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ABSTRACT:

Since remote sensing provides new sensors and techniques to accumulate stereo data on urban regions, three-dimensional (3D) repre-
sentation of these regions gained much interest for various applications. 3D urban region representation can e.g. be used for detailed
urban monitoring, change and damage detection purposes. In order to obtain 3D representation, one of the easiest and cheapest way is
to use Digital Surface Models (DSMs) which are generated from very high resolution stereo satellite images using stereovision tech-
niques. Unfortunately after applying the DSM generation process, we cannot directly obtain a full 3D urban region representation. In
the DSM which is generated using only one stereo image pair, generally noise, matching errors, and uncertainties on building wall loca-
tions are very high. These undesirable effects prevents a DSM to provide a realistic 3D city representation. Therefore, some automatic
techniques should be applied to obtain real 3D city models using DSMs as input. In order to bring a solution to the existing problems
in this field, herein we propose a fully automated approach based on the usage of a novel 3D active shape model. Our experimental
results on DSMs of Munich city which are obtained from different satellite (Cartosat-1, Ikonos, WorldView-2) and airborne sensors
(3K camera, HRSC, and LIDAR) indicate possible usage of the algorithm to obtain 3D city representation results automatically.

1 INTRODUCTION of rectangular buildings which depends on growing a rectangular

active shape. Unfortunately, they could not detect other build-

As satellite and airborne sensor technology provides higher imag- ing shapes with their approach. With the upcoming availabil-
ing qualities, especially 3D representation of cities gained much ity of DSMs from optical stereo images and from light detec-
interest for various applications. For obtaining 3D representa- tion and ranging measurements (LIDAR), many researchers be-
tion, Digital Surface Models (DSMs) can be generated from opti- gan to pay attention to building detection from these data. Wurm
cal stereo satellite or aerial images using stereovision techniques, et al. (Wurm et al., 2011), extracted 3D block models using an
or they can also be obtained by using LIDAR sensor technol- object-oriented approach based on data fusion from LIDAR and
ogy. As a challenge, for satellite data, in most of the cases, just VHR optical imageries. Rottensteiner et al. (Rottensteiner et
one stereo image pair is available for DSM generation. Unfortu- al., 2007) applied the DempsterShafer fusion of airborne laser

nately, after applying an automatic DSM generation process, due scanner (ALS) point clouds and multispectral images for build-
to the occlusion effects and stereo matching errors these DSMs do ing detection. Haala et al. (Haala and Brenner, 1999) proposed
not correctly represent 3D city models with steep building walls a method to reconstruct building rooftops using surface normals
and detailed rooftop representations. This is a major problem es- extracted from LIDAR DSM data. They assumed that building
pecially for DSMs which are generated over city centers, since boundaries are detected previously. In a following study (Haala

many regions are occluded by dense and complex building struc- et al., 1998), they detected building boundaries automatically by
tures. Although these occluded regions can be filled by interpola- classifying a DSM and corresponding color image before ap-
tion, these techniques lead to a decrease in sharpness of building plying their automatic rooftop reconstruction method. Brenner
walls. Besides, deficiencies in the stereo matching process may et al. (Brenner et al., 2001) discussed rooftop type derivation
cause noise within DSMs, e.g. due to shadow areas. Therefore, methods using given groundfloor shapes. They also projected
automatically obtaining 3D city models from DSMs is still an two-dimensional terrestrial building facade images to generated
open and challenging problem for researchers. models and obtain realistic 3D city representations. Brunn and

Weidner (Brunn and Weidner, 1997) used surface normals on a
DSM to discriminate buildings and vegetation. After detecting
buildings, they measured the geometry of rooftops using surface
normals and they interpolated polyhedral building descriptions to
these structures. Fradkin et al. (Fradkin et al., 1999) proposed
a segmentation based method to reconstruct 3D models of dense
urban areas. To this end, they used very high resolution color
aerial images and disparity maps. Canu et al. (Canu et al., 1996)
used a high resolution DSM, which is obtained by stereo match-
ing techniques, in order to reconstruct 3D buildings. First, they
segmented the DSM into homogeneous regions. Then, they in-
terpolated flat surfaces on these regions. Ortner et al. (Ortner
et al., 2002) used a point process (Jacobsen, 2005) to model ur-
ban areas. They represented urban areas as interacting particles

In the previous work there is a wide variety of studies on building
detection and shape extraction from two-dimensional single satel-
lite or aerial images. The earliest studies in this field generally
depend on edge and line extraction (Krishnamachari and Chel-
lappa, 1996, Irvin and McKeown, 1989, Davis, 1982). Unfortu-
nately, these methods generally fail to detect individual buildings
which have highly textured rooftops or which appear in com-
plex environments. In order to cope with this problem, Saeedi
and Zwick (Saeedi and Zwick, 2008) combined edge informa-
tion with graph based segmentation results of the region. Many
researchers developed more advanced methods to extract shapes
of the detected buildings (Karantzalos and Paragios, 2009, Cui et
al., 2008, Benedek et al., 2009). Sirmacek and Unsalan (Sirma-
cek and Unsalan, 2010) developed a fast method to detect shapes
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where each particle stands for an urban object. Preknowledge
about building shapes is used to model these particles. Arefi et
al. (Arefi et al., 2008) extracted above-ground objects from LI-
DAR data. Then, 3D buildings are reconstructed by hierarchical
fitting of minimum boundary rectangles (MBR) and a RANSAC
based straight line fitting algorithm. Kada and McKinley (Kada
and McKindley, 2009) introduced an approach for the automatic
reconstruction of 3D building models. Again they used existing
building groundfloor plans and LIDAR DSMs. Using building
footprints they decomposed the building shape into sets of non-
intersecting cells, and for each cell the rooftop is reconstructed
by checking the normal directions of the DSM. Tournaire et al.
(Tournaire et al., 2010), developed a stochastic geometry based
on an algorithm to detect building footprints from DSM data
which have less than 1m resolution. They tried to fit rectangles
on the buildings using an energy function and prior knowledge
about buildings. To minimize the energy function, they used a
Reversible Jump Monte Carlo Markov Chain (RIMCMC) sam-
pler coupled with a simulated annealing algorithm which leads
to an optimal configuration of objects. Maas (Maas, 1999) used
maximum slope values in order to determine best fitting rooftype
shapes to generate 3D building models. Valero et al. (Valero et
al., 2008) developed a feature extraction and classification based
method to classify building roofs into two classes as flat-roof
and gable-roof. They estimated ridge-line positions which are
based on skeletons of groundfloor plans. They provided the dif-
ference between the average roof outline height and the average
ridge-line height as first feature, and the norm of the orthorecti-
fied image gradient as second feature for the support vector ma-
chine (SVM) classifier. In all introduced studies, good results
are achieved generally using very high resolution (better than 1
m spatial resolution) DSMs which are generally generated from
airborne images or LASER scan data. However, enhancement of
buildings in low resolution urban DSM data which are generated
from satellite images is still an open research problem. On the
other hand, generally previous approaches require manual extrac-
tion of building outlines or providing groundfloor maps as input.
In order to bring an automated solution to this problem, in previ-
ous work we have proposed a novel technique for obtaining 3D
city representations by applying a building shape and rooftop-
type detection approach to DSMs (Sirmacek et al., 2012). We
started by applying local thresholding to raw DSMs in order to
extract high urban objects which can indicate building locations.
We have extracted building shapes from regions which are ob-
tained from a thresholding result by using a binary active shape
growing algorithm. This methodology depends on growing rect-
angular shapes in elongated segments which are detected in bi-
nary masks obtained by thresholding the DSM. After extracting
the building shapes, we generated 3D models by understanding
the building rooftop-types. Herein, we follow a similar approach
to reconstruct 3D city models, however for active shape growing
we propose a novel approach which uses 3D information in calcu-
lating shape fitting criteria. Using this new method, we increase
the robustness of complex building shape extraction which in turn
increases robustness of 3D reconstruction. Besides introducing a
new methodology, our experiments also provide and insight on
applicabilities of DSMs obtained from different sensors.

2 DETECTING POSSIBLE BUILDING SEGMENTS
FROM DSMS

In this step, we would like to detect approximate building loca-
tions from the DSM before extracting building shapes. If a digital
terrain model (DTM) of the region is available, we could use it
to calculate a normalized digital elevation model (nDEM). In a
nDEM, ground height is referenced to zero, therefore it only pro-
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vides information about building heights independent from the
height of the terrain. If a nDEM could be calculated, we could
simply threshold it with a constant value in order to obtain high
objects which can represent buildings or trees. In our study, we
segment high objects directly from the DSMs by applying a lo-
cal thresholding. Therefore, the algorithm can be also used for
regions which do not have corresponding DTM data. In local
thresholding, a 100 x 100 pixel size sliding window is used over
the DSM, and a new threshold value is calculated for each region
under the sliding window. This window size is chosen by con-
sidering approximate building sizes in given DSMs of the study
region. However, the thresholding result does not differ signifi-
cantly with slight changes of window size or with slight changes
of input image resolution. Therefore, we can use the same win-
dow size for our input DSMs with different geometric resolutions.

After applying local thresholding to the DSM (D(z,y)), we ob-
tain a binary image (Bp(x,y)) where high objects are labeled
with value 1. We apply labeling to Bp(x,y) to obtain its con-
nected components (Sonka et al., 1999). Here each connected
component represents a building segment. If the size of a con-
nected component is less than R pixels we discard it since these
small regions generally correspond to tree clusters. Considering
geometric resolutions of input DSMs, we assume the R value as
100, since building objects cannot be smaller than this pixel size
in our input DSMs. However, this value should be fixed by con-
sidering minimum sizes of the buildings in study regions before
starting to run the algorithm on DSMs. In Fig. 1(a) and (b), we
represent a subpart of the D(z, y) and obtained Bp (x, y) thresh-
olding result respectively. Unfortunately, due to the low resolu-
tions or surrounding trees around the building, thresholding result
does not directly represent the building shape. However, it gives
an idea about the approximate shape of the building.

(2)

(b) (d)

Figure 1: (a) A sub-part of the original Worldview2 satellite
DSM (D(z,y)), (b) After applying local thresholding (sub-part
of Bp(z,y)), (c) Skeleton of the building in the same sub-part of
Bp(z,y), (d) Detected building shape.

In the next step, we use the detected approximate segments to
understand building complexity and to run our 3D active shape
growing method.

3 EXTRACTING BUILDING SHAPES

In a previous study, Sirmacek and Unsalan (Sirmacek and Un-
salan, 2010) proposed an automatic rectangular binary active shape
growing approach (called box-fitting). First they used color in-
variant features to extract possible building rooftop segments.
Mass centers of the rectangular segments are assumed as seed-
points (as approximate building centers). Seed-point locations
are used to grow a virtual active rectangular shape based on an
energy criteria. In previous studies (Sirmacek et al., 2010) and
(Sirmacek et al., 2012), we have used this binary active shape
growing approach to detect complex building shapes from a bi-
nary Bp(z,y) approximate building segment mask. First, we
started by deciding if the building segment is complex or not. If
there are inner yards (holes) inside of the segments, we assumed
them as complex shape. We make this decision by computing
an Euler number on binary building segment (Horn, 1986). If a
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building segment is in a complex shape, we divided the building
segment into elongated pieces using its skeleton. To do so, we de-
tected junctions and endpoints of the building segment skeleton.
We divided the skeleton into pieces by removing these junction
pixels from the skeleton. For each obtained skeleton piece, we
divided it again into [ pixel length pieces if it is longer than [ pix-
els. We assume center pixels of obtained skeleton pieces as our
seed-point locations to run the box-fitting algorithm. Herein, sim-
ilarly to our previous applications, we assume [ value as equal to
20 pixels. In our previous study (Sirmacek et al., 2012), we pro-
vided effects of choosing [ value to the shape detection result in
detail.

For detecting complex building shapes, herein we follow a similar
methodology. However instead of using the binary active shape
growing approach in each seed-point location, we propose a novel
active shape growing approach based on the usage of 3D informa-
tion. To do so, after extracting (s, ys) seed point locations as we
describe in (Sirmacek et al., 2012) in detail, we start to grow our
active rectangular shapes in each seed point location by regarding
the height information. We assume that (x;, y, ) array holds the
pixel coordinates for nth edge of the virtual rectangular shape. It-
eratively, we sweep each edge to the outwards growing direction
if the edge pixels satisfy (max(D(xy, vy, )) —min(zy, yy) < 6)
inequality (n € [1,2,3,4]). Here, § threshold is the minimum
building height that we would like to detect in the region. In
our application we assume § as equal to 3, which means that
we assume the buildings to be higher than 3 meters to be de-
tected. When the growing process stops for each edge, we cal-
culate the final energy value by using the equation that we rep-
resent in Eqn. 1. In the equation, m(.) represents the mean
value. For the same seed-point, we apply growing process for
all € [0,7/6,7/3,7/2,27/3, ..., 27| angles with 04,5 = 7/6
radian turning steps. As we discussed in detail in (Sirmacek et al.,
2012), by reducing 04;5 step sizes, we can obtain more accurate
approximations, however in this case we need more computation
time. After calculating Fy for all 6 angles, herein we pick the
estimated box which exhibits the highest Fy energy as detected
building shape. Since most buildings appear like compositions
of rectangular building segments, it makes sense to extract rect-
angular shapes on buildings. The main advantage of using the
box-fitting approach is that approximate building shapes still can
be found even if the building edges are not well-determined, or
even if there are trees adjacent to the building facades. However,
other region growing algorithms fail to extract an object shape in
these cases, since the growing region can flow out easily when
the parameters are not set precisely.

Eg = 4xm(Bp(z,y) x Di(z,y) = > m(D(«},y})) (1)

For complex buildings, after fitting a chain of boxes, discontinu-
ity between adjacent boxes should be smoothed. For this purpose,
we simply benefit from morphological operations. First, we start
with filling inside of the detected binary boxes with 1 value in
Bp(z,y) binary mask. Then, we apply morphological dilation
and erosion operations respectively to the detected boxes, using a
disk shaped structuring element with radius 1. After this opera-
tion small discontinuity between adjacent boxes can be smoothed.
Final improved building shapes are kept in a new B(z, y) binary
mask.

The detected shape for our sample building can be seen in Fig.
1.(d). Obtained building shape is used to insert sharp building
walls into our 3D model.
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3.1 Rooftop-type Classification

After detecting building groundfloor shapes, we focus on recon-
struction of rooftops. For this purpose, we benefit from our pre-
vious approach that we represent in (Sirmacek et al., 2012). We
first start with ridge-line and tower detection. Using obtained
ridge-lines we classify rooftops as flat or gable type. Obtained
information is used to insert realistic models into our 3D city rep-
resentations.

The ridge-line detection approach is based on derivative calcula-
tion over the DSM. We use the following derivative filter. For a
symmetric Gaussian function G(z,y) = exp(—(z* + y?)), itis
possible to define basis filters G o and Gp% as follows,

0 G(z,y) = —2zexp(—(2* + %)) )

Gp():%

9 Gla,y) = —2yeap(—(2* + 7))

By 3

Gp

il
2

We can find a derivative in an arbitrary 6 direction using follow-
ing filter function,

Gpo = c0s(0)Gpo + sin(0)G), 4)

it
2

We convolve our DSM with this derivative filter in 6 € [0, /12,
..., 237 /12] directions as follows,

Jo = D(z,y) * Gpo ()

If 6 angle is perpendicular to the building ridge-line orientation,
then one side of the building rooftop gives positive response, and
the other side of the building rooftop gives negative response to
the filter. Assuming B (x,y) is the jth connected component
in B(x,y) binary building segment matrix, we assume that two
sides of the building rooftop (RP, and RN;) can be extracted as
follows,

RP] = B’ (z,y) x (Jo > 0) (©6)

RN} = B’ (z,y) x (Jo <0) )

Since we have no pre-information about building orientations,
we should do the derivative filtering in all possible orientations.
Therefore, we calculate >, RL} for 6 € [0,7/12,...,237/12]
directions. Building ridge-lines will be extracted in 6; filtering
angle which is almost perpendicular to the ridge-line orientation.
However the ridge-line will be also detected in 6; — /12 and
6; + /12 neighbor filtering directions. Therefore, the ridge-line
will have a value of higher than 2 in the ), RL} result. As a
result, the ridge-line of jth building rooftop can be obtained by
calculating R’ (z,y) = >, RL} > 2 and eliminating connected
components which are less than 10 pixels in order to eliminate
redundant information coming from small objects on rooftop.

Towers around buildings are very important attributes to be con-
sidered in 3D model generation. Therefore, beside ridge-line de-
tection and rooftop classification, tower detection from the input
DSM is needed. To this end, in our study we detect maximum
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values of the DSM (mx) for each building segment. For jth
building which is held as jth connected component in B(z,y)
binary building mask, the maximum height value is calculated
as; mx = maz(B?(x,y) x D(x,y)). Then, we threshold the
DSM at building region using the following equation; t/ (x, y) =
(B?(x,y) x D(z,y)) > 0.8mx. Here, we obtained our thresh-
old value by extensive tests. Finally, we apply size thresholding
to t?(z,y) binary mask. In order to make the size thresholding
process independent from the geometric resolutions of the input
DSM, we compare the obtained region in (x,y) with the to-
tal sizes of the jth building segment. If the size of the region
in ¢/ (z,y) is smaller than 1/10 size of B (z,y) segment, then
t? (x, y) is assumed as a binary mask which holds a tower region
inside. Otherwise, all pixel values in ¢’ (x, /) matrix are changed
with zero values. After applying the same methodology to all
building segments in B(zx, y), union of all ¢/ (x, y) matrices give
us a binary mask which holds the tower regions. Binary tower
matrix (T'(z, y)) is obtained by calculating T'(z, y) = |Jt* (x, y)
for all j values.

Next, we use detected ridge-lines for roof-type classification and
3D rooftop model reconstruction purposes. We benefit from de-
tected roof ridge-lines to classify rooftops as ’flat roof” or ’gable

roof”’ type.

If there is no ridge-line detection result on a building segment,
we assume that building as flat roof. If there is a ridge-line on
the jth building segment, then we calculate mean of DSM height
values on ridge-line location by calculating 3, Ri(2,y) x

D(z,y)/M, where M is the total number of ridge-line pixels in
RI(z,y) binary matrix. We also calculate mean of DSM height
values on building border by calculating 3~ , BI(x,y) xD(zx,
y) /N, where N holds the total number of building border pixels
in B’(x,y) binary matrix. If the difference between these two
mean values is lower than 2 meters, then we assume the rooftop
as a flat rooftop. Otherwise, it is assumed as gable rooftop. This
2 meters criteria is obtained by observing gable rooftop charac-
teristics over test area.

3.2 Generating 3D City Models

In raw DSM data, both building walls and rooftops need to be
improved, since generally building walls make a soft transition
from rooftop to the ground and the rooftop contains noise. In
addition to that, raw DSM may include spurious values coming
from stereo image matching errors in the DSM generation pro-
cess. Therefore, in order to obtain better 3D representation, we
should sharpen building walls and towers, and we should also
enhance the rooftop view.

First, we start with generating a zero matrix D2 (x,y) with the
same size with D(z, y) matrix. New height values belonging to
objects in the city will be stored in Dz (z,y) matrix. In order
to eliminate noise in non-built regions, we apply median filter-
ing to the original DSM (D(z,y)) by using a 3 x 3 pixel size
window, and we obtain smoothed DSM (Dy(z,y)). For non-
built areas, or in other saying for (z, y) coordinates which satisfy
B(z,y) = 0, we apply D2(z,y) = Dy(z,y). That means;
we assign smoothed ground height values for non-built regions.
As building wall, we insert a single height value to each build-
ing boundary which is stored in B(x,y) binary building shape
matrix. For each building, the building height value is assigned
by calculating the mean of D(z,y) values on building boundary
pixels. After smoothing the noise on the ground and inserting
sharp building walls, finally rooftop height values are assigned to
D5 (z, y) matrix. Rooftop height assignment is done by consider-
ing the roof-type. If the roof is classified as a flat roof, then only
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one single height value is assigned to all building areas which
is equal to building wall heights. If the rooftop is classified as
a gable-roof, we follow different approaches depending on the
building complexity. If the building is not detected as a complex
building as structure type (if the Euler number is equal to 1), then
we can find polygons which define the rooftop in 3D space. To
this end, we detect corners of the building segment using Har-
ris corner detection algorithm (Harris and Stephens, 1988) over
panchromatic image of the test region. Besides, we also detect
endpoints of the building ridge-line. We pick each building cor-
ner one by one. Then, we find the closest ridge-line endpoint.
A line between building corner and the closest ridge-line end-
point can divide the rooftop into polygons. A detailed demon-
stration of this approach is illustrated in (Sirmacek et al., 2012).
Height values of rooftop polygons are assigned to corresponding
pixels in D2 (x,y) matrix. If the building is detected as a com-
plex structure or if the building ridge-line could not be extracted
properly, unfortunately we cannot use the same idea for building
rooftop reconstruction and more advanced rooftop reconstruction
approaches are needed. Herein we leave the building rooftop re-
construction at this level. For complex building rooftops and for
rooftops for which we cannot extract the ridge-line properly, we
only insert corresponding pixel values from D (x,y) matrix. Fi-
nally, for tower regions which are stored in 7'(x, y) binary matrix
we insert the original DSM values (not filtered DSM values) to
D3 (x,y) matrix from D(z,y).

4 EXPERIMENTS
4.1 Data Sets

The investigated data set consists of six DSMs which are ob-
tained from different sensors covering each parts of the city of
Munich, Germany. Three of them are obtained from the satel-
lite sensors Cartosat-1, Ikonos, WorldView-2 and will show the
potential of stereo satellite data to derive and enhance building
models depending on their spatial resolution. All satellite data are
along-track stereo data, since taking data from different dates is
not appropriate due to radiometric changes and different shadow
properties, which reduce the image matching density and quality
significantly. The Cartosat-1 sensor on-board the Indian satel-
lite IRS-P5 collects panchromatic data with two pushbroom cam-
eras having a ground sampling distance (GSD) of approximately
2.5 m and a stereo angle of 31°. They are delivered with RPC
values in a level called Ortho Ready, which is equivalent to Level
1A. RPCs have to be refined by ground control using an affine
correction. The data set used has been acquired in May 2008.
The whole area covered is about 30 km x 30 km, equivalent to
one scene.

The Ikonos data used in this paper exhibit a GSD of 1 m and
a stereo angle of approximately 10°, which is quite suitable for
DSM generation in city areas (Reinartz et al., 2010). The data
cover an area of approximately 10 km x 10 km and have been
acquired in July 2005; the processing level is “radiometric cor-
rected”, so also equivalent to Level 1A.

The WorldView-2 data used have a GSD of 0.5 m and are com-
prised of 2 stereo pairs acquired on the same day and orbit with an
overlap in the test area, leading to 4 different viewing directions
with stereo angles between 12° and 24°. These data have been
acquired in July 2010 with the processing level “Level 2 Ortho
Ready”, which is equivalent to a projection on a plain for each
single image. The overlapping for all 4 images is about 2 km X
10 km in size. The DSMs for all three sensor data, generated by
the above mentioned dense matching procedure (d’Angelo and
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Reinartz, 2011), have the same sampling distance as the image
data and cover all parts of the city center of Munich.

Two of the DSMs are obtained from airborne cameras, namely
the High Resolution Stereo Camera (HRSC) and the 3K-camera
system, both operated by DLR. The HRSC-AX (High Resolu-
tion Stereo Camera Airborne Extended) is a pushbroom camera
and is especially designed to acquire stereo aerial photographs
from 5 viewing directions. The image data exhibit a GSD of 1 m
while the DSM, generated as described in (Hirschmueller et al.,
Springer, DAGM 2005, Wien, Austria).

The DLR 3K-camera system consists of three off the shelf digital
frame cameras (Canon EOS 1Ds Mark, 16 MPixel) mounted on
a platform, of which one is pointed nadir, the second pointed to
the left and the third is pointed to the right according to the flight
direction (Kurz et al., 2008). The data used are acquired from
a flight altitude of approximately 1500 m, leading to a GSD of
25 ¢m The DSM has a GSD of 50 ¢m and is derived using images
with 80% overlap leading to 4 viewing directions per object. The
airborne stereo data also cover parts of the Munich city center.
Therefore for further investigations an area is used where DSM
data from all sensors are available.

The sixth DSM, which is mainly used as a reference was ac-
quired by an Airborne Laser Scanning (ALS) system and pro-
vided through the Bavarian Surveying Authorities, the 3D point
cloud with a density of 2 points per square meter has been inter-
polated to a regular sampling distance grid of 1 m spacing.

4.2 Evaluation of Performances

In this section, we discuss the automatic 3D modelling perfor-
mance of the proposed system on six different DSMs of a test
building. In order to be able to calculate quantitative values for
shape detection performance analysis, we use a binary building
shape mask which includes groundfloor shapes of the buildings.
This mask has been prepared by Munich municipality by using
cadastral data. We apply pixel based performance analysis by
counting the number of correctly detected building groundfloor
pixels (True Positives - TP), and the number of false detected
building groundfloor pixels (False Alarm - FA). By dividing the
obtained numbers to the total number of building groundfloor pix-
els appearing in the groundtruth mask, in Table 1 we present TP
and FA numbers as percentages. As can be seen in this table, the
highest detection performance is obtained for the 3K, HRSC and
LIDAR sensor DSMs, as expected since these are all derived from
airborne data. But it has to be noted that also the WV2 DSM pro-
vides quite good results, with a quite low FA rate. On the other
hand, the lowest detection performance is obtained on Cartosat1
sensor DSM since the low resolution of this sensor does not al-
low seeing neighbored building segments separately. The highest
false alarm rate is obtained again on the Cartosatl sensor DSM
for the same reason. The lowest false alarm rate is obtained with
LIDAR sensor DSM because of its high spatial resolution and
since this DSM does not include trees which generally appear
connected to the building facades.

In order to provide an insight on height estimation performances,
we visualize a demonstration in Fig. 2. In Fig. 2.(a), we repre-
sent a profile of the sample building where we take height values.
In 2.(b), the red dashed profile represents original WV2 DSM
values, black dashed profile represents the LIDAR DSM values,
while the blue continuous line represents automatically obtained
reconstruction values by using WV2 DSM.

Finally, we compare the automatic reconstruction method that we
propose herein with our previous reconstruction method which
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is based on active shape growing using building edge informa-
tion (Sirmacek et al., 2012). On the same building sample of
WV2 DSM, our previous approach gives performance values as
TP = % 65.02 and FA = % 34.97. Unfortunately, the previous ap-
proach cannot obtain successful detection results when the build-
ing edges cannot be detected correctly because of the noisy DSM
or because of the objects on the building rooftops.

DSM Sensor || TP (%) | FA (%)
Cartosat1 14.34 98.56
Tkonos 78.96 22.00
WorldView-2 89.83 10.16
3K 94.01 6.62
HRSC 95.09 14.81
LIDAR 95.02 0.81

Table 1: Pixel Based Building Groundfloor Detection Perfor-
mances for Six Different DSMs

(a)

Figure 2: (a) The slice of the sample building where the hight
values are taken. (b) Red dashed profile represents original WV2
DSM values, black dashed profile represents the LIDAR DSM
values, blue continues line represents automatically obtained re-
construction values by using WV2 DSM.

5 CONCLUSIONS

Developing remote sensing technology and methods offer new
and low-cost approaches such as DSM generation based on stereo
satellite image matching principle. Herein, we introduced a novel
method for automatic 3D detailed city modeling based on build-
ing shape, tower, and rooftop ridge-line extraction. Using the pro-
posed approach we could generate 3D city models with high de-
tails even by using satellite images. Especially for regions which
cannot be covered by airborne measurements, or for fast map up-
dating or damage assessment purposes these data are well suited.
Besides proposing a novel and robust approach for 3D city mod-
eling, we provided a detailed assessment of the algorithm perfor-
mance for different sensor data. For this purpose, we used DSMs
which are obtained from different satellite (Cartosat-1, Ikonos,
WorldView-2) and airborne sensors (3K camera, HRSC, and LI-
DAR). Beyond the development of the fine detailed 3D city mod-
els, we believe that the provided performance analysis over differ-
ent sensor DSMs presents an important information about the ca-
pabilities of the different sensors and their remotely sensed stereo
data.
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