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ABSTRACT: 
 
Bridge areas present difficulties for orthophotos generation and to avoid “collapsed” bridges in the orthoimage, operator assistance is 
required to create the precise DBM (Digital Bridge Model), which is, subsequently, used for the orthoimage generation. In this paper, 
a new approach of DBM generation, based on fusing LiDAR (Light Detection And Ranging) data and aerial imagery, is proposed. 
The no precise exterior orientation of the aerial image is required for the DBM generation. First, a coarse DBM is produced from 
LiDAR data. Then, a robust co-registration between LiDAR intensity and aerial image using the orientation constraint is performed. 
The from-coarse-to-fine hybrid co-registration approach includes LPFFT (Log-Polar Fast Fourier Transform), Harris Corners, PDF 
(Probability Density Function) feature descriptor mean-shift matching, and RANSAC (RANdom Sample Consensus) as main 
components. After that, bridge ROI (Region Of Interest) from LiDAR data domain is projected to the aerial image domain as the 
ROI in the aerial image. Hough transform linear features are extracted in the aerial image ROI. For the straight bridge, the 1st order 
polynomial function is used; whereas, for the curved bridge, 2nd order polynomial function is used to fit those endpoints of Hough 
linear features. The last step is the transformation of the smooth bridge boundaries from aerial image back to LiDAR data domain 
and merge them with the coarse DBM. Based on our experiments, this new approach is capable of providing precise DBM which can 
be further merged with DTM (Digital Terrain Model) derived from LiDAR data to obtain the precise DSM (Digital Surface Model). 
Such a precise DSM can be used to improve the orthophoto product quality.  
 
 

1. INTRODUCTION 

Nowadays, more and more orthophotos of highway corridor 
areas are demanded for the purpose of maintaining and 
advancing the public transportation system. Nevertheless, 
bridge areas present challenges, as without operator assistance, 
distortion is usually introduced. In order to avoid “collapsed” 
bridges in the orthoimage, a precise DBM (Digital Bridge 
Model) is needed. The work presented in this paper is focused 
on a new method to generate the precise DBM based on fusing 
LiDAR data and aerial imagery. Actually, fusing LiDAR data 
and aerial imagery to create the precise digital man-made object 
model has been widely investigated in the photogrammetric 
community. However, most methodologies utilize LiDAR 
elevation information only; the LiDAR intensity information is 
mostly ignored. The main difference with other methods is that 
our method is based on the co-registration between the LiDAR 
intensity and aerial image pair.    
 
 
1.1 Literature Review 

Although LiDAR data can directly provide accurate and dense 
surface measurements, it cannot well determine the man-made 
object boundaries due to the irregular and sparse nature of 
LiDAR points at break lines. On the other hand, the man-made 
object boundaries can be well extracted from aerial imagery. 
Fusing clean and smooth boundaries from aerial imagery and 
LiDAR elevation data becomes an efficient way to create the 
digital man-made object model (Kim et al., 2008; Rottensteiner 
and Briese, 2002; Sampath and Shan, 2007; Vosselman, 1999). 
Reviewing related publications, most of the research is focused 
on precise digital building modelling. The main idea is to 
extract 2D outlines of buildings from aerial images, then project 
them to the 3D LiDAR data space via the colinearity equation, 

and subsequently, compare them with 3D linear features 
extracted from LiDAR data to obtain the smooth and precise 
digital building models. Those methods show good results for 
automated generation of polyhedral building models for 
complex structures (Kim and Habib, 2009; Wu et al., 2011); 
however, implementation of these methods could be complex 
and the computation load could be heavy. Most earlier research 
is focused on either generating DBM (Digital Bridge Model) 
based on analysis of LiDAR point cloud profile (Sithole and 
Vosselman, 2006) or bridge boundary extraction from DTM 
(Geopfert and Rottensteiner, 2010). Nevertheless, the 
determination of man-made object boundaries in LiDAR data is 
rather complex. If the co-registration between LiDAR intensity 
and other high resolution imagery can be established, it is not 
necessary to generate the perfect DBM from LiDAR data 
domain, as the LiDAR data derived coarse DBM can be refined 
by introducing smooth bridge boundaries, extracted from the 
high resolution image. This is the concept of the proposed 
approach. 
 
 
1.2 Proposed Method 

In this paper, the man-made objects to be modelled are bridges 
whose shape is either straight or curved. The new idea is to 
transfer smooth bridge boundaries extracted from the aerial 
image to the LiDAR intensity image via the co-registration 
between them. Ultimately, the accurate DBM is finalized in the 
LiDAR data domain by fitting smooth boundaries to the coarse 
boundaries derived from LiDAR data. The co-registration 
method was firstly proposed based on our earlier research work 
of co-registration between satellite and LiDAR intensity images 
(Toth et al., 2011). 
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In the following sections, first, the bridge data used for testing is 
described. Then, the entire workflow of DBM generation based 
on straight and curved bridge shapes is presented and explained 
step by step. The last section provides results and discussion.      
 

2. TEST DATA 

For this study, high resolution DMC aerial images and LiDAR 
data of highway 161 corridor area in Franklin County, Ohio, 
USA were provided by ODOT (The Ohio Department of 
Transportation), shown in Figure 1. A straight bridge enclosed 
in a black rectangle ROI (Region Of Interest) and a curved 
bridge enclosed in a red rectangle ROI are selected as test 
bridges.  
 

 
Figure 1. Straight test bridge (1) and curved test bridge (2) 

 
Using the aerial image footprint, LiDAR intensity image is 
generated from LiDAR data; the image resolution is set to 1m 
GSD (Ground Sample Distance). Figure 2 show the aerial image 
(a) and its corresponding LiDAR intensity image (b). 
 

 
(a) 

 
(b) 

Figure 2. Aerial image (a) and LiDAR intensity image (b) 
 
 

3. METHODOLOGY 

The proposed workflow consists of four steps: derivation of 
coarse DBM from LiDAR data, co-registration between aerial 
and LiDAR intensity image pair, extraction of smooth 
boundaries from aerial image and precise DBM generation.  
 

3.1 Coarse DBM Generation 

For our tests, the bridge ROI is manually selected in the LiDAR 
intensity image which is a rasterized LiDAR point cloud, 
created by using the highest intensity value of points falling in a 
ground cell. 1m sample size is used to generate the LiDAR 
intensity image. The relation between LiDAR intensity image 
space and LiDAR data mapping system is the following 2D 
transformation:   
 
 𝑥 − 𝑥0 =

𝐸 − 𝐸0
𝐺𝑆𝐷  

𝑦 − 𝑦0 =
𝑁 −𝑁0
𝐺𝑆𝐷  

(1) 

    
 where (x, y) is the image coordinate and (E, N) is the 

corresponding LiDAR mapping Easting and 
Northing coordinate  

  (x0, y0) is the image coordinate system origin, 
which is defined as the upper left corner, (E0, N0) 
is the corresponding LiDAR mapping Easting and 
Northing coordinate 

 
Once GSD is fixed, the bridge ROI in the LiDAR intensity 
image can be easily transformed to ROI in the LiDAR data 
domain, which is the 3D LiDAR ROI point cloud used to 
generate the coarse DBM.  
First, ground points and non-bridge points should be filtered 
out. Ground points can be easily removed based on elevation 
analysis. For non-bridge points having similar height as the 
bridge surface, the intensity data can be used for filtering. 
Nevertheless, pavement markings and/or vehicles on the bridge 
may have different reflectance characteristics, and thus, those 
points can be also removed which could create void areas in the 
bridge surface. In addition, outlier points may also exist; see the 
isolated point clusters in red ellipses in the Figure 3 (a). In order 
to trim those sparse outlier points, a statistical outlier removal 
filter based on statistical analysis on each point’s 
neighbourhood is also applied to clean the bridge points. For 
each point, the 2D mean distance from it to its closest n points 
is computed. It is assumed that those mean distances obey a 
Gaussian distribution. Then, points with mean distances outside 
the interval, defined by the global distances mean and standard 
deviation, can be regarded as outliers and removed from the 
bridge points; see differences between Figure 3 (a) and (b).  
 

 
(a) 

 
(b) 

Figure 3. Elevation/intensity filtered bridge surface (a) and 
cleaned by a statistical filter (b) 

 
3D RANSAC (Fischler and Bolles, 1981) plane estimation is 
applied on those cleaned bridge points to find the robust 3D 
plane parameters. Elevation of bridge points is recomputed 
through the 3D plane equation using the estimated 3D plane 
parameters. The newly computed points should be perfectly on 
the bridge surface defined by the estimated plane. Subsequently, 
concave hull boundary estimation is performed on the refined 
bridge surface points, as the bridge surface has a concave shape. 
In addition, points on bridge boundaries are also determined 
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based on checking elevation value with respect to their 
neighbourhood in a circular searching area, since the elevation 
difference should be large for boundary points and small for 
non-boundary points. The concave hull polygon (white) 
connecting those concave hull boundary points (yellow) and the 
bridge boundary points (blue) are illustrated in the Figure 4.   
 
3.2 Co-registration  

In our earlier research on multiple-domain imagery co-
registration, a new approach based on LPFFT (Reddy and 
Chatterji, 1996; Wolberg and Zokai, 2000), Harris Corners, 
PDF mean-shift matching (Comaniciu et al., 2003) and 
RANSAC (Fischler and Bolles, 1981) affine transformation 
estimation was proposed (Toth, et al., 2011). With a limited 
dataset, the proposed method achieved promising results, and 
thus, it is applied to estimate the geometric transformation 
which is assumed an affine transformation, between the LiDAR 
intensity and aerial images. Figure 5 shows the workflow of the 
proposed co-registration approach.  
 

 
Figure 4. Concave hull boundary points (yellow) and bridge 

boundary points (blue) 
 
 

 
Figure 5. Workflow of the affine transformation estimation 

 
First, the similarity transformation regarded as the coarse 
geometric transformation is estimated via a standard LPFFT 
registration method. Next is the similarity validation step where 
the scale and rotation parameter are validated based on a Monte 
Carlo process; more precisely, a Monte Carlo test is performed 
for a set of scale and rotation values computed from the 
originally estimated parameters (𝑠0,𝜙0)  via following 
equations: 
 
 𝑠 ≔ {𝑠|𝑠𝑖 = 𝑠0 ± 𝑖 ⋅ 𝛿𝑠} 

𝜙 ≔ {𝜙|𝜙𝑖 = 𝜙0 ± 𝑖 ⋅ 𝛿𝜙} 
(2) 

 
The second image is transformed using each scale and rotation 
combination in the set. If the estimated scale and rotation 
parameters are correct, the images should have comparable 
orientation and scale. Then, FFT-accelerated NCC (Normalized 
Cross Correlation), an efficient NCC computation method, can 
be used to estimate the translation parameters for each image 
pair by searching the maximum NCC values. Those maximum 
NCC values of all image pairs should be kept at a significantly 

high level, which means small scale and rotation changes 
around the correct scale and rotation still lead to a high NCC 
value. If the estimated scale and rotation are wrong, the 
maximum NCC values of all image pairs should be small. 
Figure 6 (a) shows the typical NCC surface based on the wrong 
(𝑠0,𝜙0) and (b) based on the correct (𝑠0,𝜙0) paramters. If the 
EOPs (Exterior Orientation Parameters) of aerial image are 
available, it is also possible to introduce a rotation angle 
constraint to improve the performance of similarity 
transformation estimation. According to our experiences, the 
scale and rotation parameters can be reliably estimated based on 
orientation angle constraint and the Monte Carlo validation. The 
translation parameters, however, may not be easily estimated by 
LPFFT. Therefore, translation parameters are estimated through 
the edge NCC matching method.  
 

                     (a)                                            (b)           
Figure 6. NCC value surface; wrong scale and rotation 

parameter (a) and correct scale and rotation parameter (b) 
 
The second image is transformed using the estimated scale and 
rotation angle, so the image pair should have similar orientation 
and scale. A number of rectangle reference patches are 
generated in the first image, and subsequently, those reference 
patches are matched in the second image. Thus, the translation 
parameters can be computed as the center point image 
coordinate differences between the reference patch and matched 
patch. The correct translation is determined by a statistical 
analysis of all computed translations. The translations with 
highest frequency are accepted as correct translations, see 
Figure 7.   
 

                          (a)                                            (b)           
Figure 7. NCC value surface; wrong scale and rotation 

parameter (a) and correct scale and rotation parameter (b) 
 
The Harris Corners detector is used to extract feature points, 
and circular regions cantered on strong HC features are created 
in both images, including the imported locations from the other 
image. Next the scale- and rotation-invariant PDF descriptor is 
used to describe the circular feature region. The PDF function is 
represented in a 256-dimensional feature descriptor. The 
similarity between two feature descriptors is computed via the 
Bhattacharyya Coefficient, which is the cosine of angle 
correlation between the two feature descriptors, defined as:  
 
 

𝜌 = 𝜌(𝑝, 𝑞) = ��𝑝𝑢 ⋅ 𝑞𝑢 = 𝑐𝑜𝑠𝜃 ≥ 0
𝑚

𝑢=1

 (3) 
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where ∑ �𝑝𝑢𝑚

𝑢=1 = ∑ �𝑞𝑢𝑚
𝑢=1 =1 

 
The maximum similarity score ρ is 1, which means the two 
feature descriptors are exactly the same. The minimum 
similarity score is 0 which means the two feature descriptors are 
orthogonal to each other; in other words, they don’t have any 
relation. PDF matching is implemented based on mean-shift 
searching strategy. Finally, affine transformation parameters are 
estimated based on the PDF-matched tie points. Note that 
RANSAC is used to remove the blunders. Figure 8 illustrates 
the co-registration results after RANSAC blunder detection; the 
RANSAC threshold value is set to 0.5-pixel.  
 

 
Figure 8. Co-registration result 

 
3.3 Extracting Smooth Bridge Boundaries in Aerial Image 

Hough linear transform is applied to the bridge ROI in the aerial 
image to extract the bridge boundaries. For each Hough 
transform identified linear feature, its Hough transform angle is 
also recorded, which can be used to determine the bridge 
direction and remove the non-bridge linear features. For a long 
curved bridge, Hough circle transform was attempted to extract 
the curved boundaries; nevertheless, the performance was not 
stable. Alternatively, short linear features are extracted along 
the curved bridge boundaries. Since Hough linear transform 
cannot be directly used to extract long curved bridge 
boundaries, the long curved bridge ROI is divided into several 
small sub-ROIs, as shown in Figure 9.  
 

  
(a) (b) 

Figure 9. Sub-ROIs of a curved bridge ROI (a) and  
short linear features in sub-ROI 4 (b) 

 

Then, it is possible to obtain short linear features in each sub-
ROI. Hough linear features in all sub-ROIs are merged together 
to form the complete Hough transform linear features along the 
long curved bridge boundaries. The endpoints of linear features 
are used to generate the smooth bridge boundary, see red points 
in Figure 10.    
It is also necessary to determine points of upper and lower 
boundaries for the smooth boundary generation. In order to 
simply separate the upper and lower boundary, all linear 
features are rotated to align to the horizontal direction based on 
the recorded Hough transform angles. This step is performed in 
each sub-ROI for the curved bridge. If the bridge is rotated to 
horizontal direction, upper and lower boundaries can be 
separated based on comparing the Y coordinate. For straight 
bridge boundary, 1st order polynomial function is used to fitting 
those boundary points; for curved bridge boundary, 2nd order 
polynomial function is used. Once the polynomial function 
parameters are estimated, the smooth boundary can be then 
represented in the dense sample points computed via the 
polynomial function, see blue points in Figure 10.  
 

 
(a) 

 
(b) 

Figure 10. Smooth boundary points computed via 2nd order 
polynomial function (blue) according to the Hough linear 

feature endpoints (red) 
   
3.4 Precise DBM Generation 

If the affine transformation between LiDAR intensity and aerial 
image is established, smooth boundaries can be transformed 
from the aerial image to the LiDAR intensity image as well as 
to the LiDAR elevation data. The upper and lower boundaries 
are shifted to best fit the upper and lower coarse boundary from 
the coarse DBM. Figure 11 shows the smooth boundaries, 
fitting the coarse boundaries. The void area between the smooth 
boundary (pink) and the coarse boundary (blue) extracted from 
LiDAR data should be filled in to form a precise DBM. In 
addition, the elevation values of the smooth boundary points are 
computed based on interpolating its neighbour points’ elevation 
values. The precise DBM can be merged with the DTM derived 
from LiDAR data to form a precise DSM.  
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(a) 

 
(b) 

Figure 11. Smooth boundary points computed via 2nd order 
polynomial function (blue) according to the Hough linear 

feature endpoints (red) 
 
 

4. RESULTS AND CONCULUSION 

A comparison between bridge ROI DSM derived from LiDAR 
data and DSM based on the precise DBM is given in Figure 12 
and Figure 13 for the test bridge 1and 2, respectively.  
 

 
(a) 

 
(b) 

Figure 12. Bridge ROI DSM derived from LiDAR data (a) 
and DSM based on the precise DBM (b) (bridge 1) 

 
 

 
(a) 

 
(b) 

Figure 13. Bridge ROI DSM derived from LiDAR data (a) and 
DSM based on the precise DBM (b) (bridge 2) 

 
Clearly, the bridge ROI DSM is refined in both cases; the 
surface and outlines of the bridges are smoother. For the test 
bridge 2, the “collapsed” bridge section due to tree crowns is 
well repaired. DSM with precise DBM can be used to improve 
the orthophoto generation of the highway corridor areas. In this 
paper, a new precise DBM generation method based on fusing 
LiDAR and aerial image data is introduced. The novel idea is to 
transfer smooth bridge boundaries extracted from the aerial 
image to the LiDAR data via the established co-registration 
between LiDAR intensity and aerial images. Note only 
approximate exterior orientation of the aerial image should be 
known. In case aerial imagery is not available, other high 
resolution satellite image can be also used. In this paper, the 
method is applied to produce precise DBM of straight and 
curved bridges by fusing LiDAR data and aerial images. In 
future research, complex multiple-layer bridge models using 
this methodology will be investigated. In addition, the 
possibility to apply this method to generate digital building 
model of complex building structures will be also explored.  
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