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ABSTRACT:

Mobile mapping is used for asset management, change detection, surveying and dimensional analysis. There is a great desire to
automate these processes given the very large amounts of data, especially when 3-D point cloud data is combined with co-registered
imagery - termed “3-D images”. One approach requires low-level feature extraction from the images and point cloud data followed
by pattern recognition and machine learning techniques to recognise the various high level features (or objects) in the images. This
paper covers low-level feature analysis and investigates a number of different feature extraction methods for their usefulness. The
features of interest include those based on the “bag of words” concept in which many low-level features are used e.g. histograms of
gradients, as well as those describing the saliency (how unusual a region of the image is). These mainly image based features have
been adapted to deal with 3-D images. The performance of the various features are discussed for typical mobile mapping scenarios and
recommendations made as to the best features to use.

1 INTRODUCTION

Laser scanning is currently the averred method for the collec-
tion of surveying/mapping data but increasingly this is being aug-
mented by 2-D imaging cameras. Co-registration of 2-D colour
intensity maps collected from standard cameras with range mea-
surements collected by laser scanners results in the creation of
3-D images; 2-D images with every pixel having an associated
range value. Recently, mapping systems based on stereoscopic
imaging techniques have been used to produce similar 3-D im-
ages at the expense of reduced accuracy in range. The increasing
use of mobile mapping systems based around such technology
is resulting in the creation of very large amounts of data; mobile
mapping systems operating along roads in urban centres typically
collect full 360 degree panoramas every five or ten metres along
the vehicle track. These datasets are very useful for a range of
content analysis applications, but the speed of analysis is severely
limited by the amount of costly and impractical manual process-
ing needed to identify interesting features. There is a great need
to improve upon the automated detection of content that is of in-
terest to the user, so that a large proportion of time is not wasted
looking through irrelevant data.

Processing data for the automatic identification of features or ob-
jects of interest is a core focus of computer vision research. Re-
search has focussed on the analysis of very large cohorts of im-
ages because many people and organisations produce and share
images and these must often be indexed and organised accord-
ing to content. Websites such as Flickr (http://www.flicker.com)
and Picasa (http://picasa.google.com), and the need to search the
Web for images having specific content means many millions of
images must be processed. Mobile mapping imagery requires
similar processing to discover content for use in application ar-
eas such as asset management, change detection, surveying and
dimensionality analysis. Mobile mapping data is distinct from
regular 2-D imagery because of the availability of co-registered
range information. This extra modality presents an interesting av-
enue for research because it offers the possibility of significantly

increasing the speed and accuracy of existing 2-D image based
feature detection methods.

Research into object detection has produced a large number of
novel approaches to feature detection. The performance of fea-
tures extracted from imagery is evaluated for a particular object
detection task. This requires a task driven approach to the evalu-
ation of features by first identifying the type of object in the im-
agery to be detected, before determining how accurate the object
detection system that uses these features is in detecting the ob-
jects. Typically this requires much imagery with ground-truthed
bounds defined around the objects to be detected. While there
exists much intensity imagery (e.g. the PASCAL Visual Object
Classes Challenge (Everingham et al., 2010)), there are no similar
commonly available 3-D or range image datasets.

For the purposes of this research, a dataset from Earthmine was
used consisting of a sequence of panoramas taken approximately
every ten metres along the road within the Perth CBD, Western
Australia. Each panorama consists of eight images projected onto
the inside of a cube centred on the imaging camera array mounted
on the mapping vehicle. Within the high resolution images, each
colour pixel has co-registered against it the real world latitude,
longitude and elevation at that point. 3-D images can be gener-
ated specifying the colour and range of each pixel in the image.

Range image data has been used for object representation and to
establish correspondences between an object’s geometric model
(e.g. derived from a generic CAD model of the object) and the
object’s representation in the range imagery (Arman et al., 1993),
(Lavva et al., 2008), (Steder et al., 2009). However, due to the
complexity and slowness of matching spatial models in range
imagery, and the wide availability of intensity imagery, research
has favoured extracting the appearance of an object to encode
its discriminative qualities. In intensity images, keypoints or in-
terest points have been proposed such as Harris keypoints (Har-
ris and Stephens, 1988), SIFT (Lowe, 2004), SURF (Bay et al.,
2006), and FAST (Rosten, 2006); blob detectors such as Max-
imally Stable Extremal Regions (MSER) (Matas et al., 2002),
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and image operators such as the Histogram of Oriented Gradi-
ents (HOG) (Dalal and Triggs, 2005) that encapsulates changes
in the magnitude and orientation of contrast over a grid of small
image patches. HOG features have shown excellent performance
in their ability to recognise a range of different object types in-
cluding natural objects as well as more artificial objects (Dalal
and Triggs, 2005), (Felzenszwalb et al., 2010), (Schroff et al.,
2008).

The success of such appearance based feature detection meth-
ods for intensity images led to the development of similar ap-
pearance based features for range images. Spin images (Johnson
and Hebert, 1999) use 2-D histograms rotated around a reference
point in space. Splash features (Stein and Medioni, 1992) are
similar to HOG features in that they collect a distribution of sur-
face normal orientations around a reference point. NARF (Nor-
mal Aligned Radial Feature) features (Steder et al., 2010) detect
stable surface regions combined with large depth changes in ob-
ject borders. The feature is designed to be stable across differ-
ent viewpoints. Tripod operators (Pipitone and Adams, 1993)
compactly encode surface shape information of objects by taking
surface range measurements at the three corners of an equilat-
eral triangle. Other range based descriptors include surface patch
representations (Chen and Bhanu, 2007), surface normal based
signatures (Li and Guskov, 2007), and tensor-based descriptors
(Mian et al., 2006). However, for the most part, there is still little
evidence that any of these range image based features are signif-
icantly better than any others for specific object detection tasks.
Recent work has combined intensity based features with range to
first segment images into planar range regions before using this
information to guide the object detection process with intensity
based features (Rapus et al., 2008), (Wei et al., 2011).

This paper reports upon a number of low-level feature extraction
methods for their usefulness in describing salient image regions
containing higher-level features/objects. The features of inter-
est include those based on the “bag of words” concept in which
many low-level features are used together to model the character-
istics of an image region in order to measure the saliency relative
to the whole image (section 2). These generate response maps
indicating regions of interest in the image. Feature extraction
methods that encode a greater amount of spatial and geometric
information from range and intensity image regions are discussed
in the context of their use in parts-based models for higher-level
object detection (section 3). Extraction of rudimentary line seg-
ment information from the 3-D images for use in detecting and
modelling/matching object geometry is also discussed. The pa-
per concludes with a summary of future work and known issues
to be addressed (section 4).

2 OBJECT SALIENCY

Given the large amount of data to be processed, it is necessary to
first extract candidate regions with greater likelihood of contain-
ing higher-level features of interest. For a given object detection
task, such as finding all bus shelters, a saliency detection method
is required to return all approximate locations of bus shelters in
the data. A consequence of this is a high false alarm rate. Subse-
quent processing is then more efficient because the total remain-
ing amount of data is substantially reduced.

Some low-level features are more suited than others for discrim-
ination between high-level features of interest. It is recognised
that it is not possible to find a combination of one or more fea-
tures that will detect all high-level features of interest. The se-
lection of low-level features must be task driven; the objects to

be detected must first be specified so that the combination of fea-
tures that is most appropriate for the matching of such objects
can be used. Machine learning approaches using a training set
of manually chosen instances of the high-level features (positive
examples) as well as instances of other high-level features not
of the required class (negative examples) will determine the best
low-level features to use and how they can be combined to satisfy
the task.

2.1 Statistical based features

The statistical based features capture the scale invariant covari-
ance of object structure. The histogram of an image is a plot of
the number of pixels for each grey level value (or intensity values
of a colour channel for colour images). The shape of the his-
togram provides information about the nature of the image (or a
sub-region of the image). For example, a very narrow histogram
implies a low contrast image, while a histogram skewed toward
the high end implies a bright image, and a bi-modal histogram (or
a histogram with multiple strong peaks) can imply the presence
of one or more objects.

The histogram features considered in this paper are statistically
based in that the histogram models the probability distribution of
intensity levels in the image. These statistical features encode
characteristics of the intensity level distribution for the image. A
bright image will have a high mean and a dark image will have
a low mean. High contrast regions have high variance, and low
contrast images have low variance. The skew is positive when the
tail of the histogram spreads out to the right (positive side), and
is negative when the tail of the histogram spreads out to the left
(negative side). High energy means that the number of different
intensity levels in the region is low i.e., the distribution is con-
centrated over only a small number of different intensity levels.
Entropy is a measure of the number of bits required to encode the
region data. Entropy increases as the pixel values in the image are
distributed among a larger number of intensity levels. Complex
regions have higher entropy and entropy tends to vary inversely
with energy.

2.2 Localised keypoint, edge and corner features

Rosin (2009) argues for the density of edges as a measure of
salience because interesting objects have more edges. Edge fea-
tures have been very popular and range from simple differential
measures of adjacent pixel contrasts such as the Sobel (Duda et
al., 1973), Prewitt (Prewitt, 1970), and Robert’s Cross (Roberts,
1963) operators to complex operators such as the Canny (Canny,
1986) and the Marr-Hildreth (Marr and Hildreth, 1980) edge de-
tectors. Canny produces single pixel wide edges allowing edge
linking, and exhibits good robustness to noise (see figure 1(a)).
The simpler operators such as Sobel require a threshold and thin-
ning to obtain single pixel wide edges. Corner detectors such as
Harris (Harris and Stephens, 1988) have been popular because
they produce features expressing a high degree of viewpoint in-
variance (see figure 1(b)). However, many of the features de-
tected by the Canny operator are false corners and so cannot
be semantically interpreted. More recently, keypoint detectors
with stronger robustness to viewpoint invariance that detect fewer
false features have been proposed such as SIFT (Lowe, 2004),
SURF (Bay et al., 2006) and FAST (Rosten, 2006).

2.3 Saliency based features

Saliency based features take inspiration from aspects of the hu-
man visual system. This is a task driven process that analyses
global image features to identify image regions containing more
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(a) Canny (b) Harris

Figure 1: Edge and corner keypoint detectors.

“interesting” pixels. The images in figure 2 show high responses
for regions with many edges representing busyness in the images
or changes in intensity or frequency components of the image.

(a) Frequency-tuned (Achanta et
al., 2009)

(b) Maximal Symmetric Surround
(Achanta and Süsstrunk, 2010)

Figure 2: Examples of saliency detectors.

Segmentation is the process of partitioning the image into mul-
tiple segments. Edge based saliency maps are used to segment
the images into interesting and non-interesting regions by simple
thresholding. Figure 3 demonstrates how this procedure drasti-
cally reduces the area of the image expected to contain meaning-
ful information about the objects of interest.

(a) Edge based saliency map
(Rosin, 2009)

(b) Mask applied to image showing
interesting region.

Figure 3: Saliency based segmentation using simple thresholding
on saliency map.

The methods described do not require any kind of offline pre-
processing to use, however they are also weak at detecting salient
image regions while maintaining a low false alarm rate for higher-
level features of interest. Learning a model of saliency offline is
a more promising method for detecting salient image regions.

2.4 Learning based features

In order to detect salient regions of an image, a model of saliency
can be learned for comparison against new images from train-
ing data. The Support Vector Machine (SVM) is a method of

supervised machine learning based on the theory of statistical
learning (Cortes and Vapnik, 1995). The theory behind the SVM
guarantees that any N dimensional feature space is linearly sep-
arable in N + M dimensions (where M is not excluded from
being possibly infinite). The SVM finds a separating hyperplane
(in N + M dimensional space) between two classes of training
data (the positive and the negative examples). The placement of
this hyperplane is such that the distances between the hyperplane
and the closest training instances (the support vectors) on either
side of the plane are maximised. Since noise in the training data
cannot be avoided, the SVM is extended to incorporate a “soft-
margin” around the hyperplane to allow training instance outliers
to sit on the wrong side of the hyperplane. The complete learning
algorithm seeks to maximise the distance of the support vectors to
the hyperplane, while minimising the distances from the separat-
ing hyperplane of training instances found to be on the wrong
side of the separating hyperplane. Finally, since training data
isn’t always linearly separable in the provided N dimensional
feature space, a kernel function can be used to place the data
into a higher dimensionality feature space to increase the like-
lihood that a separating hyperplane with a good fit to the data can
be found. The kernel function may be a high degree polynomial
(or worse) on the training data, but this does not incur any extra
processing overhead since the training data only ever appears as
a dot product of vectors inside the kernel function. SVMs have
demonstrated excellent performance in a number of similar stud-
ies (Felzenszwalb et al., 2010), (Dalal and Triggs, 2005), (Lin et
al., 2011) concerning object detection.

Bounding boxes are positioned around examples of the objects to
be identified in a set of training images (see figure 4). Features
for these bounded regions are calculated and then concatenated
as N -dimensional feature vectors (where N is the number of fea-
tures used) to generate a set of positive training examples. The
same number of negative feature vectors are randomly generated
(from image regions that do not contain the objects of interest).
The positive and negative examples are passed to an SVM for
training and five-fold cross-validation is performed, varying the
parameters to the kernel functions of the SVM to identify an op-
timal model without overfitting to the training data (linear and
radial basis functions are evaluated for their performance dur-
ing cross-validation). The generated model represents a weight
vector which is multiplied (as the scalar product) with a feature
vector calculated from a new (previously unseen) image region to
determine whether the image region is salient or not. The feature
measurements explored in our approach consist of: Histogram of
Orientations (over whole image sub-regions), edge density, Har-
ris keypoint density, FAST keypoint density, mean depth of the
range image (in the image sub-region), standard deviation of the
intensity histogram, skew of the intensity histogram, energy of
the intensity histogram, and entropy of the intensity histogram.

Figure 4: Training images displaying positive training instances
(yellow) and negative instances (red).

Initial results are promising with a 85% correct identification rate
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and a 20% false alarm rate using HOG features. Future work
will explore different combinations of feature, SVM parameters
and kernel functions to maximise the correct detection rate while
minimising false alarms.

2.5 Range image based features

Each pixel of the high resolution intensity images has co-registered
with it a range value. This allows a range map of the intensity im-
age to be calculated which is used as an additional feature in the
learning process described in section 2.4. The range map is also
used to segment the intensity image as it is expected that objects
of interest (e.g. street furniture) are located within a certain dis-
tance from the camera (the position of the camera is known a
priori). The range map is thresholded to create a mask which is
combined with the saliency response map created by any of the
other methods to further reduce the area of the image to be passed
to the next stage of processing. Figure 5 displays how the range
map is combined with an edge-based saliency map to produce a
final segmentation of the image.

(a) Range map (b) Mask applied to original image

Figure 5: Range based segmentation using simple thresholding
on range map.

3 OBJECT DETECTION

The aim of an object detection system is to identify the cate-
gory/class and location in an image of one or more objects of
interest. The solution requires that the system internally repre-
sents models of the categories of object to be identified so that it
can compare these models to locations in previously unseen im-
ages in order to identify when and if an instance of that model
(an object) is present. Ideally one model should enable recogni-
tion of all such objects in a category, and be robust to the great
variation of objects possible within a given category, as well as
the great variation in how these objects may appear in an im-
age (different viewpoints, different scales, varying lighting con-
ditions). This means that the system must minimise the false neg-
ative detection rate. In addition, each model must be distinctive
enough to preclude the possibility of confusing an instance of one
model/class for another (or the null class representing no object).
This is equivalent to minimising the false positive detection rate.

The presence of range data with mobile mapping data should the-
oretically allow for more accurate object identification because
of the extra information available. In this paper, range informa-
tion has been used to help segment the image into regions more
likely to contain high-level features of interest. This range infor-
mation can be further used to calculate geometric properties of
the images and their content.

3.1 Object geometry

The identification of object edges, lines and corners can be used
to infer the presence of straight lines or other geometric shapes

in the image using feature extractors such as the Hough trans-
form (Duda and Hart, 1972). If found together in non-random
configurations, line features may be combined to form perceptual
groups (Lowe, 1985). Once an object has been detected, such
perceptual groups become doubly useful for the problem of ob-
ject pose estimation. Figure 6 shows extraction of line informa-
tion from a 3-D Earthmine image. These lines are first detected
in the 2-D intensity image using a probabilistic version of the
Hough transform to find line segments. Each point along a de-
tected line is then queried against the co-registered range data.
A line found in the 2-D image is rejected if the range along its
length does not scale linearly. To allow for noise in the range
information, a parameter specifies the degree of allowed range
variation along the length of the line. The range points are fit
to the 2-D lines using standard linear regression and end-points
for the lines determined. It is possible to discriminate between
edge type lines and intensity based lines by querying the linearity
(in range) of short lines orthogonal to and crossing the detected
line. Though providing quite a coarse estimation of scene geom-

(a) Hough lines in original intensity
image

(b) Line segments projected into
space via linear regression in range

Figure 6: Line segments detected via Hough transform projected
into 3-D space using linear regression in range.

etry, these lines can later be used when comparing the geometric
model of a learned class with detected objects to better approxi-
mate their locations in space.

3.2 Modelling Schema

Many objects (such as people or animals) are highly articulated
and any model of their appearance or geometry must be able to
cater for the wide range of pose variation intrinsic to these types
of object. Non-natural objects often have fewer individually mov-
able components and there is far less variation in how adjacent
parts of the same object appear in relation to one another.

Methods based on pictorial structures (Felzenszwalb and Hutten-
locher, 2005) and deformable parts-based models (Felzenszwalb
et al., 2010) have demonstrated success in their ability to detect
objects even when viewed from an unusual viewpoint, or when
their parts are obscured due to occlusion with other scene ele-
ments or their location at the edge of an image. A model is a
hierarchy of parts where a single part is the child of a root part
having features computed at half the resolution of the parts. The
placement of each of the parts in the model is conditionally in-
dependent of its sibling parts given its root. Figure 7 shows an
example of a deformable parts model for the side and front view
of a car using HOG features.

3.3 Detection Method

Modelling of independent object parts using HOG features has
been used in this paper to detect cars in intensity images using a
variant of the approach described by Felzenszwalb et al, (2010).
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Figure 7: Example of deformable parts model using HOG fea-
tures (Felzenszwalb et al., 2010)

The intensity image for testing is first scaled into an image pyra-
mid of several different resolutions of HOG feature maps. At
each scale of the feature pyramid, the root filter for a model of the
object of interest is cross correlated with the feature map. This
results in the generation of a response map for the root filter. This
is repeated for each of the child parts using the feature map in the
pyramid calculated at twice the resolution of the root filter. The
detection process is performed independently for each part and
the response maps for each part are transformed according to the
best detection(s) of the root. Groupings of the detected parts that
match learned anchor part positions in the car model are favoured
over part configurations more distant from the learned anchors
using a deformation cost function (the parameters of which are
learned based on the observed variability of the parts in the train-
ing data). This produces an overall response map for complete
root and part detections. The largest responses are thresholded
and a bounding box calculated as the convex hull of a car’s indi-
vidual part detections. Finally, the scale of the bounding boxes
for each detected object are rescaled and translated to match the
original image dimensions. This places the part and root bound-
ing boxes in the correct locations for the original image.

3.4 Results

Figure 8 shows results of detections of cars in the Earthmine in-
tensity images. Thresholds were chosen manually in these results
to determine the few best detections. The bounding box algo-
rithm as used simply computes the convex hull of the object’s
parts. Better methods that consider the amount of deformation of
a part as a factor to scale the position of the bounding box should
result in more accurate object localisations.

4 CONCLUSIONS AND FUTURE WORK

This study has addressed two different stages in the feature de-
tection process. In the initial stages when the relative proportion
of data is high, accuracy is traded for speed in a coarse grained
task driven approach to saliency detection and image segmenta-
tion. In the second stage, when the relative proportion of the
data is lower, speed is traded for the more detailed processing
required for the detection of particular objects. The proposed
saliency detection method uses simple feature detectors working
over the whole image in a sliding window approach to identify
image sub-regions that are more likely to contain high-level fea-
tures of interest. The output from the first stage is a response map
which can be thresholded to identify image sub-region candidates
for the second stage of processing that uses more complex feature
vectors incorporating HOG style features derived from both the
intensity and range imagery. The second stage detection process
cross correlates these feature vectors with the image sub-region
candidates provided from the first stage to identify promising ob-
ject locations. A final stage (not discussed in this paper) will
detect the pose of the detected objects by comparing the parts of
the object with detected geometric features in the 3-D image.

Figure 8: Sample car detections in the Earthmine intensity im-
ages. Blue boxes denote individual part detections, while yellow
boxes denote detection of whole object instances. Note the erro-
neous double detection of the car on the left of the image in the
bottom right example.

4.1 Future Work

One of the biggest factors determining speed of detection is the
requirement to evaluate all possible scales of an object in the in-
tensity image. The addition of range information removes this
need and the object’s size can be learned along with model pa-
rameters.

Prior knowledge of how the data were collected and frequency
and occurrence of low-level features extracted from the images
in an offline processing step can be incorporated within a proba-
bilistic framework to help guide the search for higher level (more
complex) objects of interest. This can be considered a context
dependent extension of our existing approach to detecting object
saliency.

Finally, in future work, the effectiveness of the extended saliency
and high-level feature detection methods will be tested against a
larger set of 3-D images in order to assess the broader viability of
the methods for object detection.
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