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ABSTRACT:

The librjmcmc is an open source C++ library that solves optimization problems using a stochastic framework. The library is primarily
intended for but not limited to research purposes in computer vision, photogrammetry and remote sensing, as it has initially been
developed in the context of extracting building footprints from digital elevation models using a marked point process of rectangles. It
has been designed to be both highly modular and extensible, and have computational times comparable to a code specifically designed
for a particular application, thanks to the powerful paradigms of metaprogramming and generic programming. The proposed stochastic
optimization is built on the coupling of a stochastic Reversible-Jump Markov Chain Monte Carlo (RJMCMC) sampler and a simulated
annealing relaxation. This framework allows, with theoretical guarantees, the optimization of an unrestricted objective function without
requiring any initial solution.
The modularity of our library allows the processing of any kind of input data, whether they are 1D signals (e.g. LiDAR or SAR wave-
forms), 2D images, 3D point clouds... The library user has just to define a few modules describing its domain specific context: the
encoding of a configuration (e.g. its object type in a marked point process context), reversible jump kernels (e.g. birth, death, modifi-
cations...), the optimized energies (e.g. data and regularization terms) and the probabilized search space given by the reference process.
Similar to this extensibility in the application domain, concepts are clearly and orthogonally separated such that it is straightforward
to customize the convergence test, the temperature schedule, or to add visitors enabling visual feedback during the optimization. The
library offers dedicated modules for marked point processes, allowing the user to optimize a Maximum A Posteriori (MAP) criterion
with an image data term energy on a marked point process of rectangles.

1 INTRODUCTION

Optimization of an objective function over a given search space
is a very important and wide research topic. Optimization prob-
lems come however in very different flavors: the objective func-
tion may or may not exhibit nice properties like convexity or the
search space may be a simple compact of Rn, a (possibly infinite)
set of discrete values, or even a combination of both: a (possibly
infinite) union of spaces embeddable in Rn. This article proposes
an implementation of a stochastic optimization framework for op-
timizing arbitrary objective functions over the latter and more
complex search spaces. Given the difficulty of these problems
that mix combinatorial and variational aspects and the generic-
ity of the proposed library, it does not provide a one-size-fits-all
solution. Instead, it implements a theoretically sound stochastic
framework that is easily and highly customizable for rapid proto-
typing and tuning of the optimization process. The librjmcmc is
a generic C++ library (Abrahams and Gurtovoy, 2004) designed
to be both heavily optimized and highly modular.

In this paper, we first briefly remind the mathematical founda-
tions involved in the chosen stochastic framework (section 2). We
then present our implementation choices to build a computation-
ally efficient and generic library (section 3). Before concluding,
we demonstrate sample uses of the library, including the discus-
sion of the implementation of the building footprint extraction
from satellite imagery proposed in (Tournaire et al., 2010) (sec-
tion 4).

2 STOCHASTIC OPTIMIZATION

librjmcmc ’s optimization is performed using a coupling of a
simulated annealing relaxation (Salamon et al., 2002) with a Re-
versible Jump Markov Chain Monte Carlo (RJMCMC) sampler
(Hastings, 1970; Green, 1995). This framework enables the stochas-
tic minimization of a large class of energies over complex search
spaces, only requiring the evaluation of the objective function,
rather than e.g. derivatives or convexity properties (Descombes,
2011).

2.1 Reversible-Jump Markov Chain Monte Carlo

A Markov Chain Monte Carlo (MCMC) sampler provides a series
of samples according to a given unnormalized probability distri-
bution function. RJMCMC is an extension of MCMC that allows
the configuration space Ω to be the union of spaces of varying
dimensions Ω =

⋃
n Ωn. Algorithm 1 (Green, 1995) consists

in repeating stochastic proposition and acceptance steps to build
a series of configurations (i.e. elements of the search space Ω)
which stationary distribution is the desired target distribution π.
Note that after a sufficient number of iterations, the running con-
figuration Xt is independent of the initial configuration X0.

A well-known property of interest is that the stationary distribu-
tion π is not only never sampled directly (as it is the purpose of
the algorithm) but also only evaluated up to a multiplicative con-

stant, as it only appear in the term
π(X′t)
π(Xt)

of the Green ratio. This
thus enables the sampling of a probability π defined as the nor-
malization of a non-negative integrable function f : π(x) = f(x)∫

Ω f
.
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Algorithm 1: RJMCMC sampler: Metropolis-Hastings-Green
• Initialize the configuration X0 such that π(X0) 6= 0
repeat
• Sample i ∼ q(·|Xt) ; // Select a reversible kernel Qi
• Sample X′t ∼ Qi(·|Xt) ; // Sample the kernel Qi

• R← π(X′t)
π(Xt)

Qi(X
′
t|Xt)

Qi(Xt|X′t)
; // Green ratio

• α← min (1, R) ; // Acceptance rate

•With probability
{

α , Xt+1 ← X′t
(1− α) , Xt+1 ← Xt

until convergence ;

Algorithm 1 requires a set of reversible kernels (Qi) associated
with normalized probabilities q(i|Xt). Each reversible kernel Qi
models a simple stochastic modification of the current configura-
tion, based only on the current configuration Xt: i.e. Qi(·|Xt)
defines a probability distribution over Ω. For the correctness of
the algorithm πQi must have continuity properties and Qi must
be reversible: Qi(X|Y ) > 0 ⇒ Qi(Y |X) > 0 (Descombes,
2011). We will consider reversible kernels defined using the fol-
lowing elements (Green, 1995):

• A probability pi(n
′|n) of applying the reversible kernel,

with n, n′ such that Xt ∈ Ωn, X ′t ∈ Ωn′ .

• A pair of forward and backward views θ = ψi(Xt) ∈ RM ,
θ′ = ψ′i(X

′
t) ∈ RM

′
that provide a probabilized set of con-

current extractions of a fixed length vector representation
θ of the configuration. For instance it may provide one of
many redundant parameterization of the configuration, or a
parameterization of a stochastically chosen element of the
configuration.

• A pair of forward and backward distributions φi, φ′i defined
over respectively RN and RN

′
. That completes the vectors

θ and θ′ to match the dimension of the bijective transform.

• A bijective transform Ti : RN→RP , where P = M+N =
M ′ +N ′, such that T ′i , the backward transform is T−1

i

The kernel contribution to the Green ratio is then:

Qi(X
′
t|Xt)

Qi(Xt|X ′t)
=
pi(n

′|n )

pi(n |n′)
φ′i (u′)

φi (u)

∣∣∣∣∂Ti(θ, u)

∂(θ, u)

∣∣∣∣ (1)

2.2 Marked Point Process

A (possibly multi-) Marked Point Process (MPP) (van Lieshout,
2000) is a stochastic unordered set of geometric objects of one or
many types (e.g. points, segments, circles, ellipses or rectangles
in 2D, ellipsoids or spheres in 3D). The marked point denomi-
nation arises from the usual decomposition of the object parame-
terization into a point of its embedding space (usually its center)
and a vector of values (the marks) that completes the geometric
parameterization of the object (e.g. orientation, length or radius
parameters), hence the name Marked Point Process.

The librjmcmc currently focuses on (multi) MPP in both sam-
pling and optimization contexts. When direct sampling of the
MPP is not possible, as when its probability distribution function
(PDF) is not samplable and not normalized, the RJMCMC algo-
rithm 1 may be used to build a Markov Chain which distribution
converges to the desired target stationary distribution.

A MPP is defined by a probabilized space (Ω, π). If K denotes
the set of possible values of a single object, elements of the con-
figuration space Ω =

⋃∞
n=0 K

n are unordered sets of a vary-
ing number n of elements in this set K. If the process is multi-
marked, Ω is then a Cartesian product of such spaces. A sim-
ple probabilization of this configuration space may be given by
a probabilization of the set K of each object type and a discrete
probabilities defined over the natural numbers N for each object
type that samples the number of object n of each type. This prob-
abilization allows a direct sampling of the configuration space Ω
by sampling both the object counts, and then each object inde-
pendently. In our context, we will consider more complex prob-
abilizations π of the configuration space Ω, which sampling will
require the more advanced RJMCMC framework.

2.3 Simulated Annealing

Simulated annealing is a physical process inspired by annealing
in metallurgy and is widely used in many communities where
global optimization is of importance (Salamon et al., 2002). At
each step of the algorithm, the stationary distribution is replaced
by a similar stationary distribution that is increasingly more selec-
tive around the maxima. Coupled with the RJMCMC framework,
it enables the global optimization of an extremely large class of
energy functions over complex search spaces of varying dimen-
sions. The goal of the simulated annealing process is to drive
the initial RJMCMC sampler from an initial probability distribu-
tion function given by an energy-agnostic probabilization of the
search space (denoted as the reference process) to a target prob-
ability distribution function which support is exactly the set of
global minima of the energy. To interpolate the PDF between the
initial reference PDF and the final PDF, a Boltzmann distribution
is usually used (see section 3.2.2), parameterized by a tempera-
ture T which decreases from +∞ to zero. The stationary RJM-
CMC PDF then converges in theory to a mixture of Dirac masses
at the global minima of the energy. More informally energy in-
creases are allowed which avoid being trapped in a local minima.
But as the temperature T decreases, the maximum allowable en-
ergy increase decreases. Depending on the temperature decrease
rate and its schedule, and its adequacy to the energy landscape, a
solution close to optimal is found in practice.

3 GENERIC LIBRARY DESIGN

3.1 Generic Programming

Generic Programming is a paradigm that offers compile-time poly-
morphism through templates. It is not as flexible as object-oriented
programming but is much more compiler-friendly as it exposes
types at compile-time rather than at runtime. Therefore the com-
piler is given the opportunity to optimize and produce machine
code of similar performance than a special-purpose code, while
keeping the object-oriented advantage of segregating orthogonal
concepts to modularize the library. This even lets us provide var-
ious implementations of each orthogonal concept, which are de-
noted models of these concepts. A concept may be seen as the
documentation of the requirements and behavior of a particular
template parameter. Concepts have been proposed but not yet
accepted as a C++ extension, which would simplify both the doc-
umentation and the compiling error reporting of generic libraries.

3.2 RJMCMC Concepts

The RJMCMC sampler is implemented in the class sampler, which
can be customized using the template parameters: Density,
Acceptance and a list of Kernels. It offers access to statistics
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(such as the acceptance rate of each kernel) and is used through
the following member function that modifies the current configu-
ration in place (preventing useless copies), performing one itera-
tion of algorithm 1.

t e m p l a t e<typename Configuration>
vo id sampler : : o p e r a t o r ( ) ( Configuration &c , d ou b l e temp ) ;

The Configuration type and its Modification associated type
is highly problem dependent, section 2.2 will detail them in the
MPP context. The sampler does only access them through the
Kernels, the reference Density and the evaluation of the energy
difference ∆U they offer.

3.2.1 Density Strategy This strategy provides the reference
distribution, by exposing a double pdf_ratio(const Configuration&,
const Modification&) member function that evaluates the distribu-
tion ratio π(X ′t)/π(Xt), whereXt is provided as a Configuration

and X ′t as a proposed Modification of the current configuration
Xt. The poisson_distribution and uniform_distribution are dis-
crete probabilities over the set of non-negative integers, which
are handy as basic blocks to build a Density. Discrete distribu-
tions expose the following member functions:

do ub l e pdf_ratio ( i n t n0 , i n t n1 ) c o n s t ; / / PDF ratio evaluation
do ub l e pdf ( i n t n ) c o n s t ; / / PDF evaluation
i n t o p e r a t o r ( ) ( ) c o n s t ; / / PDF sampling

3.2.2 Acceptance Strategy It encodes how the simulated an-
nealing temperature T is used to introduce the energy bias (through
the ∆U term) into the reference PDF, R∞ denoting the Green
ratio of the reference process. metropolis_acceptance is the most
common choice, using the unnormalized target distribution πe−

U
T .

Other acceptance rules depart from the formulation of a well-
defined target distribution (Salamon et al., 2002).

Available Acceptance Models, c(x) is x clamped to [0, 1]

metropolis_acceptance R∞e
−∆U

T

szu_hartley_acceptance R∞/(1 + e
∆U
T )

franz_hoffmann_acceptance R∞
(
c
(

1− 1−q
2−q

∆U
T

)) 1
1−q

tsallis_tsariolo_acceptance R∞
(
c
(
1− (1− q) ∆U

T

)) 1
1−q

dueck_scheuer_acceptance

{
1 if R∞e

−∆U
T ≥ R0

0 otherwise

3.2.3 Kernel Strategy Pairs of reversible kernels are provided
together using the following class, the forward and backward ker-
nel being defined by swaping roles of Views, of Variates and in-
versing the Transform:

t e m p l a t e<typename View0 , typename View1 ,
typename Variate0 , typename Variate1 ,
typename Transform> c l a s s kernel ;

A kernel is used to propose atomic moves to explore the configu-
ration space.

Variate Concept It provides the distribution φi that samples
a fixed-length vector and evaluates its probability density.

View Concept It encodes the combinatorial aspects of the ker-
nel and the function ψi that extract an iterator over θ values when
applied forwards and constructs the new configuration based on
the vector (θ′, u′) resulting from the Transform when applied
backwards.

Transform Concept Transformations encode the bijective dif-
ferentiable mapping Ti between spaces of equal dimensions. They
are thus used to describe the bijection applied during a kernel pro-
posal. Transformations must provide apply, inverse and abs_jacobian

functions, which are used respectively in the forward kernel, the
backward kernel and in the Green ratio computation.

Available Transform Models
linear_transform A.X
affine_transform A.X +B

diagonal_linear_transform diag(a1 . . . an).X
diagonal_affine_transform diag(a1 . . . an).X +B

3.3 MPP Concepts

3.3.1 MPP Configurations MPPs are commonly used to
drive a stochastic exploration in a optimization context where the
objective function, hereafter called an Energy is composed as
the sum of per-object unary terms and per-pair of objects binary
terms. For efficiency reasons, Configurations are thus tightly
coupled with Energies in this library. A Configuration is a
wrapper around a container of objects. The library offers vector_-
configuration and graph_configuration Configuration models.
The former is based on a simple std::vector while the latter em-
beds a boost::graph that allows the caching of unary and non-zero
binary energy terms, speeding-up ∆U computations.

The only requirement on the object type is that it is able to provide
an iterator over a parameterisation vector. Multi-Marked Point
Processes (i.e. processes of heterogeneous object types) are sup-
ported by supplying a boost::variant over the types of objects as
the Object template argument of the configuration. In this context,
all library functions that handle explicitly the objects have them
first dispatched through the boost::variant dispatching function so
that functors like Energies are boost::variant-agnostic.

3.3.2 MPP Energies The library currently supports energies
that are defined as sums of unary (U1) and binary (U2) energies:

U(Xt) =
∑
x∈Xt

U1(x) +
∑

x,y∈Xt,x6=y

U2(x, y) (2)

Available Energy Models (Tournaire et al., 2010)
constant_energy (unary and binary)

image_gradient_unary_energy Integrated vector flow
intersection_area_binary_energy Area of intersection

Available Operator Energy Models
negate_energy<E0> −E0

plus_energy<E0,E1> E0 + E1

minus_energy<E0,E1> E0 − E1

multiplies_energy<E0,E1> E0.E1

divides_energy<E0,E1> E0/E1

modulus_energy<E0,E1> E0%E1

By overloading the C++ operators, the operator Energy models
allow to build an energy such asU2(x, y) = 100−area(x∩y) by
intuitively writing the code 100−intersection_area_binary_energy(),
resulting in a binary energy of type:
minus_energy<constant_energy,intersection_area_binary_energy>

3.3.3 MPP Density The reference MPP distribution is de-
fined using the class marked_point_process::direct_sampler, which
combines a discrete distribution (section 3.2.1) for each object
type, probabilizing the number of objects and a uniform object
sampler that is used to get independent object samples.
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3.3.4 Accelerator Concept When queried with a configu-
ration C and an object X, an accelerator provides a subset of the
set of objects in C that interact with X (i.e. that have a non-zero
binary energy with it). If the binary energy becomes null or neg-
ligible when objects are further apart than a given threshold, an
accelerator may only report objects that intersect a suitable ball
centered on the query object X. Further releases of the library
may include accelerators based for instance on quad-trees, uni-
form grids or Kd-trees. However, the only model of this concept
is currently the trivial_accelerator that returns the whole range
of objects of the query configuration.

3.3.5 MPP Kernels For efficiency, the energy evolution ∆U
of the modifications proposed by the kernels must be easy to com-
pute. Thus MPP Kernels usually only delete and/or insert a small
number of objects. A Modification class thus keeps a vector
of iterators to the death-proposed objects and a vector of birth-
proposed new objects. The simplest MPP kernels that are suffi-
cient for convergence are provided: RJMCMC::uniform_birth_kernel
and its reverse kernel RJMCMC::uniform_death_kernel.

3.4 Simulated Annealing Concepts

The main simulated annealing function is the following free func-
tion that performs the optimization loop until the convergence
EndTest succeeds, advancing the temperature Schedule and calling
the Visitor functor at each iteration:

t e m p l a t e< c l a s s Configuration , c l a s s Sampler ,
c l a s s Schedule , c l a s s EndTest , c l a s s Visitor >

vo id simulated_annealing : : optimize (
Configuration& config , Sampler& sampler ,
Schedule& schedule , EndTest& end_test , Visitor& vis )

{
do ub l e t = ∗schedule ;
visitor . begin ( config , sampler , t ) ;
f o r ( ; ! end_test ( config , sampler , t ) ; t = ∗(++schedule ) )
{

sampler ( config , t ) ;
visitor . visit ( config , sampler , t ) ;

}
visitor . end ( config , sampler , t ) ;

}

3.4.1 Schedule concept Models of the Schedule concept
are responsible for providing the evolution of the temperature
throughout the simulated annealing process. The Schedule con-
cept is a refinement of the InputIterator concept of the C++ Stan-
dard Template Library.

Available Schedule Models
geometric_schedule Tt = αtT0

logarithmic_schedule Tt = T0
log2(2+t)

inverse_linear_schedule
1
Tt

= 1
T0

+ t∆T

step_schedule<T ′> Tt = T ′bt/τc
Whereas the logarithmic_schedule is the one that ensures conver-
gence (Descombes, 2011), the geometric_schedule is usually used
instead in practice for computational efficiency. The step_schedule

wraps another schedule to offer constant temperature periods of
τ iterations, enabling statistics computation through a Visitor.

The evaluation of a suitable initial temperature is not trivial. On
the one hand, too high a temperature will unnecessarily prolong
the initial phase of the simulated annealing where the sampling is
unbiased by the target distribution. On the other hand, too low a
temperature prevents the exploration of the whole configuration
space and results in the convergence to a local minimum only.
(Salamon et al., 2002) suggests considering an estimation of the
variance of the energy of configurations sampled according to the
reference process to estimate the initial temperature. The corre-
sponding salamon_initial_schedule T0 estimation function is pro-
vided, which performs well in the absence of hardcore energy
terms.

3.4.2 EndTest concept Models of the EndTest concept pro-
vide a simple predicate that informs the simulated annealing frame-
work that the process has converged or whatever reason requiring
to stop the simulated annealing iterations, such as a user-issued
cancellation. The only requirements of this concept is to provide
the following member function:

t e m p l a t e<typename Configuration , typename Sampler>
boo l o p e r a t o r ( ) ( c o n s t Configuration& configuration ,

c o n s t Sampler& sampler , d ou b l e temperature ) ;

Provided models are max_iteration_end_test that fails after a given
number of iterations and delta_energy_end_test that fails after a
given number of iterations without energy change. They may be
combined using the composite_end_test model.

Available EndTest Models
max_iteration_end_test t ≥ tmax
delta_energy_end_test ∀i > t− τ,∆Ui = 0
composite_end_test<E0, E1, ...> or(E0(), E1(), ...)

3.4.3 Visitor concept Visitors are highly customizable ob-
jects passed to the simulated annealing process. They may be
used to visualize or to gather statistics on the current state of
the optimization. Available models offer console (figure 1) or
GUI (based on Gilviewer and WxWidgets, figure 2) feedback, or
shapefile saving of the current configuration. They may be com-
bined using a composite_visitor. This extensibility mechanism
offer the possibility to compile the same RJMCMC code with
a GUI to build intuition and monitor the running algorithm and
without for batch timing purposes.

/ / called once at startup
t e m p l a t e<typename Configuration , typename Sampler>
vo id begin ( c o n s t Configuration& configuration ,

c o n s t Sampler& sampler , d ou b l e temperature ) ;
/ / called once per iteration
t e m p l a t e<typename Configuration , typename Sampler>
vo id visit ( c o n s t Configuration& configuration ,

c o n s t Sampler& sampler , d ou b l e temperature ) ;
/ / called once at the end
t e m p l a t e<typename Configuration , typename Sampler>
vo id end ( c o n s t Configuration& configuration ,

c o n s t Sampler& sampler , d ou b l e temperature ) ;

4 SAMPLES

4.1 Circle packing

This section details a simple example use of the librjmcmc li-
brary. The goal is to find a set of circles that minimizes a simple
objective function. Each circle center lie in the unit square and
its radius is constrained in an interval [rmin, rmax]. Notice that
the cardinality of set itself is unknown. The minimized function
awards a negative constant value for each circle and penalizes ev-
ery pair of overlapping circles by its intersection area. Basically,
it tries to pack as many circles as possible into the unit square
while minimizing their overlap. First, one needs to define the ob-
ject type of the MPP, with all its geometric methods. Then, the
object container is defined as well as an objective function as the
sum of a unary term for each object and a binary term for each
pair of objects. The set of objects is then probabilized using a
Poisson reference process and uniform birth. A basic birth and
death RJMCMC sampler is then defined to enable the sampling
of the MPP relative to the Poisson reference process, modulated
by the score of the objective function and a temperature parame-
ter. Then header files relative to the optimization of the objective
function are included. A sufficiently slow temperature decrease
morphs the probability distribution function from the one of the
reference process to a combination of Dirac masses at the global
mimima of the objective function, thus achieving its minimiza-
tion. A geometric scheduling of the temperature decrease is sub-
optimal but is more practical and thus more commonly used.
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Iteration Objects Pkernel Akernel Pkernel Akernel Accept Time(ms) Temp U 1 U 2 U
1000000 3 50.0251 6.91633 49.9749 6.92748 6.9219 250 73.5759 -3 -7.10543e-14 -3
2000000 4 50.0137 6.9189 49.9863 6.9251 6.922 250 27.0671 -4 -1.13687e-13 -4
3000000 3 50.0744 6.70802 49.9256 6.73041 6.7192 260 9.95741 -3 -1.10134e-13 -3
4000000 4 49.9794 6.67955 50.0206 6.67465 6.6771 250 3.66312 -4 -1.04805e-13 -4
5000000 5 50.0122 6.64158 49.9878 6.64542 6.6435 270 1.34759 -5 -1.04805e-13 -5
6000000 13 49.9979 6.48967 50.0021 6.48753 6.4886 290 0.495749 -13 -1.04583e-13 -13
7000000 38 50.0199 5.25131 49.9801 5.25049 5.2509 430 0.182376 -38 -1.04305e-13 -38
8000000 286 49.9434 1.48088 50.0566 1.42798 1.4544 1700 0.0670923 -286 1.84745 -284.153
9000000 333 49.9631 0.0140103 50.0369 0.00459661 0.0093 3490 0.0246819 -333 8.72057 -324.279

10000000 356 50.0272 0.00559696 49.9728 0.00100054 0.0033 3890 0.00907995 -356 18.3511 -337.649

Figure 1: Output of LATEXvisitor (left) and the console visitor (right) during a 11s optimization code of section 4.1 (356 objects)

u s i n g namespace rjmcmc ;
u s i n g namespace marked_point_process ;
u s i n g namespace simulated_annealing ;

/ / Objects are circles
# i n c l u d e ” geomet ry / geomet ry . hpp ”
# i n c l u d e ” geomet ry / C i r c l e 2 . hpp ”
# i n c l u d e ” geomet ry / i n t e r s e c t i o n / C i r c l e 2 i n t e r s e c t i o n . hpp ”
# i n c l u d e ” geomet ry / c o o r d i n a t e s / C i r c l e 2 c o o r d i n a t e s . hpp ”
t y p e d e f geometry : : Simple_cartesian<double> K ;
t y p e d e f K : : Point_2 Point_2 ;
t y p e d e f geometry : : Circle_2<K> Circle_2 ;
t y p e d e f Circle_2 object ;

/ / Objective function
# i n c l u d e ” rjmcmc / en e rg y / c o n s t a n t e n e r g y . hpp ”
# i n c l u d e ” rjmcmc / en e rg y / e n e r g y o p e r a t o r s . hpp ”
# i n c l u d e ”mpp / en e rg y / i n t e r s e c t i o n a r e a b i n a r y e n e r g y . hpp ”
# i n c l u d e ”mpp / c o n f i g u r a t i o n / g r a p h c o n f i g u r a t i o n . hpp ”
t y p e d e f constant_energy<> energy1 ;
t y p e d e f intersection_area_binary_energy<> area ;
t y p e d e f multiplies_energy<energy1 , area> energy2 ;
t y p e d e f graph_configuration<object , energy1 , energy2>

configuration ;

/ / Reference process
# i n c l u d e ” rjmcmc / d i s t r i b u t i o n / p o i s s o n d i s t r i b u t i o n . hpp ”
# i n c l u d e ”mpp / k e r n e l / k e r n e l . hpp ”
# i n c l u d e ”mpp / d i r e c t s a m p l e r . hpp ”
t y p e d e f poisson_distribution distribution ;
t y p e d e f uniform_birth<object> uniform_birth ;
t y p e d e f direct_sampler<distribution , uniform_birth>
reference_process ;

/ / RJMCMC sampler
# i n c l u d e ” rjmcmc / a c c e p t a n c e / m e t r o p o l i s a c c e p t a n c e . hpp ”
# i n c l u d e ” rjmcmc / s a m p l e r / s a m p l e r . hpp ”
t y p e d e f metropolis_acceptance acceptance ;
t y p e d e f rjmcmc : : sampler<reference_process , acceptance ,
result_of_make_uniform_birth_death_kernel<object> : :type>
sampler ;

/ / Simulated annealing
# i n c l u d e ” s i m u l a t e d a n n e a l i n g . hpp ”
# i n c l u d e ” s c h e d u l e / g e o m e t r i c s c h e d u l e . hpp ”
# i n c l u d e ” e n d t e s t / m a x i t e r a t i o n e n d t e s t . hpp ”
# i n c l u d e ” v i s i t o r / o s t r e a m v i s i t o r . hpp ”
# i n c l u d e ” v i s i t o r / t e x v i s i t o r . hpp ”
# i n c l u d e ” v i s i t o r / c o m p o s i t e v i s i t o r . hpp ”

i n t main ( i n t argc , c h a r∗∗ argv )
{

/ / parameter parsing
i n t i=0;
do ub l e energy = (++i<argc ) ? atof ( argv [ i ] ) : −1.;
do ub l e surface= (++i<argc ) ? atof ( argv [ i ] ) : 1 0 0 0 0 . ;
do ub l e rmin = (++i<argc ) ? atof ( argv [ i ] ) : 0 . 0 2 ;
do ub l e rmax = (++i<argc ) ? atof ( argv [ i ] ) : 0 . 1 ;
do ub l e poisson= (++i<argc ) ? atof ( argv [ i ] ) : 2 0 0 . ;
do ub l e pbirth = (++i<argc ) ? atof ( argv [ i ] ) : 0 . 5 ;
do ub l e pdeath = (++i<argc ) ? atof ( argv [ i ] ) : 0 . 5 ;
i n t nbiter = (++i<argc ) ? atoi ( argv [ i ] ) : 10000001;
do ub l e temp = (++i<argc ) ? atof ( argv [ i ] ) : 2 0 0 . ;
do ub l e deccoef= (++i<argc ) ? atof ( argv [ i ] ) : 0 . 9 9 9 9 9 9 ;
i n t nbdump = (++i<argc ) ? atoi ( argv [ i ] ) : 1000000;
i n t nbsave = (++i<argc ) ? atoi ( argv [ i ] ) : 1000000;

/ / Reference process
distribution dpoisson ( poisson ) ;
uniform_birth birth ( Circle_2 ( Point_2 ( 0 , 0 ) , rmin ) ,

Circle_2 ( Point_2 ( 1 , 1 ) , rmax ) ) ;
reference_process reference_pdf ( dpoisson , birth ) ;

/ / Empty configuration linked with the minimized energy
configuration c ( energy , surface∗area ( ) ) ;

Figure 2: Gilviewer-based wxWidget visitors enabling a runtime
visualization of the configuration (top), and of the temperature
and energy charts (bottom).

/ / Optimization
sampler samp ( reference_pdf , acceptance ( ) ,
make_uniform_birth_death_kernel ( birth , pbirth , pdeath )

) ;

geometric_schedule<double> sch ( temp , deccoef ) ;
max_iteration_end_test end ( nbiter ) ;

ostream_visitor osvisitor ;
tex_visitor texvisitor ( ” q u i c k s t a r t ” ) ;
composite_visitor<ostream_visitor , tex_visitor>

visitor ( osvisitor , texvisitor ) ;
visitor . init ( nbdump , nbsave ) ;

optimize (c , samp , sch , end , visitor ) ;

r e t u r n 0 ;
}

The main entry point starts by parsing the input parameters, pro-
viding default values. Once the reference Poisson process is in-
stantiated, an empty configuration is created and initialized with
the energy objects. Then, the RJMCMC sampler object samp is
constructed. Finally, the simulated_annealing objects are created
and the optimization is performed in place on the configuration

instance c. Figure 1 shows the output of the program, and the re-
sulting circle packing. Its runtime is 11s for 356 circles and 107

iterations.

4.2 Building extraction

The method introduced in (Tournaire et al., 2010) has been imple-
mented within the librjmcmc library, which extracts buildings
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Figure 3: From left to right (a), (b), (c) and (d). Building extraction results using a MPP of rectangles (Tournaire et al., 2010).

from a Digital Surface Model (DSM) using a MPP of rectangles.
This implementation, which has been included in the librjmcmc
to foster reproducible research, amounts to provide the problem-
dependent object: the rectangle type, the energies and the ker-
nels. We show here results of this implementation on 4 different
DSMs (figure 3), from 10 cm to 50cm Ground Sample Distance
(GSD), acquired using photogrammetry or Lidar and of various
sizes. Figures 3.a and b are on the same area which is also con-
tained in figure 3.d. The size of the dataset 3.d shows the scala-
bility of the proposed approach, even in the absence of a proper
acceleration (such as a quad tree).

Input DSM MPP
Figure Type GSD Image size Rectangles Time

3.a Photo 50cm 650× 650 76 177s
3.b Lidar 50cm 650× 650 109 179s
3.c Photo 10cm 800× 1400 31 104s
3.d Photo 50cm 3634× 2502 426 480s

5 CONCLUSIONS AND FUTURE WORK

Generic programming is very efficient at run-time and this library
showcases how modular high-level code performs well at runtime
(Abrahams and Gurtovoy, 2004). Once accustomed to the neces-
sary typedef clauses, using the library reduces to simply describ-
ing the problem at a high-level rather. Its development is how-
ever quite cumbersome, due to the extra burden allocated to the
compiler, and its lack of native language support. Until concepts
are accepted as part of C++, there are preliminary ways to bet-
ter document them and to get more legible error reporting when
the library is misused. librjmcmc now only checks the validity
of the Schedule concept as an input iterator. Future work would
be to systematically check template parameters for their intended
concept.

Implementations of close relatives of the RJMCMC algorithm,
such as jump diffusion or multiple birth and death (Descombes,
2011) would share many code parts. It would be interesting to
implement them in a common library to assess their comparative
strengths.

In the librjmcmc , complex binary or unary energy terms may
be built using expressions on simpler energies. This technique is
called a Domain-Specific Embedded Language (DSEL). It would
be nice to extend its use the whole energy formulation, kernels,
distributions, and even transforms so that, for instance, complex
transform would be able to generate their Jacobian computation
code at compile-time. This would help hiding the complex type
names produced by the generic programming and help offering
a more user-friendly interface. boost::proto is a framework to
define such DSELs, but its ease of use and runtime costs will
have to be assessed.

Finally, the librjmcmc has now only be used within a 2D MPP
context. Future interesting work would be to implement other
Configuration, Kernel and Energy models, in embedding spaces
of other dimensions (1D signals (Hernandez-Marin et al., 2007;
Mallet et al., 2010), 3D ellipses (Perrin et al., 2006)...) or even in
a non-MPP context, for instance to optimize a 3D triangulation
over the noisy heightfield of photogrammetric Digital Surface
Model. Our wish is that the open-source license of the librjmcmc
library will enable reproducible research.
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