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ABSTRACT: 

 

RANSAC algorithm is a robust method for model estimation. It is widely used in the extraction of geometry primitives and 3D 

model reconstruction. However, there has been relatively little comprehensive evaluation in RANSAC-based approach for plane 

extraction. In order to provide a reference for improving the quality on RANSAC-based approach for roof facets extraction or 

segmentation, this paper focuses on the quality analysis on classical RANSAC algorithm. Airborne LIDAR data from the test Area 1 

and Area 2 in Vaihingen (German) is used. 33 buildings (4 buildings with flat roofs and 29 buildings with slope roofs) extracted 

from LIDAR data are taken as input for planes extraction. Based on the characteristics of detected planar surfaces, planes can fall 

into several categories: non-segmented planes, over-segmented planes, under-segmented planes and spurious planes. Then, several 

causes for these quality problems are discussed. Some experimental results and analyses show that, considering spatial-domain 

connectivity, most of the quality problems of classical RANSAC algorithm can be improved. However, there are still many issues 

requiring in-depth research. Finally, some methods are suggested to solve these problems. 
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1. INTRODUCTION 

As a direct method for collecting dense accurate 3D point 

clouds, Light Detection and Ranging (LIDAR) has become an 

important technology in topographic mapping and 3D city 

modelling. 3D building reconstruction is a strong focus of 3D 

city modelling, and much progress has been reported 

(Vosselman, 1999, Verma, 2006, Sampath, 2010). Among the 

reported studies, building reconstruction is usually based on the 

assumption that a building is a polyhedral model, which 

consists of plane primitives. Consequently, the procedure of 

building roof reconstruction can be decomposed into two main 

steps: 3D roof facets extraction and topology construction. To 

some extends, the quality of 3D building models mainly 

depends on the accuracy of 3D roof facets detection from 

building (Elberink, 2011). 

 

Generally, 3D roof facets extraction from LIDAR data involves 

several basic methods and techniques such as segmentation, 

classification and clustering (Sampath, 2010). Local surface 

normal, calculated from the neighbourhood 3D points, is taken 

as the most important feature for detecting planes from building 

roof. However, surface normal is sensitive to noise. In addition 

to uncertainty in the measure, LIDAR data will inevitably 

contains returns from parts of trees, antenna or electric wires 

over building roofs. Moreover, the approach for neighbourhood 

selection from unstructured LIDAR point clouds will also affect 

the calculation accuracy of surface normal. 

 

Another popular method for extracting roof facets from point 

clouds is the Random Sample Consensus (RANSAC) (Forlani, 

2006, Bretar, 2005, Kurdi, 2007) algorithm and 3D Hough 

Transformation (Vosselman, 2001, Huang, 2011). Both of them 

are robust methods for estimation of the model parameters. 

Hough Transformation and its extensions can only be used to 

detect several 3D objects such as lines, planes, cylinders etc, 

while RANSAC approach is more all-purpose in the detection 

of geometry primitives. In addition, Hough Transformation is 

sensitive to segmentation parameters. However, both of them 

can lead to false or surplus planes when used in the extraction 

of roof facets from LIDAR data (Vosselman, 2001, Tarsha-

Kurdi, 2007).  

 

In terms of roof facets extracted by RANSAC, there have been 

many qualitative descriptions in literatures but seldom of them 

provide a comprehensive evaluation in quality. In order to 

provide a reference for improvement, we focus on the quality 

analysis. Building roofs extracted from Airborne Laser scanner 

Data in Vaihingen test areas (Cramer, 2010) are used, and some 

experiments and quality problems are discussed.  

 

This paper is organized as follows. In Section 2, we introduce 

the classical RANSAC algorithm for plane extraction and give 

an overview of related work in roof facets extraction. In Section 

3, we introduce the test data and some experiments in classical 

RANSAC for plane extraction, then the experimental results are 

analysed. In Section 4, we draw a conclusion from this work. 

And some future work is discussed. 

 

2. RANSAC AND RELATED WORK 

The RANSAC (Random Sample Consensus) algorithm 

proposed by Fischler and Robert (Fischler and Robert, 1981) is 

a robust method for extract models from a data set. It is often 
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used to extract geometry primitives from 3D point clouds in 

computer version. In this section, we introduce the classical 

RANSAC algorithm for plane extraction and give a short 

overview of related work in roof facets extraction.  

 

2.1 RANSAC 

RANSAC algorithm is an iterative method to estimate the 

parameters of a certain model from a set of observed data. With 

application to plane model, classical RANSAC can be described 

as follows: 

1) Randomly select 3 points from data, which will define 

a plane p.  

2) Find the distances of the remaining points from the 

plane p. The points with distance smaller than a 

critical distance t are called "inliers" and belong to 

plane p. Record the three points and the number of 

the inliers, this record is called “best_model”. 

3) Repeat process of 1) and 2) k times or until no planes 

with point number bigger than d can be found. In 

each time, if the number of inliers is greater than 

those in the best_model, replace best_model 

maintained earlier with the new one. In the end, the 

parameters of plane model are determined from the 

final  best_model.   

 

As above, it’s clearly that RANSAC can only estimate one 

plane for a particular data set. To detect all planes, RANSAC 

algorithm is repeated until no more planes can be found. In each 

time, points that belong to a plane will be excluded from the 

original data. 

 

2.2 Related work 

Generally, previous work about RANSAC for roof facets 

extraction from LIDAR can be divided into the following 

categories: approach based on position of point (x, y and z); 

approach based on surface normal. 

 

(Brenner, 2000) introduces RANSAC algorithm to detect planes 

for roof segmentation from a laser scanner DSM with a ground 

resolution of one meter. Results show that RANSAC-based 

approach generates more planar regions than the other two 

algorithms such as normal vector compatibility and contour 

based segmentations.  Then, regions are filtered based on a set 

of rules which define several relationships between the normal 

vectors of planes and ground plane edges. However, RANSAC 

algorithm is just taken as a method, and there is less discussion 

on the planar regions extracted by RANSAC. 

 

A ND-RANSAC (Normal Driven RANSAC) approach was 

proposed by Bretar and Roux (Bretar, 2005) to extract planar 

primitives from raw LIDAR data. Instead of randomly selecting 

points from all data points on roof, initial points (3 points) that 

define a plane are randomly selected from the point sets sharing 

the same orientation of normal vectors. It reduces the number of 

draws and improves the efficiency of RANSAC algorithm.  

Besides, the parameters k and t of RANSAC algorithm can be 

automatically determined by analyzing the distribution of 

normal vectors. A lot of work is done to improve the efficiency 

of RANSAC. 

 

(Forlani, 2006) introduces a method with a combination of 

RANSAC and region growing to extract roof facets from raw 

LIDAR data. A region growing algorithm based on gradient 

orientation is firstly used to determine roof planar segments, 

and points within each region are determined whether they 

belong to a single plane by RANSAC. In this paper, RANSAC 

algorithm is used as a robust method to further subdivide the 

sub-regions, while quality on the sub-regions is less discussed.  

 

RANSAC algorithm tends to detect the best mathematical plane 

among 3D building point cloud even if this plane does not 

always represent a roof plane. In order to overcome this 

limitation, an extended RANSAC algorithm is proposed 

(Tarsha-Kurdi, 2007, Tarsha-Kurdi, 2008). The process of 

RANSAC is improved by adding a limit to the minimum 

number of points and a standard deviation in the final fitted 

plane. Besides, in order to extend the capacities of RANSAC 

algorithm and obtain exact roof planes, the raw LIDAR data is 

converted into DSM. Then DSM generates a point set after a 

simple low-pass filter. This approach can reduce the errors and 

noise of point clouds. In the end, a region growing algorithm is 

used to decide whether the remaining set of points represents 

noise or roof details.  

 

As mentioned above, RANSAC algorithm is more as a process 

for plane extraction from data set. Besides, as explained in 

Section 1, the estimation of local surface normal is sensitive to 

noise. There is no clear conclusion whether the unstable 

parameters have impact on the reliability of RANSAC. What’s 

more, the problems on the planes extracted by classical 

RANSAC algorithm, which have important implications for 

improving quality on roof facets extraction, are less discussed.  

 

 

3. EXPERIMENT AND ANALYSIS 

3.1 Test data 

The test data set was captured over Vaihingen in Germany and 

belongs to part of “ISPRS Test Project on Urban Classification 

and 3D Building Reconstruction”. It consists of three areas 

(Figure.1) with various building classes available. 

 

     
(a)                       (b)  

 

Figure 1.  Images of Vaihingen test areas from Google earth. (a) 

Area 1. (2) Area 2. 

 

Area 3 in Vaihingen is purely residential area with small 

detached houses, but most of the architectural features in this 

region can be found in area 1 and area 2. Therefore, area 1 and 

area 2 are selected as the test areas. As shown in Figure 1, area 

1 (Figure 1(a)) is located in the centre of the city of Vaihingen, 

characterized by dense historic buildings with complex shapes. 

Area 2 (Figure 1(b)) is located by the river, featuring with a few 

high-rising residential buildings. 

 

Digital aerial images, DSM and Airborne LIDAR data are 

available in the test areas. In this experiment, LIDAR data is 

taken as input data, and the others are used as reference. For 
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further information about data of ”ISPRS Test Project”, please 

refer to (http://www.itc.nl/ISPRS_WGIII4/tests_datasets.html). 

 

3.2 Experiment and analysis 

With the help of 2D building plans of test areas, buildings can 

be extracted from LIDAR data. There are about 25 buildings in 

area 1 and 8 buildings in area 2. Then, classical RANSAC 

algorithm coded by Peter Kovesi (Kovesi, 2006) is used in this 

experiment for roof facets extraction.  

 

Inaccurate planes detected by RANSAC from roof can be 

classified into the following categories:  

1) Non-segmented planes: Planes, which have been 

classified as parts of planar surfaces of roof, are not 

segmented into any of the detected planes.  

2) Over-segmented planes: A planar surface of roof is 

segmented into more than one plane. 

3) Under-segmented planes. Two or more planar 

surfaces of roof are segmented into one plane. 

4) Spurious planes. Planes, which are detected from 

point clouds, are not true planar surfaces of roof.    

 

                    
(a)                                    (b) 

 

     
(c)                                   (d) 

 

Figure 2: Planes detected by RANSAC. (a) Non-segmented 

planes (white square area). (b) Over-segmented planes (white 

polygonal area). (c) Under-segmented plane (blue points). (d) 

Spurious plane (blue points). 

 

3.2.1 Non-segmented planes:  In Figure 2(a), points in the 

white square area presents a slope roof of a high-rising 

residential building. However, without consideration of spatial-

domain connectivity, points on the slope roof are classified into 

other planar surfaces by RANSAC, which leads to a non-

segmented plane. Profile of this building (Figure 3) can prove it.  

The flat roof with most points is first detected and removed 

from the point clouds of building. In the end, there are no points 

left for the slope roof. In addition, there is another cause for no-

segmented planes. As shown in Figure 4(b), there is a certain 

chance that planar surfaces in the hip roof are not detected. That 

is because 3 points, not on the same planar surface of roof, are 

randomly selected in the initial process of RANSAC, which 

may lead to a spurious plane (green points in Figure 4(b)). As a 

result, some of points on the same planar surface are removed, 

and the plane may not be detected because of fewer points 

(white points in the larger rectangular area in Figure 4(b)). 

 

 
 

Figure 3.  Profile of roof in Figure 2(a). 

 

     
(a)                                          (b) 

 

Figure 4.  Hip roof. (a) Image. (b) Detected planes (white 

class represents noise) 

 

From above analysis, although fewer remaining points on 

the surface lead to a non-detected plane, the ultimate cause 

of non-segmented plane is random sample without spatial-

domain connectivity. However, this explanation only 

applies to the small planar surfaces of roof. Large planar 

surfaces can be always detected from roof by RANSAC. 

 

3.2.2 Over-segmented planes:  From Figure 2(b), in the 

white polygonal area, it is noted that the region has two planar 

surfaces but is segmented into four planar surfaces. In fact, there 

are two gable roofs adjacent to each other, but it is hard to 

separate them from LIDAR data. As a result, parts of the two 

planar surfaces of gable roof in the white polygonal area are 

classified into the gable roof outside the white polygonal area 

by RANSAC.   

 

     
(a)                                    (b) 

 

     
(c)                                    (d) 

 

Figure 5. Planes detected by RANSAC. (a) t =0.02. (b) t 

=0.05. (c) t =0.1. (d) t =0.2. 
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Generally, over-segmentation is mainly caused by a smaller 

threshold value. In order to test this, different thresholds of 

parameter t (distance to the fitting plane) in RANSAC are used 

to extract planes from roof. As shown in Figure 5(b), the 

appropriate value of t for this data is 0.05, and four planar 

surfaces of the gable roofs are correctly detected. Besides, it 

should be noted that more trivial facets are extracted from roof 

with a smaller value of parameter t. However, it doesn’t mean 

that a greater value of t will not cause over-segmented planes. 

Taking Figure 5(c) for example, although the value of t is a little 

greater than the appropriate value in Figure 5(b), it causes two 

over-segmented planes. According to profile (Figure 6) of this 

test data, parts of point clouds on the parallel surfaces can be 

classified into both of them. Without the consideration of 

spatial-domain connectivity, these points will be segmented into 

the planar surface which is first detected. 

 

 

 
 

Figure 6. Profile of roof in Figure 5 

 

However, no parameters can satisfy any situation.  Most of the 

planar surfaces of roof can be detected when the threshold t is 

set to 0.1. The number of over-segmented planes wills increases 

if threshold t is set too small, although a smaller threshold may 

be appropriate for this data. 

 

3.2.3 Under-segmented planes: As shown in Figure 2(c), 

the planar surfaces of dorms are coplanar, but they are classified 

into one plane. Actually, most of the under-segmented planes in 

this experiment are planes with a “tail”. The tail can be adjacent 

to (points in red rectangular area in Figure 7(a)) or far away 

(points in the green rectangular area in Figure 7(b)) from the 

“body” plane. 

 

     
(a)                                    (b) 

 

Figure 7. Planes detected by RANSAC. (a) under-

segmented planes. (b) Low point density area on roof 

 

Because RANSAC tends to detect the best mathematic planes, 

points belong to other roofs or noise may be classified into the 

planes with a large number of points, which will reduce the 

accuracy of boundary of planar surface. However, considering 

spatial connectivity, coplanar planes (Figure 2(c)) and tails far 

way from body plane can be separated from body planes. As far 

as the tails adjacent to body plane, it may be separated based on 

point density.  However, parts of the exact planar surface may 

be removed, such as points in the white rectangular area in 

Figure 7(b). In that case, topology relationships between 

detected planes may need to be considered. 

 

3.2.4 Spurious planes: Spurious planes (Figure 2(d)) are 

false planar surfaces detected by RANSAC. They are common 

to most test data. Because points on large planar surfaces tend 

to be first detected and removed from raw data, only a few 

points such as noise, points on edge or small planar surface are 

left. These points, which have low point density and lack of 

spatial connectivity, are segmented into spurious planes.  

 

 
 

Figure 8. Plane number plot (x-axis represents building ID, y-

axis represents number of detected planes) 

 

     
(a)                                    (b) 

 

Figure 9. Building images (Cramer, 2010). (a) Dense buildings 

in area 1. (b) high-rising residential building in area 2. 

 

As shown in Figure 8, in the test of 33 buildings, we find that 

spurious planes are related to the number of detected planes. 

The buildings with most detected planes in Figure 8 are 

buildings with complex shapes (Figure 9(a)) or high-rising 

residential buildings (Figure 9(b)). It should be pointed out that 

buildings in the red polygonal area of Figure 9(a) are adjacent 

to each other. It is hard to separate from point clouds. Therefore, 

they are regarded as one building in the test. For further analysis, 

different parameter t is used to detect planes. From Table 1, we 

can see that some of spurious planes can be removed by 

increasing the value of parameter t, but this will lead to more 

non-segmented planes. For over-segmented planes of building 

with complex shapes, it is noted that over-segmented planes 

decrease a lot with the increasing of the value of parameter t. 

But small over-segmented planes are eliminated, which will 

affect the accuracy of boundary of planar surfaces. 

 

In this experiment, under-segmented planes with tails in Figure 

9(a) are more common than the building in Figure 9(b). That is 

because the former consists of several buildings having a lot of 
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slope roofs with different directions. Because of the probable 

intersection of plane defined by point sets, some points may 

belong to several mathematical planes, which can lead to tails. 

On the contrary, most of planar surfaces of the latter building 

are parallel and discontinuous in height, so points tend to 

belong to one mathematical plane. Because there are some 

points on the surfaces of facade, a few points may be classified 

into the planar surfaces of flat roof. But these points are very 

rare and far away from the body planes, they are easy to be 

separated. 

 

 

building t Non- Over- Under- Spur- 

a 8 0 3 19 8 

a 16 5 2 18 4 

a 24 5 0 16 2 

a 32 7 0 14 4 

a 40 8 0 14 3 

b 8 0 0 5 26 

b 16 3 0 5 14 

b 24 3 0 5 7 

b 32 3 0 5 5 

b 40 4 0 5 4 

 

Table 1.  Numbers of detected planes. (a) Building with 

complex shapes in Figure 9(a). (b) high-rising residential 

building in Figure 9(b). 

 

From above, quality problems are very common in RANSAC-

based roof facets extraction. It is hard to get an accurate 

building model without improve the quality of extracted planes.  

Although spatial connectivity can improve the quality of planes 

extracted by RANSAC, it cannot solve all the problems. More 

factors or strategies need to be considered. 

 

 

4. CONCLUSION  

Roof facets extraction is the basis of 3D building reconstruction 

based on polyhedral model. It has been the focus of research all 

the time. As a robust method for model estimation, RANSAC is 

widely used in the extraction of geometry primitives. This paper 

gives a comprehensive evaluation of RANSAC-based approach 

for roof facets extraction  

 

We give four detail categories of inaccurate planes detected by 

RANSAC. Based on some experiments, the reasons for quality 

problems are discussed. Experiments show that non-segmented 

planes are sensitive to the number of points on planar surface. 

Small planes tend to be discarded. Over-segmented planes are 

susceptible to the parameters of RANSAC. Whether the value 

of parameter is too smaller or a little bigger, an inappropriate 

value will lead to over-segmentation. Under-segmented planes 

are sensitive to the shape of building. Complex shapes mean 

that points belonging to several mathematical planes are more 

likely to be segmented into the larger plane, which will cause 

under-segmentation. Spurious surfaces are common in all test 

data. It is related to the number of detected planes. Buildings 

with complex shapes tend to have more spurious planes. 

Increasing the related threshold of RANSAC can reduce the 

number of spurious planes, but this will affect the accuracy of 

plane detection. Most of the quality problems above can be 

improved, if spatial-domain connectivity is considered. 

However, some problems such as the tail adjacent to body plane 

can’t be solved. And there are still many issues to be studied. 

Point density and topology relationships between planes are 

suggested to be considered. 

 

 

5. REFERENECES 

Brenner, C., 2000. Towards fully automatic generation of city 

models. International Archives of Photogrammetry and Remote 

Sensing 33, PART 3, pp. 84-92. 

Bretar, F., 2005. Extraction of 3D planar Primitives from Raw 

Airborne Laser Data: a Normal Driven RANSAC Approach. 

IAPR Machine Vision and Application, Tsukuba, Japan, pp. 

452-455. 

Cramer, M., 2010. The DGPF test on digital aerial camera 

evaluation – overview and test design. Photogrammetrie – 

Fernerkundung – Geoinformation 2(2010), pp. 73-82. 

Forlani, G., 2006. Complete classification of raw LIDAR and 

3D reconstruction of buildings. Pattern Anal. Appl., 8(4), pp. 

357–374. 

Haala, N., 2010. An update on automatic 3D building 

reconstruction, ISPRS Journal of Photogrammetry and Remote 

Sensing,  65, pp. 570–580. 

Huang, H., 2011. Rule-based roof plane detection and 

segmentation from laser point clouds. Urban Remote Sensing 

Event (JURSE). pp. 293–296. 

Kovesi, P., “MATLAB and Octave Functions for Computer 

Vision and Image Processing”.  

http://people.csse.uwa.edu.au/pk/Research/MatlabFns/index.ht

ml" (2006). 

Martin, A., 1981. Random Sample Consensus: A Paradigm for 

Model Fitting with Applications to Image Analysis and 

Automated Cartography. Comm. of the ACM, 24 (6), pp. 381–

395.  

Oude Elberink, S.J., 2011. Quality analysis on 3D building 

models reconstructed from airborne laser scanning data. In: 

ISPRS journal of photogrammetry and remote sensing, 66(2), 

pp. 157-165. 

Shan, J., 2008. Topographic Laser Ranging and Scanning: 

Principles and Processing. CRC Press/Taylor & Francis Group, 

pp. 403-410. 

Sampath, A., 2010. Segmentation and Reconstruction of 

Polyhedral Buildings from Aerial Lidar Point Clouds. IEEE 

Transactions on Geoscience and Remote Sensing, 48(3), pp. 

1554-1567. 

Tarsha-Kurdi, F., 2007. Hough-transform and extended 

RANSAC algorithms for automatic detection of 3D building 

roof planes from LiDAR data. In Proc. Int. Soc. Photogramm. 

Remote Sens., 36, pp. 407–412. 

Tarsha-Kurdi, F., 2008. Extended RANSAC algorithm for 

automatic detection of building roof planes from LIDAR data. 

photogrammetric journal of Finland , 21(1), pp.  97-109. 

Vosselman, G., 1999. Building reconstruction using planar 

faces in very high density height data. In International Archives 

of Photogrammetry and Remote Sensing, pp. 87–92. 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

371

http://people.csse.uwa.edu.au/pk/Research/MatlabFns/index.html
http://people.csse.uwa.edu.au/pk/Research/MatlabFns/index.html


 

 

Vosselman, G., 2001. 3D building model reconstruction from 

point clouds and ground plans. International Archives of 

Photogrammetry, Remote Sens ing a nd Spatial Information 

Sciences 34 , Part 3/W4, pp. 37–43. 

Verma,V., 2006. 3D building detection and modelling from 

aerial LiDAR data. In: Proceedings of the 2006 IEEE Computer 

Society Conference on Computer Vision and Pattern 

Recognition. CVPR’06. IEEE Computer Society, Washington, 

DC, pp. 2213–2220.  

Zhang, K., 2006. Automatic Construction of Building 

Footprints From Airborne LIDAR Data. IEEE Transactions on 

Geoscience and Remote Sensing, 44(9), pp. 2523-2533. 

 

6. ACKNOWLEDGEMENTS 

The Vaihingen data set was provided by the German Society for 

Photogrammetry, Remote Sensing and Geoinformation (DGPF) 

[Cramer, 2010]: http://www.ifp.uni-stuttgart.de/dgpf/DKEP-

Allg.html (in German). 

 

This paper is supported by National State Basic Research 

Development Program (973 Program) of China (NO. 

2012CB719904). 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

372


