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ABSTRACT: 
 
Airborne LIDAR point clouds, which have considerable points on object surfaces, are essential to building modeling. In the last two 
decades, studies have developed different approaches to identify structure lines using two main approaches, data-driven and model-
driven. These studies have shown that automatic modeling processes depend on certain considerations, such as used thresholds, 
initial value, designed formulas, and predefined cues. Following the development of laser scanning systems, scanning rates have 
increased and can provide point clouds with higher point density. Therefore, this study proposes using topological elevation analysis 
(TEA) to detect structure lines instead of threshold-dependent concepts and predefined constraints. This analysis contains two parts: 
data pre-processing and structure line detection. To preserve the original elevation information, a pseudo-grid for generating digital 
surface models is produced during the first part. The highest point in each grid is set as the elevation value, and its original three-
dimensional position is preserved. In the second part, using TEA, the structure lines are identified based on the topology of local 
elevation changes in two directions. Because structure lines can contain certain geometric properties, their locations have small 
relieves in the radial direction and steep elevation changes in the circular direction. Following the proposed approach, TEA can be 
used to determine 3D line information without selecting thresholds. For validation, the TEA results are compared with those of the 
region growing approach. The results indicate that the proposed method can produce structure lines using dense point clouds. 
 
 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

Three-dimensional building modeling is essential for various 
applications, such as 3D visualization, urban planning, geo-
database updating, and decision support. Key components 
including corners, edges, and planes can be used to delineate 
the building geometry. Therefore, feature detection is the 
highest priority for building procedures using aerial imagery, 
LIDAR point clouds, and integration strategies. Among these 
data sources, aerial imagery provides the spatial information 
with spectral features. Conversely, LIDAR data shows the 
building geometries with point cloud distribution. Following the 
development of lidargrammetry, an airborne LIDAR system can 
provide more point clouds to illustrate the relief of ground 
surfaces. From a building modeling perspective, laser scanning 
systems can provide more points with substantial accuracy and 
high point density, facilitating the improvement of automatic 
modeling processes. However, the LIDAR system is a blind 
device that cannot directly identify specific objects or features 
(Ackermann, 1999). Because irregular point distribution is the 
main aspect, analyzing point cloud distribution  according to 
building geometry, with either explicit constraints (model-
driven approach) or implicit constraints (data-driven approach), 
is necessary.  
 
To estimate building geometry using point clouds, the model-
driven approach employs predefined model primitives. Maas 
and Vosselman (1999) fitted point clouds to identify the basic 
primitives and their model parameters from invariant moments. 
Point clouds can also be integrated with vector maps for 
building modeling (Vosselman and Dijkman, 2001). If the 

building boundaries are well known, the processes partition the 
collected points according to their fit with the designed 
primitives. A dormer on the roof can also be successfully 
segmented using this scheme. However, these designed 
primitives restrict the capability under considered building 
geometries. 
 
To overcome the limitation of the model-driven approach, the 
data-driven approach is used to directly analyze the point cloud 
distribution and estimate building geometries. Many studies 
have employed various strategies including the Hough 
transform, RANdom sample consensus (RANSAC) (Fischler 
and Bolles, 1981), binary space partitioning (BSP) (Sohn and 
Dowman, 2007), knowledge-based criteria (Pu and Vosselman, 
2009), the octree-based split-and-merge segmentation algorithm 
(Wang and Tseng, 2010), TIN-merging and reshaping (TMR) 
(Rau and Lin, 2011), and the level set method (Kim and Shan, 
2011). According to literature, segmentation approaches can be 
employed to manage unorganized point clouds for modeling. 
The differences of local patches were analyzed under several 
criteria including normal vectors, elevation differences, shapes, 
or mathematical weighting functions. Then, coplanar points 
were clustered together to fit the surface and calculate the 
structure lines through intersecting surfaces. Nevertheless, these 
threshold-dependent approaches developed building surfaces by 
adjusting the thresholds for different cases. The problematic 
issues may contain the starting position of segmentation 
processes, iterative procedures, and threshold determination. 
Therefore, threshold modification and post-processing have 
become necessary steps. 
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Based on the geometric characteristics of a building’s roof, 
LIDAR points located at the building boundaries have greater 
elevation differences. Additionally, these boundary points have 
explicit permutations that follow the roof shape. For this spatial 
phenomenon, this study proposes using topological elevation 
analysis (TEA) to identify the structure lines instead of 
threshold selection. This topological analysis concept was 
originally developed to detect edges for grayscale images (Lo 
and Chen, 2011). TEA then extends their concepts to manage 
point clouds. 
 
Because the analyses of spatial relation between each point may 
need mass computation, many previous studies indicate that to 
convert point clouds into grid format can enhance speed for 
detection process (Cho et al., 2004). However, the traditional 
rasterization may disturb elevations due to interpolation 
processes. To avoid information loss, Cho et al. (2004) 
proposed a pseudo-grid concept to assign the original elevation 
to each grid from raw data without interpolation. The grid 
spacing can be calculated from the average point density of 
LIDAR data. Based on this merit of pseudo-grid, TEA 
implements two steps to hierarchically handle point clouds for 
structure line detection. In the first step, TEA generates pseudo-
grid digital surface models (PDSMs) using the highest point of 
each grid. Topological permutations of the elevation differences 
are then analyzed to identify local extrema for grid-based line 
detection and produce an index map. According to this index 
map, the second step employs point clouds to calculate three-
dimensional structure lines. For evaluation, the preliminary 
results are compared with those of the octree-based split-and-
merge segmentation algorithm (Wang and Tseng, 2010) to 
assess the relative accuracy and evaluate the applicability of the 
proposed method. 
 
 

2. METHODOLOGY 

To identify three-dimensional structure lines using point clouds, 
the topological relationship between each point must be first 
established. Considering the characteristics of local relief, this 
study proposes three major concepts: (a) possible locations of 
structure lines may contain significant elevation differences in 
the circular direction and small elevation differences in the 
radial direction; (b) one structure line can be formed by several 
basic elements in a three-by-three area; and (c) the basic 
elements may have specific permutations. Figure 1 shows the 
three-step workflow developed based on the proposed concepts, 
that is, (1) pseudo-grid generation, (2) structure line detection, 
and (3) line formation. In the proposed scheme, TEA used two 
thresholds to identify grid-based lines including the grid 
spacing and the minimum elevation difference. The grid 
spacing can be derived from the average point density. The 
elevation constraint for estimation of minimum height jump is 
regarded as a constant in the processes. 
 
 
 
 

 
Figure 1. Workflow 

 
2.1 Pseudo-grid rasterization 

Because the laser scanning system blind detects the geometry of 
objects with dense point clouds, the resulting data lacks 
information of the correlations between each point. In addition, 
the point density is associated with the computation. Greater 
point density can delineate detailed information, but it also 
increases the computation required. To resolve this issue, this 
study generates a PDSM to preserve the original elevation 
information. TEA is employed instead of mathematical 
interpolation to compare the point elevations and identify the 
highest elevation in each grid. After pseudo-grid generation, the 
PDSM provides the original elevation information for further 
elevation analysis. 
 
2.2 Structure line detection 

During the second step, topological permutations of the 
elevation differences are estimated for line detection. Local 
elevation distribution is considered to identify the structure line 
positions without threshold selection. Following the major 
concepts, the generated unit of TEA is shown in Figure 2. 
According to the characteristics of linear geometry, the 
elevation differences in the circular direction may exceed the 
differences in the radial direction for each grid (Figure 3) (Lo 
and Chen, 2011). To formulize this phenomenon, TEA employs 
two equations to represent the two-direction analyses. 
 

8~1


iii TCRC                           (2)

8~111  
iiii CCCC                      (3)

 
where RCi is the elevation differences in the radial direction, 
and CCi is the elevation differences in the circular direction. 
 
 

 
 

Figure 2. Kernel illustration 
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(a) (b) 

Figure 3. Gradient directions 
(a) Circular direction; (b) Radial direction 

 
After calculating the elevation differences, TEA obtains two 
elevation differences series in both directions ((4) and (5)). 
 

  8~121 ,,,'  nnRCRCRCRC                 (4)

  8~121 ,,,'  nnCCCCCCCC                 (5)

 
where RC’ is the elevation differences set in the radial direction 
of the basic unit, and CC’ is the elevation differences set in the 
circular direction of the basic unit. In TEA concepts, structural 
lines exist where two-direction gradients intersect. Detected 
candidates are then identified using the intersections between 
the minimum radial elevation differences and the maximum 
circular elevation differences. In the radial direction analysis, 
the first set of candidates are extracted when RCn closes to the 
RCmin. The circular direction analysis then extracts possible 
edge grids from these candidates when CCn is larger than CCn-1 
and CCn+1. The following process compares these collected 
candidates with designed patterns. 
 
The concept of topological permutations is also used to identify 
structure lines. In this step, 12 patterns are designed to delineate 
the parts of one line, which are compared with designed 
patterns to identify the line grids. These designed patterns are 
shown in Fig. 4. The gray parts indicate the topological 
condition surrounding the nucleus. If the candidate fulfills one 
pattern, TEA determines the candidate to be a part of a structure 
line. Therefore, non-matched candidates can be considered 
isolated noises and removed. 
 
 

 

 
Figure 4. Designed patterns 

 
2.3 3D Line Formation 

After the detection process, the identified structure lines are 
formed using several adjacent grids. During the subsequent 
process, the Hough transform is employed to group independent 
straight line segments and calculate the parameters of every 
structure line. To preserve the original elevation information, 

the grids serve as index maps to obtain the original point clouds 
of each selected grid and calculate the linear parameters. 
 
 

3. EXPERIMENTAL RESULTS 

The test area was located in Van Heekplein, the Netherlands. 
Two target buildings were selected to evaluate the detection 
ability of the proposed scheme. The first building had several 
flat roofs with multiple elevations, whereas the second building 
contained a parapet on the rooftop. The LIDAR data used in 
this study was scanned by a FLIMAP system in 2007. The point 
density reached 30 points per square meters. Figure 5 shows the 
distributions of the original point clouds for both buildings. 
Because the original point spacing was approximately 20 cm, a 
higher value was used to generate a PDSM during the 
rasterization procedure. The spatial resolution used in this study 
is 25 cm. The elevation constraint is set as 0.5 m. This value is 
a constant for the identification of minimum parapet height. 
 
 

(a) 

(b) 
 

Figure 5. Test datasets for (a) Case I and (b) Case II (Unit: m) 
 

 
The PDSM results of the detection process are shown in Figure 
6. In the figure, color-coded boundary pixels denote the 
elevation. During vectorization, the Hough transform was 
applied with TEA to separate the detected edges into several 
independent structure lines (Figure 7). Then, each group of line 
pixels can be used to calculate the linear coefficients. Figures 8 
and 9 show the three-dimensional structure lines developed in 
this study. 
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(a) (b) 

 
Figure 6. The detected PDSM structure lines for 

(a) Case I and (b) Case II 
 
 

 
(a) (b) 

 
Figure 7. The PDSM structure line segments for  

(a) Case I and (b) Case II 
 
 

(a) (b) 
 

Figure 8. The 3D structure lines for Case I in (a) the first view 
and (b) the second view 

 
 

 
(a) (b) 

 
Figure 9. The 3D structure lines for Case II in 

(a) the first view and (b) the second view 
 
 
This study also used octree-based segmentation (Wang and 
Tseng, 2010) to compare and evaluate the capabilities of TEA. 
The same point clouds were employed to derive coplanar points. 

The segmented surface points are shown in Figure 10 and are 
used in the planar equation to calculate the coefficients. The 
used thresholds contain the initial grid size, split distance, 
merge distance, and minimum point numbers of each patch. 
These values are manually optimized for the line computation. 
The computed structure lines were then obtained from the 
intersected planes. Finally, the position differences were 
compared to calculate the root-mean-square errors (RMSEs) of 
the three axes. The comparison results are shown in Table 1. 
 
 

(a) 

(b) 
 

Figure 10. The octree-based segmentation results for 
(a) Case I and (b) Case II 

 
 

Unit: m RMSE-X RMSE-Y RMSE-Z 
Case I 0.354 0.331 0.406 
Case II 0.351 0.340 0.468 

 
Table 1. Comparison results of relative accuracy 

 
 

4. CONCLUSIONS 

This study proposed a method that employs TEA to identify 
three-dimensional structure lines. The two criteria of this 
method are the grid spacing and elevation difference, which 
were set as 0.25m and 0.5 m. Note that the grid spacing can be 
computed from the used LIDAR data. This value is lightly 
larger than the average point density. The independent structure 
lines were identified and compared with the results of the 
octree-based split-and-merge segmentation algorithm. The 
RMSEs of the two cases show that the differences between the 
three axes reached 0.35 m, 0.34 m, and 0.46 m. Case II had a 
greater elevation difference, which may be because of the 
parapet on the rooftop. The height of the parapet was 1.0 m. 
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These preliminary results indicate that the proposed scheme can 
be used to obtain structure lines without threshold selection that 
include the segmentation results. 
 
Future works will focus on the improvement of TEA for corners 
and the development of further applications. The evaluation 
will be also enhanced to compare with manually edited models 
obtained from stereo aerial imagery. In the photogrammetric 
perspective, these detected three-dimensional structure lines can 
provide initial building information for the development of data 
registration and building reconstruction. 
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