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ABSTRACT: 

3D reconstruction of indoor environments based on vision has been developed vigorously. However, the algorithm’s complexity and 

requirements of professional knowledge make it restricted in practical application. With the proposition of the concept of 

Volunteered Geographic Information (VGI), the traditional method is no longer suitable for VGI. So in this work we utilize 

consumer depth cameras - Kinect to enable non-expert users to reconstruct 3D model of indoor environment with RGB-D data. 

Considering the possibility of camera tracking failure we propose a method to perform automatic relocalization. 

1. INTRODUCTION 

So far, to reconstruct 3D model with fine geometric accuracy 

and rich visual information is the goal which is pursued 

unremittingly by researchers. Relative technologies have been 

developed vigorously by some communities including 

Photogrammetry, Computer Vision and Robotics. The 

applications of research results in the Digital City, Robot 

Navigation and other fields have demonstrated wide application 

prospect. However, due to the high complexity of real scene, to 

achieve this goal still seems far beyond our reach. In practice 

geometric fine 3D indoor models are still rarely used. On the 

other hand, with the development of Digital Earth technology, 

urban 3D modelling technology has been mature to some extent. 

But indoor models of large public places have not entered 

public’s view yet. However, because of the importance of 

indoor navigation, it is imperative for 3D reconstruction to shift 

from outdoor to indoor context. Now there have been some 

kinds of indoor 3D reconstruction methods. But these 

techniques are either expensive equipment relied or technically 

complex which makes it unsuitable for consumers. With the 

proposition and development of Volunteered Geographic 

Information (VGI), public’s involvement in geographic 

information creation, editing, management and maintenance has 

become an important trend. Therefore it becomes increasingly 

important for consumers to quickly and accurately obtain 3D 

information of the scene and rebuild its 3D model. 

RGB-D camera is a new type of sensing device which can 

capture RGB images along with per-pixel depth information. 

RGB-D cameras rely on either active stereo or time-of-flight 

sensing to generate depth estimates at a large number of pixels. 

There has been a variety of depth sensing devices in which 

Kinect is a typical representative. Kinect is developed mainly to 

recognize human gesture. Its low cost has made it widely used 

in the field of game. In consideration of the ability of Kinect to 

quickly access RGB-D data in real-time, we believe that it is 

valuable to be used in the field of 3D reconstruction and related 

areas. Though there have been lots of research in 3D 

reconstruction using depth image, existing algorithms does not 

fully explore the potential Kinect offers. 

2. RELATED WORK  

Recently, image-based dense surface reconstruction has 

produced many compelling results. Microsoft's Photosynth and 

Photo Tourism and the University of Washington’s Bundler 

outperform among this kind of technology. But they are 

propitious to city-scale or outdoor environments. And it is 

extremely hard to extract dense depth information from color 

camera data alone, especially in indoor environments with very 

dark and sparsely textured areas. Besides, the complexity of 

indoor environments makes it very hard for data acquisition. In 

contrast, LiDAR is not sensitive to scene illumination and 3D 

point clouds are extremely well suited for frame-to-frame 

alignment and dense 3D reconstruction. But this equipment is 

very expensive and lack of texture information. Kinect is such a 

device generating color information and depth information 

simultaneously with a speed of 30 frames per second. However, 

Kinect provides depth only up to a limited distance (typically 

less than 5m) with 640 × 480 image size. Also, the depth data 

are very noisy and Kinect’s field of view (~60o) with less depth 

precision (~3cm at 3m depth). So it is far more constrained than 

LiDAR. With the movement of camera there will be large areas 

of overlap between two adjacent frames. Therefore complete 3D 

model can be reconstructed using depth image registration. 

Nowadays there are two main types of 3D reconstruction from 

depth images, one is patch-based 3D reconstruction and the 

other is voxel-based. 

The core idea behind patch-based method is data alignment. 

Different from the image-based approach data alignment rely on 

not visual features extraction but distance metric using depth 

data. To register two depth images Iterative Closest Point (ICP) 

algorithm (Chen, 91) (Besl, 92) is the most widely used 

technique. To speed up the convergence rate there have been 

many ICP variants proposed. When surface normal 

measurements are available point-to-plane (Chen, 92) 

(Rusinkiewicz, 2001) metric has been shown the most effective. 

In ICP to obtain the closest point correspondences is expensive. 

So in (Blais, 95) projective data association algorithm was 

proposed to drastic speed up this process. There is also 

extensive literature within the AR and robotics community on 

Simultaneous Localization and Mapping (SLAM). RGB-D 

SLAM (Henry, 2010), a project aiming to map large indoor 

environment, uses patch-based 3D reconstruction. It effectively 

utilizes visual and shape information from RGB-D camera to 

reconstruct 3D model. In the paper SIFT features are used to 

provide initial point pairs for ICP algorithm. The objective of 

RGB-D SLAM is not only alignment and registration but also 

building 3D models with both shape and appearance 

information. Using patch-based method can reconstruct a larger 

3D model. But the speed of reconstruction is real-time but non-

interactive. In addition due to the instability of human-computer 

interaction, too much noise in the data along with poor accuracy 

the system is not robust and difficult to eliminate “ghost image”. 

And as the scene continues to be explored, errors in alignment 

between a particular pair of frames, and noise and quantization 

in depth values, cause the estimation of camera position to drift 

over time. 
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As the patch-based approach has many shortcomings, 

researchers proposed voxel-based data fusion to reconstruct 3D 

model (Curless, 1996). Different from the data alignment the 

core idea behind it is data fusion. Compared to patch-based 

method the geometric accuracy of reconstructed 3D model is 

higher. In voxel-based data fusion a predefined 3D volume with 

fixed resolution maps to a 3D physical space. The volume is 

subdivided uniformly into a 3D grid of voxels. Each voxel 

stores a weighted average of its distance to the assumed position 

of a physical surface. Microsoft KinectFusion (Izadi, 2011) 

(Newcombe, 2011) apply voxel-based RGB-D data fusion to 

reconstruct indoor 3D model, which take full advantage of 

modern GPU's acceleration capacity. Their work only uses ICP 

algorithm to track camera position so that visual feature 

extraction and matching are no longer needed. KinectFusion can 

achieve real-time interactive rates for both camera tracking and 

3D reconstruction. But voxel-based method is too much 

memory consuming leading to its limited application in large-

scale scenarios. At the same time because that depth data are the 

only information used to track camera position when camera 

tracking fails it is difficult to perform automatic relocalization. 

In summary, the patch-based technology can reconstruct larger 

3D model, but the accuracy of the model is very not satisfying. 

Voxel-based reconstruction can generate a 3D model with high 

accuracy but valuable information contained in RGB images is 

ignored. And camera tracking may fail while the camera moves 

too fast or the scene contains too much flat areas. Under this 

circumstance KinectFusion has to rely on human-computer 

interaction to relocate camera position and orientation which is 

not efficient. In this paper, in guarantee that the 3D model of the 

scene has been finely rebuilt, we will try to solve the problem of 

automatic relocalization when the tracking has failed. The main 

idea behind this paper is to organize RGB-D data which has 

been fused into the 3D model in graph structure. To reduce the 

data volume stored in the graph sample frame based on 

geometric constraints is defined. When camera tracking failure 

has happened, RGB-D data alignment based on SIFT and ICP 

along with color similarity measurement is introduced to re-

initialize camera pose. 

3. SYSTEM OVERVIEW 

To completely reconstruct a 3D model with high geometric 

fidelity in this paper we will employ voxel-based reconstruction 

method. This part has been described concretely in (Izadi, 2011) 

(Newcombe, 2001). At the same time to enhance the stability of 

the system we will emphatically resolve the problem of 

automatic relocalization when the tracking has failed. On the 

whole our system is comprised of the following components. 

First, a pre-processing stage, the live depth image acquired by 

Kinect is converted from image coordinates into 3D points and 

normals in the coordinate space of the camera. Then a rigid 

6DOF transform is computed to closely align the current point 

cloud with the previous frame, using point-to-plane ICP variant. 

In order to improve the registration efficiency a GPU-base 

Iterative Closest Point (ICP) algorithm is implemented. Relative 

transforms are incrementally applied to a single transform that 

defines the global pose of Kinect. Then voxel-based data fusion 

is applied to incrementally reconstruct 3D model of the scene. 

However in practice due to environmental impact there may be 

some mismatch or the accuracy is not satisfying. In this paper 

we use colour similarity measurement to evaluate the accuracy 

of registering results. If the evaluation results within a pre-

defined threshold the point clouds can be fused to the 3D model 

and the frame is possible to be added into a graph structure. The 

graph structure is constructed to solve the problem of camera 

relocalization. When the camera tracking has failed it may be 

caused by too fast moving or the quality of the data is poor all 

of which will lead the ICP algorithm converge into local 

minimum. As such, combining with the generated map we have 

to re-initialize camera position. In camera relocalization the first 

step is to make use of geometric relationship in the map to 

reduce date volume. Then feature matching is used to find 2 to 3 

sample frames which best match current frame. Finally color 

similarity measurement is reused to evaluate the results of data 

registration. And one frame which scores the highest will be 

chosen to relocate the camera position. The primary process is 

shown as below, 

Raw RGB-D Data

Vertex Map and 
Normal Map

Camera 
TrackingICP 6DOF Pose

Raw Data Color
Similarity

Succeed

Volumetric 
Integratio

n

Construct 
Map

Virtual
Image

Failed
Camera

Re-localization

 

Figure 1: the primary components of our system 

4. METHODOLOGY 

Volumetric surface representation based on (Curless, 96) is the 

main method we employed to reconstruct 3D model from RGB-

D data. In this process a huge mass of mutually independent 

RGB-D data are acquired. When camera tracking has failed 

automatic and precise relocalization is very important to 

maintain the consistency of reconstructed model. In 

relocalization the core primary mission is to find a sample frame 

best matches to current frame. Obviously, if every frame is 

matched one by one in brute force it will be time consuming. So 

it is necessary to efficiently organize those data. In this paper 

the overall strategy is representing constraints between frames 

with a graph structure. In the graph each node represents a 

sample frame meanwhile each edge represents geometric 

constraints between two frames. The information this graph 

maintains includes Spatial Index, Feature Index and Virtual 

Camera. 

4.1 Graph Construction 

First we initialize an empty graph. In 3D reconstruction only 

relative transformation between two consecutive frames is 

computed. Therefore the graph structure is linear. And only if 

matched data are similar in colors the new RGB-D can be fused 

into the 3D model. After that we should update the graph. In 

this process considering huge amount of RGB-D data are 

acquired and the motion from one frame to the next is very 

small, so we just take some sample to update the graph. The 

sample frame is determined by geometric relationship. 

4.1.1 Spatial Index 

After ICP algorithm used to obtain relative transformation ti 

between two frames the transformation should be applied to a 

global coordinate so that the data can be fused into a 3D model. 

Correspondingly this transformation is denoted as
'

iT
. Using 

'

iT
 

camera’s corresponding location (X, Y, Z) is calculated. As 

mentioned before, before adding data into the graph we 

calculate the distance between current camera position and the 

closest sample frame’s position (X’, Y’, Z’). If the distance does 

not exceed a pre-defined threshold, then there is no need to 

update the map. However as the camera continues to move this 

distance will eventually exceed the threshold. Then a new 

sample frame is added. And Spatial Index will record the 3D 

location. 
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4.1.2 Feature Index 

ICP algorithm is critical to the selection of initial point pairs. 

Otherwise the algorithm can easily fall into local minimum. 

When camera tracking fails, the assumption that high degree of 

similarity between two frames exists will no longer tenable. So 

it is obligatory to provide initial point pairs for ICP algorithm. 

Note that it is difficult to extract effective feature information 

from depth image. In practical applications visual features are 

more reliable and visual features can measure the degree of 

similarity between two frames. So in SLAM visual features are 

applied to detect loop closure. For the establishment of Feature 

Index, RGB image is used to extract SIFT features. In practice it 

has been proven that SIFT feature is invariant, even for images 

with scale change and rotation. 

4.1.3 Virtual Camera 

Raw depth image is not accurate and contains lots of noise. The 

reason that voxel-based data fusion can generate 3D model with 

high geometric fidelity is that at same area RGB-D data are 

collected from multiple angles. So the generated 3D model is a 

weighted average of those data. To improve the accuracy of 

registration, virtual depth image is generated combining the 3D 

model with current camera position iT
. Compared to raw depth it 

has a higher geometric precision. 

As we have a dense surface reconstruction and camera’s global 

position Ti, per pixel ray-cast can be performed (Parker, 98). 

Each pixel’s corresponding ray is marched starting from the 

minimum depth for the pixel and stopping when a zero crossing 

is found indicating the surface interface. Then the distances 

corresponding to its pixel position is recorded which is used to 

generate a virtual depth image. 

4.2 Sample Frame Extraction 

There are two main components in the process of camera 

relocalization. First, a process of data collection, a set of sample 

frames is extracted from the map. Second, a sample frame 

which is the best match of current frame is determined from the 

data set. Note that when the graph is constructed geometric 

constraints between consecutive frames are recorded. And there 

is only small motion of the camera from frame to frame. So we 

can utilize the geometric relationship to reduce the number of 

data to be used soon afterwards. As we know that visual 

information is often to be used to evaluate the degree of 

similarity between frames. So in this paper we extract SIFT 

feature from RGB image and match them between current 

frame and sample frames. Besides, SIFT pairs can provide 

initial point pairs for ICP algorithm. SIFT is widely used feature 

detector and descriptor (Lowe, 2004). Though the descriptors 

are very distinctive, they must be matched heuristically and 

there can be false matches. To determine a subset of feature 

pairs corresponding to a consistent rigid transformation 

RANSAC algorithm is used. Additionally, the RANSAC 

associations act as an initialization for ICP, which is a local 

optimizer. For the 3D point clouds we employ a point-to-plane 

ICP algorithm to compute rigid 6DOF transformation. To 

evaluate the accuracy of those matches color similarity 

measurement is conducted. Eventually the best match is 

selected to recover current camera position. The overall process 

of camera relocalization is as follows in listing 1, 

Listing 1 Camera Re-localization 
1: Nodes = Find_Sub_Data_Set_From_Graph(distance) 

2: F
*
= Extract_RGB_SIFT_Features(Ps) 

3:If {F} = Find_Similar_Samples(Feature_Index; F
*
) 

For each sample in {F} 

4:       t = Perform_RANSAC_Alignment(Fj; F
*
) 

Repeat 

5:          T′= Compute_Closest_Points(t; Ps; Pt) 

6:          until ( Error Converge(t) ≤  ) or (max Iteration reached) 

7:       return T′ 

8:  Si = Computer_Color_Similarity_Measurement(Ps; Pt; T′) 

9:  T = Get_Max_Similarity(Si) 
10: Relocate_Camera_Position_(T) 

Consecutive depth frame, with an associated live camera pose 

estimate, is fused incrementally into one single 3D 

reconstruction. After a period of time a huge amount of RGB-D 

data are accumulated and maintained by the graph structure. 

Note that camera moves at a certain rate. So even if camera 

tracking has failed, current position of the camera must locate 

around the last sample frame within a certain range. 

Consequently if the last sample frame in the graph is picked as 

data centre and a radius is pre-defined we can employ Spatial 

Index to extract a data set {F}. For simplicity, sample frames 

are noted as Fj and current frame F*. Fj which is the best match 

of F* will lie in the data set. However, as Fj varied from each 

other we have to measure the degree of similarity between Fj 

and F*. Firstly we extract sparse visual features from F* and 

associate them with their corresponding depth values to 

generate feature points in 3D which will be used later. Then 

those features are matched heuristically with features kept by 

Feature Index of each node in the data set. This part will be 

elaborated in section 1.1.2. Then the number of successfully 

matched feature pairs is an indication of the degree of data 

similarity. And we will choose 2~3 sample frames from the data 
set which rank the top in this procedure. 

4.3 Selection Strategy 

The ICP algorithm iterates between associating each point in 

one time frame to the closest point in the other frame and 

computing the rigid transformation that minimizes distance 

between the point pairs. However the important first step of ICP 

is to find correspondences between frame pairs, otherwise the 

ICP algorithm will easily converge to a local minimum. So we 

use feature selection to provide initial corresponding point pairs 

for ICP algorithm. Through the above procedures 2~3 sample 

frames are selected. To determine which frame should be used 

to recover camera pose color similarity is introduced. 

Combining the color similarity criterion, registering is much 

more robust in difficult cases and the result becomes more 

reliable. 

4.3.1 SIFT+RANSAC 

In the process of SIFT match the best candidate match for each 

keypoint of F* is found by identifying its nearest neighbor in the 

database of keypoints of Fj. Consider N pairs of initial feature 

pairs between frame F* and Fj, represented by vectors (X; Y) in 

their respective coordinate system. RANSAC samples the 

solution space of (R; T) (rotation and translation) and counts 

the number of inliers, f,  

( , ) ( , , , )
N

i i

i

f R T I X Y R T     (1) 

Where I will be inlier if Xi and Yi fit well with a pre-defined 

threshold under the constraint of (R; T). A inlier will be 

counted as 1 otherwise 0. RANSAC chooses the transform 

consistent with the largest number of inlier matches. 

4.3.2 ICP 

In 2D because of the scale indeterminacy the frame pairs are not 

finely aligned. That means the registration accuracy is not 

precise enough. ICP is a popular and well-studied algorithm for 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

277



 

 

3D shape alignment. And ICP has been shown to be effective 

when two point clouds are nearly aligned. Since we have two 

frames aligned in the process of SIFT+RANSAC the 

prerequisites for ICP algorithm has been satisfied. To generate 

more accurate alignments than point-to-point ICP an ICP 

variant based on point-to-plane error metric has been shown to 

improve convergence rates and is the preferred algorithm when 

surface normal measurements are available (Rusinkiewicz, 2002) 

(Segal, 2009). In the previous section we have mentioned that 

virtual depth image is more accurate and less noisy compared to 

raw depth image. So in this part the point-to-plane ICP will be 

applied between virtual depth image and current RGB-D frame. 

In the first iteration of ICP algorithm (R; T) is initialize by 

SIFT+RANSAC match. When the point-to-plane error metric is 

used, the object of minimization is the sum of the squared 

distance between each source point and the tangent plane at its 

corresponding destination point. More specifically, if si = (six, siy, 

Siz, 1)T is a source point, d = (dix, diy, diz, 1)T is the 

corresponding destination point, and n = (nix, niy, niz, 1)T is the 

unit normal vector at then the goal of each ICP iteration is to 

find (Ropt; Topt) such that (Low, 2004) 

2( ; ) arg min ((( ; ) ) )opt opt m i i i

i

R T R T s d n        (2) 

After the registration of 3D point clouds the final transformation 

(R*; T*) is computed. 

4.3.3 Color Similarity Measurement 

The framework above only utilizes little part of pixels 

corresponding to SIFT feature in the depth image. It is assumed 

that if (R*; T*) applied on frame pairs common areas should 

overlap perfectly. However the rigid transformation may be 

unreliable under difficult circumstances. So it is not always the 

case in practical situations. To compute color similarity, we 

choose a set of points from RGB image including all SIFT 

feature points and some other visual features such as Harris 

Descriptor. SIFT features often locate at the edge of object 

while point clouds are not sensitive in these areas. So we put 

larger weight on those pixels corresponding to SIFT features in 

color similarity measurement. 

Every feature point has information including location, gradient 

magnitude and orientation. For each image sample, L(x, y), the 

gradient magnitude, m(x, y), is precomputed using pixel 

differences to produce weight W(x, y): 

2 2( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))m x y I x y I x y I x y I x y            (5) 

( , ) 1/ ( , )W x y m x y     (6) 

To measure color similarity coefficient method is used. First we 

set F* as master image and Sj as slave image and get pixels 

corresponding to SIFT features from both RGB data. The 

difference is that pixel window in F* is 4*4 and Fj larger 16*16. 

The coefficient of the stereo-pair pixel of matching window and 

the target window can be calculated by formula below. This 

final coefficient r is the max value of the window. 

1

2 2

1 1

( )( )

[ ( ) ][ ( ) ]

n

i i

i

n n

i i

i i

X X Y Y

r

X X Y Y



 

 



 



 

    (7) 

Combining with the pre-defined weight we sum all of those 

coefficients up. Each sample frame obtained in section 1.1.2 

there will be a coefficient. So for the reason to compare color 

similarity S we have to normalize the coefficient value: 

1

1

( , ) ( , )

( , )

m

i i i i

i

m

i i

i

W x y r x y

S

W x y












    (8) 

5. RESULTS & DISCUSSION 

We have conducted a number of experiments to investigate the 

performance of our system. These and other aspects, such as the 

system’s ability to keep track during very rapid motion and the 

performance of automatic relocalization, are tested. In our 

experiment an indoor space is reconstructed. Figure 1 shows an 

example frame observed with this RGB-D camera. 

   

Figure 2: (left) RGB image and (right) depth information captured by an 

RGB-D camera. Black pixels in the right image have no depth value, mostly 
due to max distance, or surface material. 

 

Figure 3: Demonstration of the reconstructed 3D model. The colored 

points in the middle linked as a polygonal line are representatives of sample 

frame. They are also the representatives of camera positions. 

During mapping, the camera was carried by a person, 

meanwhile to test the performance of automatic relocalization 

the camera was moved shiftily. As shown in Figure 3 that there 

is no explicit “holes” or “ghost image” existing in the 

reconstructed model. Some holes on the edge of object are 

caused by the missing of data information where camera cannot 

reach. In our experiment camera tracking failure happened. 

However the system only takes some milliseconds to re-

initialize camera position. So the efficiency of our method to 
achieve camera relocalization has been proven. 

6. CONCLUSION 

Building accurate, dense models of indoor environments has 

many applications in robotics, gaming. In this paper We 

investigate how potentially inexpensive depth cameras-Kinect-  

can be utilized to reconstruct 3D model using voxel-based 

method. To maintain the stability of our system graph-based 

method along with SIFT and Colour Similarity Measurement 

has been proposed. And we get a prospective result of camera 

relocalization in 3D reconstruction process.  

REFERENCES 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

278



 

 

D. Lowe. 2004. Discriminative Image Features from Scale-

invariant Keypoints. International Journal of Computer Vision, 

60(2). 

A. Segal, D. Haehnel, and S. Thrun. 2009. Generalized-ICP. 

In Proc. of Robotics: Science and Systems (RSS). 

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3D 

model acquisition. In ACM Transactions on Graphics 

(SIGGRAPH), 2002. 

Blais, G., Levine, M. 1995. Registering Multiview Range 

Data to Create 3D Computer Objects, Trans. PAMI, Vol. 17, 

No. 8. 

Besl, P., McKay, N. 1992. A Method for Registration of 3-D 

Shapes, Trans. PAMI, Vol. 14, No. 2. 

Y. Chen, G. Medioni. 1992. Object modeling by registration 

of multiple range images. Image and Vision Computing (IVC), 

10(3):145–155. 

B. Curless, M. Levoy. 1996. A volumetric method for 

building com-plex models from range images. In ACM 

Transactions on Graphics(SIGGRAPH). 

Shahram Izadi et al. 2011. KinectFusion: Real-time 3D 

Reconstruction and Interaction Using a Moving Depth 

Camera, SIGGRAPH,  

Richard A. Newcombe et al. 2011. KinectFusion: Real-Time 

Dense Surface Mapping and Tracking. In ISMAR. 

P. Henry et al. 2010. RGB-D mapping: Using depth cam-eras 

for dense 3D modeling of indoor environments. In Proc. of 

the Int. Symposium on Experimental Robotics (ISER). 

R. A. Newcombe and A. J. Davison. Live dense recon-

struction with a single moving camera. In Proc. of the IEEE 

CVPR,2010. 

R. A. Newcombe, S. Lovegrove, and A. J. Davison. 2011. 

DTAM: Dense tracking and mapping in real-time. In Proc. of 

the Int. Conf. on Computer Vision (ICCV). 

S. Rusinkiewicz, M. Levoy. 2001. Efficient variants of the 

ICP algorithm. 3D Digital Imaging and Modeling, Int. Conf. 

on , 0:145. 

S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan. 

1998. Interactive ray tracing for isosurface rendering. In 

Proceedings of Visualization. 

K. Low. 2004. Linear least-squares optimization for point-to-

plane ICP surface registration. Technical report, TR04-004, 

University of North Carolina. 

ACKNOMLEDGEMENT 

The authors wish to thank China Postdoctoral Science 

Foundation (180789) and the Basic Research Universities 

Special fund (274988), and the National 973 Program 

(171065). 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

279


