgaments
under consideration. A smaller search range seafes But it
may miss points, particularly when the density loé tpoint
cloud is low or the distribution of the points iseigular. To
avoid such problems, an approach to adaptivelyrote the
search neighbour from the point cloud has beenldped. The
search range varies according to the local densityg
distribution, and it increases with low density. dddition, the
selection of seed points is determined via a Fplaci

Component Analysis (PCA) process. Only the pointst tha

exhibit high planarity in a local area are selected

Adaptive neighbourhood sear ching. Eitherk-Nearest or Fixed
Radius method, or combination of both, is generathployed
for searching for neighbouring points. These mashaork
well when the point distribution is regular. Howevéheir
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performance can be poor when point density vafegzinger

et al., 2009). In this paper, adaptive methodeagetbped to
accommodate point distributions and decide suitable
neighbourhoods.

LetD = {p;|i € [1,n]} be whole point cloud with n points and
pc € D be the point whose neighbourhood is to be decided.
Firstly, a set ok-nearest pointd/, fromp, is determined. Then,
the largest distancd,,,, between p.andp; in N, can be
determined among itsneighbours:

dmax = arg max (distance(p; pc)) , i = 1,2,...,K 1)
To optimal the neighbourhood selection scale, dyoalhy
scaler is then decided as= d,;4x/3 (Pauly 2002) and thus the
neighbours ofp, can be represented as

N = {pj|p]- € Ny, distance(pj'pc) < r} (2)

Thus, the neighbouX ensures the uniformly of neighbourhood
distribution and optimal search range. Figure 2xshfour cases
of neighbourhood determination. The dashed cirogsesent
the range of th&nearest points. The determined neighbours are
shown in circles of solid circles. The LIDAR poingrisities on
roofs and the ground are high and the distributibthe points
demonstrates a quite regular pattern. Therefore, skarch
ranges on the roof and the ground are similar anallsWall
points are sparse and the distribution varies tithflight line
and scanning directions, so a larger search raagetapted. An
interesting performance is seen near the inteseadti wall and
ground, as shown in the lower right of Figure 2ekimearest
or fixed radius methods may result in a large amaodiground
points (see the dashed circle). This kind problamfze avoided
by the proposed adaptive search range approachthsesolid
circle).

.Nelg ourhood determination.

Flgij,ré

Local surface variation. A planar surface can be estimated
within the determined neighbourhood and its plapatzan be
assessed by PCA. The PCA of a set of 3D LIDAR pajietsls
the principal vectors describing an orthonormainfea/o, vi, W)
and the principal valuesl{, 4,, 1,) with 1,<A;<1,. The PCA
decomposition of a set of LIDAR points can be chtad by
singular value decomposition of tBex 3 covariance matrix of
the points. The covariance ¥fand X; is defined as

cov(Xi. X]-) = —Zl(xi_nui)l(xj_uj ) (3)
Here,y; denote the mean &, andn is the number of LIDAR
points in the neighbourhood.

For planar points, the variances will appear onty tio
orthogonal directions after PCA transformation. Tisf, is
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zero. Thus, we define local surface variation in¢fgy) based
on the principal values is defined as

_ Ao
T Aot A+,

Lsy(0) 4)

Taking noise and measurement errors in the LIDAR: dato
account, the points are considered as plangg,ifs smaller
thanT;,_, which is a pre-defined threshold in the rangello,
The selection of the threshold allows for accomniodaof

different levels of noises and measurement ernor&IDAR

data. The principle of surface variation and itplaations are
reported in (Hoppe et al., 1992; Sampath and S2Gt0)).

An example of PCA process is given in Figure 3. $hene
consists of an independent house with vegetatioitsdaft side.
The vegetation points with discontinuous surfadeggreen in
Figure 3(A), tend to be non-planar points. The tegh is
relatively flat and points on this surface, indeghtin red in
Figure 3(B), are determined as planar. The rooth&f house
constitutes several planes joined by roof ridgebil&most roof
points are planar, points on ridges, shown in FEg8fC) are
not. They are successfully differentiated from ghane points
by the PCA process.

Figure 3. Results of PCA process of LIDAR points égre
points are non-planar while red ones is planar)

Seed points are then selected from the determila@duppoints.
However, not all planar points are suitable canislaFor
instance, a vegetation point with only a few neimining points
may have a very lowl, value. In order to avoid such
vegetation points, only the planar points with aaia size of
neighbourhoods are considered as valid seed points.

Region growing for segmentation. The coordinates for a seed
point, along with the local surface normej letermined in the
PCA process), define the initial plane. Then, thigiigourhood
of the seed point is examined and the distancesthef
neighbouring points to the plane are computed. ighimuring
point is considered belonging to the plane if itstahce to the
plane is lower than a pre-defined tolerance thresta),).
Following this, the plane parameters are refined ahe
searching and growing process continues from thistpThis
procedure will not stop until the distances of dhe
neighbouring points to the plane are larger tifign Such
iterative process will collect points to build ugetplane. Some
regions like gable roofs, points are over-segmebtechultiple
segments. In such case, the normal direction of-segmented
point is used to compare with the segments andpgiuio the
segment with most homogeneous.

3.2 Segment classification

The detected segments undergo classification sb dbgect

differentiated within the LIDAR point cloud. Fifgt walls are
identified based on the segment normal vectoreSivells are
vertical, the Z-component of the segment normatoreshould
be zero. The remaining segments will be processedetive

roofs and ground surfaces. Common knowledge used in

classification is that roofs are above the ground aonnect
with it via vertical walls; and if a wall is not @sented in
LIDAR data, there will be a large height jump betwehe roof
segment and the ground segment. The height différemveen
two segments is defined as nearest distance ofgteops of
point cloud and from the pair of nearest pointsi¢éoive height
jump. The classification is then carried out by fo#owing
procedures (He, 2010):

1. The segments are sorted in order from high to lod a
stored in a list.

2.  The highest segment in the list is selected and its

neighbouring segments collected.

3. If this segment has a neighbouring vertical walll &ine
segment is on top of the wall, it is classifiedasf. Also,
if a vertical wall does not appear in the neighboad,
but this segment displays a significant height jump
compared to its neighbours, it will again be clisdias
roof. The segment is then removed from the list &tep
2 is repeated. If the highest segment has smatjhhei
difference with its neighbours, merge this segmeitih
its neighbours and update the list. Then repeat &tep 2.

4. If the highest segment has small height differenoe its
neighbours, it is merged with them and the listgdated.
The process from Step 2 is then repeated.

5. The above procedure is iteratively repeated ufitiloaf
segments and wall segments are identified.

6. The remaining segments are taken as ground surface.

3.3 Reconstruction of walls

With the extracted wall segments, the reconstronatibwalls is
straightforward. It is worth to note that some wadlints may
not be collected in the wall segments due to tharssp
distribution and irregular pattern of LIDAR illumation on
building walls. Since walls are between roofs armaligd, these
wall points can be located from the neighbourhobthe roof
edge. Wall points are then fitted to form a walar@ using
Moving Least Square (Levin 2003). However, the am of
the wall plane usually are not defined by LIDAR geisince
the wall points are sparse, and are rarely locatethe wall
corners or wall outlines. The edges and corneufeatcan be
determined by topological and geometrical modellisgng roof
structure information.

Firstly, the roof segment on top of the wall plasméocated. The
horizontal plane passing through the roof edgectsadly the
eaves of the roof segment. The intersection of ®avieth the
fitted wall plane leads to the top outline of thallw Wall

corners are usually located under the roof ridge dme
intersection of the wall plane, eave and roof riggeerate wall
corners.

4. EXPERIMENTAL TESTSAND RESULTS

The developed algorithms have been tested withnabeu of
datasets for different urban scenes in Europe anstralia.
Here, results from two test sites will be presenifigtk first test
area is located in Enschede, The Netherlands. démess flat.
As in many European towns, the scene includes staeding
low residential buildings, as well as streets aeg¢d. Data was

features such as roofs, walls and ground surface arzcquired by FLI-MAP 400 with 20 pts/m2. The highdity of
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the point cloud was achieved by fusion of seveights. This
has introduced inconsistency in the dataset.

The second test site is part of the campus of thiedisity of
Melbourne, Australia. The data was collected in ezent
campaign by Optech ALTM Gemini with 4-5 pts/m2. T$wene
contains larger buildings. Due to low density o fhoint cloud,
only a few building walls were illuminated by thdDAR

sensor.

4.1 Parameter setting

Adaptive scale factor for searching neighbours iainhy

depended on the initi& selection. Due to the final scale factor

is three times less than initial scale factor, ¢barching region

was set to 0.09 m. A similar procedure was appt@edhe
Melbourne dataset, and the optimal local surfagé&tian and
tolerance distance toward plane as 0.02 and 0.féBpectively,
were selected.

4.2 Verification

Correctness as well as completeness for verificatan
extraction result was performed by manually ouditmiilding

facades from point clouds. A buffer from referemesd| facades
was preformed for evaluating correctness and caemss.
The correctness was calculated as the length oktiracted
lines inside the buffer divided by the length dfeadtracted lines.
The completeness was defined as the length of xtracted

lines inside the buffer divided by the length o€ treference

is nine times less than initial one. Initkals estimated based on lines. The width of buffer is selected as 40cmolthive believe

point density and visual inspection for two datasatd selected
as 90 and 40 empirically.

Ideally, thelocal surface variation index should be zero for a

planar point. Thus, a small value can be assigredha
threshold. Figure 4 shows the results of a portanthe
Enschede dataset with threshold valugg, X of 0.005, 0.01,
0.015 and 0.02 respectively. It can be seen rodftpavere
largely misclassified with 0.005 and 0.01. Thisbecause the
point cloud was a fusion of several acquisitionsthwi
discrepancies (up to 3-6 cm by manual inspectiof)larger
value of the threshold can account for the qualftguch data,
as shown in the results using 0.015 and 0.02 ashtieshold.
However, the result of value 0.02 led to misclasatfon of
vegetation points as planar points. Therefore, tipéimal
threshold has been set to 0.015 in the reportéiddes

Figure 4. Detected plnar points using threshold.605 (a),

0.01 (b), 0.015 (c¢) and 0.02 (d) for local surface
variation index. Red indicates planar points while

green for non-planar points.

To set an appropriate tolerance valug for segment
generation, four training samples of flat surfaceravselected
from the Enschede dataset. The standard deviatibrihese
four sites were calculated and listed in Table 1.

Flat site 1 2 3 4
Standard 0053 | 0032| 0046 0.064
deviation (m)
Number of 1446 2462 | 2711| 804
points

Table 1. Standard deviations of flat plane

Sites 1 and 4 were captured in multiple flight §inend thus
have larger standard deviation. A confidence irgteof 20 was
defined as the tolerance. Taking the sample sizetlam RMS
into account, the tolerance distance value forBhschede data
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the true position of wall facade should insidehiis research.

Site 1 2
Correctness 0.75 0.65
Completeness 0.62 0.32
Table 2. Correctness and completeness of verificatio

4.3 Result of wall reconstruction

The datasets were processed with the methods bedadn the
previous section. A portion of raw point cloud bétEnschede
data is shown in Figure 5. The seed points wermeted and
the segments were coded by colours. It can be He#nthe
building roofs were successfully extracted as plasegments
while the vegetation points were treated as nongslgshown
in white in the Figure 5). Since the site in Ensitghes quite flat,
the ground surface was also clustered into selamgé planar
patches. The detected walls are presented in Figufen the
left of the figure, walls are shown in 2D while tB® wall
facades are shown on the right. Some gaps exigtlifacades.
This is caused by absence of LIDAR points. It wias aoticed
that a few small facades were detected in vegetatiea. These
false detections can be removed easily due to #irégs are
small.

Figure 5. Segmentation result in Enschede site.
(non-segmented points are represented in white)




International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012
XXII ISPRS Congress, 25 August — 01 September 2012, Melbourne, Australia

Finally, the wall facades were modelled using thi@rmation
of building roof structures. The roof segments,esasnd roof
ridges were explored to determine the wall extemnt eorners.
Several examples are given in Figure 7. The intil outlines
in Figure 7(b) were derived by detected wall pairtstial

outlines were incomplete and incorrect. After méidgl using
building roof structure information, the wall bowarg and
corners were determined in Figure 7(c). The 3D rsdéthe
full buildings are shown in Figure 7(d).

.- —
ET SO S '1-?::_—_4]

@) (b) (©) (d)
Figure 7. Detection of cubic buildings. (a) poinbud of
original building; (b) detected wall outlines; (c)
constraint wall outlines; (d) wall facade cubes

Figure 8. Result of Melbourne campus site. (a) ratad(b)

The wall reconstruction performance for the Melmaudata is
shown in Figure 8. The algorithms worked equallylweven

considering that the point density was lower than the
Enschede data. Once again, the planar points (poafts,

terrain points) and non-planar points (vegetati@ints, roof
ridge points) were successfully detected, as ineécin Figure
8(b). Planar segments, including roof facades anourgl

surfaces were derived by region growing using ta@gr seed
points, as seen in Figure 8(c). Although only alsmamber of
walls were illuminated by the LIDAR sensor due te flight

pattern, these walls were successfully extractedexXample of
reconstructed walls is shown in Figure 8(d).

5. DISCUSSIONS AND CONCLUSIONS

This paper has presented a methodology for autamate
reconstruction of building walls from airborne LIRAdata. All
procedures have been detailed, including point clou
segmentation and classification, wall reconstructiand
modelling. The developed approaches have beendtestiag
different datasets. Experimental results are ptesen

Segmentation plays a critical role in point clousbgessing,
particularly for object reconstruction. To achigvigh quality
segmentation, new approaches to search range dedtion
and seed point selection have been proposed arldnirapted.
Adaptive determination of search range can effityen
accommodate varying point cloud densities. Restitsvsthat
PCA is an effective method to select planar points f
segmentation. Thus, non-planar points, such as tatge
points, can be avoided from beginning. In both t#ts, in
Europe and Australia, all the roof segments, wadinsents and
planar ground segments were correctly extractedrandelled
from the LIDAR point cloud, even though the poinhdigy was
very different in each case. Thus, the developepnsatation
method can be also used for roof reconstruction tandhin
extraction. This method may also be applicable fare
detection upon further refinement.

The experiments conducted have also shown thawdlieplane
can be determined from LIDAR points. However, LIDAR
points alone are not sufficient to decide the vmllundaries.
The extent and corners of extracted wall planes ban
reconstructed with geometrical and topological tietes
between the wall and the roof structures. This riiodegprocess
proved to be powerful. Verification of correctnessd
completeness is preformed. Even though correctnisss
relatively higher than completeness, both are la tb point
distribution.

The reconstructed walls together with the 3D rogénerate
complete 3D building models. Unfortunately, many lisva
cannot be reconstructed from the LIDAR point clainte they
are not ‘seen’ by the sensor. With the decreasiogt of

airborne LIDAR, oblique scanning for dense wall mo¢loud

coverage may well be more practical in the future.

The sensitive of parameter setting and accurasggmentation
result should be further investigated. Future nesewiill refine

the method for wall reconstruction and in geneealfuilding

reconstruction. For instance, the current methambnstructs
roofs and walls separately. New approaches magsearched
to more efficiently explore the inherent relatioipshbetween
different parts of a building so as to generate mainensive

detected planar points (red) and non-planar pointguilding models with simultaneous roof and wallragtion and
(green), (c) generated segments, (d) reconstructefiodelling.

walls.
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