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ABSTRACT: 

 

Digital Building Model is an important component in many applications such as city modelling, natural disaster planning, and 

aftermath evaluation. The importance of accurate and up-to-date building models has been discussed by many researchers, and many 

different approaches for efficient building model generation have been proposed. They can be categorised according to the data 

source used, the data processing strategy, and the amount of human interaction. In terms of data source, due to the limitations of 

using single source data, integration of multi-senor data is desired since it preserves the advantages of the involved datasets. Aerial 

imagery and LiDAR data are among the commonly combined sources to obtain 3D building models with good vertical accuracy from 

laser scanning and good planimetric accuracy from aerial images. The most used data processing strategies are data-driven and 

model-driven ones. Theoretically one can model any shape of buildings using data-driven approaches but practically it leaves the 

question of how to impose constraints and set the rules during the generation process. Due to the complexity of the implementation of 

the data-driven approaches, model-based approaches draw the attention of the researchers. However, the major drawback of model-

based approaches is that the establishment of representative models involves a manual process that requires human intervention. 

Therefore, the objective of this research work is to automatically generate building models using the Minimum Bounding Rectangle 

algorithm and sequentially adjusting them to combine the advantages of image and LiDAR datasets. 

 

 

1. INTRODUCTION 

The importance of up-to-date and accurate geospatial 

information has been emphasized with the increasing demand 

for Geographic Information Systems (GIS). Digital Building 

Model (DBM) is one of the important components among the 

geospatial information especially in urban areas. They are 

required as an input in many applications such as city 

modelling, natural disaster planning, and aftermath 

evaluation. With the development of sensor technology and 

the increase of user requirements, many different approaches 

for efficient building model generation have been proposed 

(Rottensteiner et al., 2005; Habib et al., 2010; Huang and 

Sester, 2011). They can be categorised according to the data 

source used, the data processing strategy, and the amount of 

human interaction (Vosselman and Maas, 2010). 

 

In terms of data source, aerial imagery and LiDAR data are 

among the most commonly used sources to obtain 3D 

building models which can provide good vertical accuracy 

from laser scanning and good planimetric accuracy from 

aerial images. Due to the limitations of using single source 

data, integration has been already recommended since it 

preserves the advantages of the involved datasets. Using only 

aerial imagery provides reliable results based on a 

photogrammetric approach, but the low degree of automation 

during the matching process is a main limitation especially in 

case of occlusions. Partial or complete occlusions are 

common problems for images over urban areas. LiDAR 

systems provide direct 3D positional information eliminating 

the need for a matching process, but the derived boundaries 

do not represent the actual building boundaries due to the low 

sampling rate of airborne LiDAR data. This makes LiDAR 

data not sufficient as a stand-alone source. The advantages of 

the integration of LiDAR and image datasets for the building 

reconstruction are already well summarised in many 

researches (Cheng et al., 2008; Demir et al., 2009; 

Awrangjeb  et al., 2010; Habib et al., 2010). 

 

The most used data processing strategies are the data-driven 

and the model-driven ones. Data-driven approaches which 

are also called bottom-up processes often rely on LiDAR data 

and do not make assumptions regarding the building shapes. 

Theoretically one can model any shape of buildings using 

data-driven approaches, but practically it leaves the question 

of how to impose constraints and set the rules during the 

generation process (Brenner, 2005). Due to the complexity of 

the implementation of the data-driven approaches, model-

based approaches, i.e., top-down processes, draw the 

attention of the researchers. It predefines building models 

using model parameters, and the model parameters are 

updated using information derived from existing data. 

Complex building models can be constructed by combining 

small sets of model primitives depending on the desired level 

of detail. While it provides robust computation, establishing 

the representative models requires manual interaction (Tseng 

and Wang, 2003). Therefore, the objective of this research 

work is to automatically generate building boundaries using 

the minimum number of models while combining the 

advantages of image and LiDAR datasets. In this paper, the 

focus of reconstruction is on complex structures, which 

comprise a collection of rectangular primitives. The 

assumption is that most of the existing buildings, especially 

in urban areas, can be reconstructed using combination of 

rectangular shapes. To meet this objective, the proposed 
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methodology utilizes rectangular models which are derived 

from LiDAR data and are adjusted during the model-based 

image fitting process.  

 

The structure of this paper is as follows: after a detailed 

explanation of the proposed methodology (Section 2), 

preliminary results are presented in Section 3. Section 4 

presents concluding remarks. 

 

2. METHODOLOGY 

As mentioned in the previous section, LiDAR data is a good 

source to detect buildings and generate initial boundaries 

based on the data-driven approaches. However, the quality of 

the derived boundaries is affected by the point density of the 

LiDAR data. Therefore, post-processing to regularise the 

boundary is required. The most popular approaches for the 

regularization include imposing constraints such as regularity, 

parallelism of buildings’ sides, connectivity between lines, 

and integrating the boundaries with images (Brenner, 2005; 

Dorninger and Pfeifer, 2008).  

 

In this research, sets of rectangular models are derived from 

LiDAR data, and the quality of model boundaries are 

improved by the incorporation of images. For this, LiDAR 

data is processed to generate planar building segments 

(Section 2.1), and the initial boundaries are regularised as 

sets of rectangles which will be used as input for the model-

based image fitting. Recursive Minimum Bounding 

Rectangle (MBR) is introduced to generate initial rectangular 

models (Section 2.2), and then the initial models will be 

adjusted during a sequential MBR adjustment (Section 2.3).  

 

2.1 Initial LiDAR processing: building detection 

First, to detect the possible buildings which can be used as 

initial building models, this research uses the segmentation 

methodology proposed by Lari et al. (2011). The 

segmentation process identifies individual regions with 

similar attributes and extracts useful features - in this case 

planar rooftops. This methodology starts with organising the 

LiDAR points using kd-tree structure to speed up the process. 

The proposed methodology considers varying point densities 

by calculating local point densities which determines the size 

of the neighbourhood. The points are classified as planar 

points or rough points using the neighbouring points during 

an iterative plane fitting, and these are grouped based on their 

proximity. The clustering procedure will be carried out on the 

grouped neighbouring points that have been classified as 

being part of planar surfaces. After the segmentation 

procedure, ground / non-ground classification is performed to 

filter out the ground points (Lari and Habib, 2012). Planar, 

non-ground group of points whose size and height are larger 

than predefined thresholds, are considered as possible 

buildings. Finally, the Modified Convex Hull algorithm is 

applied to generate boundaries (Sampath and Shan, 2007). As 

mentioned before, the initial traced boundaries from LiDAR 

data show irregular characteristics that need to be regularised. 

In this research, the regularisation will be carried out using 

rectangular models based on a model-based approach. The 

choice of the model parameters and decomposition of the 

complex buildings into rectangular models in an automatic 

way will be discussed in the following sections.  

 

2.2 Selection of model: Rectangular model 

Traditionally, building models are defined using six pose 

parameters: three of which define the model’s origin using 

coordinates of a reference point while the other three define 

the rotation angles between the model space and the object 

space. Another set of parameters is the relevant shape 

parameters. The most basic model is the one using the box 

primitives. In case of such model, three shape parameters, 

which are the length, width, and height of the box, are 

required. However, in imagery, rooftops and footprints of 

buildings cannot be observed at the same time. On the other 

hand, the vertical accuracy of LiDAR data is higher than the 

horizontal one. Therefore in this research the heights of the 

buildings are determined from LiDAR; this simplifies the 

box model down to a rectangular model. The heights of the 

buildings and the vertical positions of the reference points are 

calculated based on the plane parameters from the 

segmentation. Also, the rotation angles which determine the 

slope and aspect of the building rooftops with respect to the 

object space are derived using the surface normal information 

from the LiDAR data. The final parameters in this research 

then become the three out of six pose parameters (i.e., the 

horizontal positions of the reference point and one rotation 

angle for the orientation of the building) and the two out of 

three shape parameters (the length and width of the building). 

The justification of this choice of the final model parameters 

is explained in detail in Habib et al. (2011). The chosen 

model parameters will be adjusted using edge pixel 

information from available images through a least-square 

adjustment.  

 

2.3 Initial model parameter generation: Recursive MBR  

This section discusses how to derive the initial model 

parameters automatically as input parameters for the model-

based image fitting. Since rectangular models are chosen as 

the basic model, the MBR algorithm is applied to regularise 

the initial LiDAR-derived boundaries and decompose them 

into rectangles. MBR is the rectangle with minimum area 

among the rectangles of arbitrary orientation which contain 

all the vertices of a LiDAR boundary (Freeman and Shapira, 

1975; Chaudhuri and Samal, 2007). MBR generation of a 

simple rectangular building is described in Habib et al. 

(2011). For complex buildings which are comprised of 

multiple rectangles, the MBR algorithm can be applied 

recursively. First, the MBR algorithm is applied to the initial 

LiDAR-derived boundary points and the 1st level MBR is 

generated. Then the initial boundary points, which do not 

overlap with the 1st level MBR, are found and then projected 

onto the sides of the 1st level MBR. Using the non-

overlapping boundary points and their projected counterparts, 

the MBR algorithm is applied again to derive the 2nd level 

MBR(s). The same procedure is repeated until there is no 

LiDAR boundary point left. As a result of the recursive MBR, 

different MBR levels are derived and by alternating 

subtraction and addition of each level, the final shape can be 

generated. However, to improve the horizontal accuracy of 

the final product, these MBRs are used as initial models for 

the model-image fitting. Next section describes how these 

different levels of MBRs are adjusted sequentially during the 

image fitting process.  

 

2.4 Sequential MBR adjustment using imagery 

The MBRs derived from LiDAR give a good approximation 

for the adjustment. The main objective of the model-based 
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image fitting is to minimize the normal distance between the 

initial LiDAR-derived model and image edge information by 

refining the model parameters. Habib et al. (2011) already 

confirmed the feasibility of the image fitting process using 

simple rectangular buildings. For complex buildings, 

different levels of MBRs are derived from LiDAR data using 

the recursive MBR procedure described in Section 2.3. These 

MBRs will be adjusted sequentially to improve the 

boundaries. The 1st level MBR is adjusted using the edge 

pixels extracted from the images, and only edges from the 

actual building boundaries will be considered for the 

adjustment. After the 1st level MBR adjustment, the next 

level MBR is adjusted while incorporating the results from 

the previous level, and this process continues until all the 

MBR levels are adjusted. The results are presented in the 

Section 3.  

 

3. EXPERIMENTAL RESULTS 

To test the proposed methodology, two buildings have been 

selected. Figure 1 shows image and LiDAR data of the 

selected buildings. The building shapes differ in terms of 

complexity which means they are represented using different 

MBR levels. The first selected building, T-shape, is 

comprised of two MBR levels, and the second building 

includes more than two MBR levels. The buildings are 

located on the campus of British Colombia Institute of 

Technology (BCIT) in Canada. Multiple aerial images and 

airborne LiDAR data both captured from flying heights of 

540 m and 1,150 m are available. The ground sampling 

distances for the images are 5 and 10 cm, and the LiDAR 

point densities are 1.5 and 4.0 pts /m2 depending on the 

flying height.  

 

Figure 1. Aerial images (a), (c), and LiDAR data displayed 

according to the heights (b), (d), of selected buildings 

 

The proposed plane segmentation methodology successfully 

distinguishes the rooftops of the test buildings. The results 

are shown in Figure 2. Figure 2(a) shows the clustering 

results, and Figure 2(b) presents the ground / non-ground 

classification result. The red colour represents non-ground 

planar points, the green colour - ground planar points, the 

pink colour - non-ground rough points, and the blue colour - 

ground rough points. Groups of planar non-ground points 

whose height is greater than 4 m and size is larger than 10 m2 

are hypothesized as buildings (Figure 2(c)). Lastly, Boundary 

tracing is performed on the building hypotheses. Figure 3 

shows the traced boundaries of the test buildings projected 

onto the imagery. 

 

 
 

(a) 

 
 

(b) 

 
 

(c) 

Figure 2. Plane segmentation results (a), ground / non-ground 

classification (b), and building hypotheses generation (c) 

 

Figure 3. Initial LiDAR boundaries of the buildings projected 

onto the imagery 

 

Figure 4 and Figure 5 demonstrate the step-by-step 

procedures of the recursive MBR algorithm for the two test 

buildings. For the first building, the 1st level MBR, i.e., the 

blue rectangle in Figure 4(b) is derived from the initial 

LiDAR boundary (Figure 4(a)). Figure 4(c) shows the non-

overlapping initial LiDAR boundary points in black circles 

together with the 1st level MBR. These points are projected 

onto the 1st level MBR sides as shown in Figure 4(d) (red 

circles), and then using these points, the MBR algorithm is 

applied one more time. In this case, two 2nd level MBRs, i.e., 

the rectangles in black colour, are derived as seen in Figure 

4(e). The final building shape can be obtained by subtracting 

the 2nd level MBRs from the 1st level MBR (Figure 4(f)).  

 

  

(a) (b) 

  

(c) (d) 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4. Recursive MBR procedure of the first building 

 

The second test building includes 3 MBR levels. Figure 5 

illustrates the recursive MBR results of the second test 

building. The initial LiDAR boundary points and the 1st level 

MBR are presented in Figure 5(a) and Figure 5(b), 

respectively. Figure 5(c) displays the non-overlapping points 

in black circles with the 1st level MBR, and Figure 5(d) 

shows their projection onto the 1st level MBR in red circles. 

The 2nd level MBR, i.e., the black rectangle in Figure 5(e), is 

derived using the points in Figure 5(d). The same procedure 

is repeated to find the non-overlapping LiDAR points with 

the 2nd level MBR (i.e., pink circles in Figure 5(f)) and their 

projection onto the 2nd level MBR (i.e., red circles in Figure 

5(g)).  Figure 5(h) shows the 3rd level MBR in green color. 

The final shape can be derived by alternating subtraction and 

addition of different levels (1st level MBR – 2nd level MBR + 

3rd level MBR) as seen in Figure 5(i).  

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

 

 

(i)  

Figure 5. Recursive MBR procedure of the second building 

 

Before following the Boolean operation of different MBR 

levels, the rectangular models determined from the LiDAR 

data undergo a refinement process using the sequential 

adjustment. Figure 6 shows the two MBR levels (red and 

yellow) derived from LiDAR data and the final adjusted 

MBRs after the model-image fitting projected onto the image. 

The adjustment was performed using two aerial images that 

cover the building. Please note that there is no limitation in 

terms of number of images used. The use of a single image 

produces satisfactory results; however, the use of more 

images provides various views of the building which 

decreases the chance of occlusion.  
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(a) (b) 

Figure 6. Initial MBRs (a) and adjusted MBRs (b) of the first 

building projected onto the image  

 

As seen in Figure 5, three MBR levels are derived from the 

second test building. The three levels of initial models and 

their adjustment results are depicted in Figure 7 where the 

different colors represent the different MBR levels.   

 

  

(a) (b) 

Figure 7. Initial MBRs (a) and adjusted MBRs (b) of the 

second building projected onto the image 

 

At last, the final shape of each building which is the result 

from the Boolean operation of the adjusted MBRs is 

projected onto the image (Figure 8). 

 

  

Figure 8. Final shape of the building projected onto the image 

 

4. CONCLUSIONS AND FUTURE WORK 

This paper presented a robust approach to generate building 

models automatically from LiDAR and imagery by proposing 

the recursive MBR and the sequential MBR adjustment. 

Experimental results demonstrate how the recursive MBR 

algorithm decomposes buildings into rectangular models 

automatically and models are adjusted sequentially. The final 

model can be achieved by alternating the Boolean operation 

of subtraction and addition from each level of adjusted MBRs. 

This methodology can be applied to more complex buildings 

with more MBR levels. While the proposed approach 

provides high level of automation and accuracy, it can model 

only the types of buildings which decompose into rectangles. 

Future work includes increasing the applicability of the 

proposed algorithm for other building shapes in order to 

obtain complete building models and maintain the high 

accuracy and automation level.  
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