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ABSTRACT: 

 

A new method of multiple human tracking is proposed. The key concept is that to assume a tracking process as a data assimilation 

process. Despite the importance of understanding pedestrian behavior in public space with regard to achieving more sophisticated 

space design and flow control, automatic human tracking in complex situation is still challenging when people move close to each 

other or are occluded by others. For this difficulty, we stochastically combine existing tracking method by image processing with 

simulation models of walking behavior. We describe a system in a form of general state space model and define the components of 

the model according to the review on related works. Then we apply the proposed method to the data acquired at the ticket gate of the 

railway station. We show the high performance of the method, as well as compare the result with other model to present the 

advantage of integrating the behavior model to the tracking method. We also show the method’s ability to acquire passenger flow 

information such as ticket gate choice and OD data automatically from the tracking result. 

 

 

1. INTRODUCTION 

Recently in-depth understanding of pedestrian behavior in 

public space is becoming significant with regard to achieving 

more sophisticated space design and flow control. The difficulty 

in space design in big stations, for example, is that we should 

consider the congested level inside a station entirely, which 

changes every second, and passengers’ microscopic route 

choices at the same time. Therefore, understanding passenger 

flow in detail is necessary to accomplish good facilities 

planning. The same is true in shopping malls and pedestrian 

crossings. In order to understand such human behavior, the 

main problem is to comprehend individual's behavior in 

complex situation that people move interdependently. 

 

Observation data from diverse sensors, which are informative to 

understand human behavior, are accumulated these days thanks 

to the development of sensing technology. As such data 

increase, a strong need arises to acquire behavior information 

automatically. However, automatic human tracking is still 

challenging under the situations that people move close to each 

other or are occluded by others. Human tracking is usually run 

by color information obtained from video camera, for we can 

get information of the entire field observed. As color 

information is not robust to occlusions, range information 

obtained from laser scanner or stereo video camera is also used 

for human tracking recently (e.g. Munoz-Salinas, 2008). 

 

Meanwhile some simulation models of walking behavior have 

made progress recently (Bierlaire and Robin, 2009). In such 

models, pedestrian's choice of next step is explained by not only 

each individual's current position and velocity but also the 

interdependency as the response to the presence of other 

pedestrians. In order to develop simulation models, real data of 

pedestrian behavior is necessary for calibration of parameters 

and evaluation of reproducibility. In addition, the possibility to 

improve behavior models by feeding the tracking result back to 

them becomes greater if automatic tracking is achieved. 

 

In this paper, we propose a new method of multiple human 

tracking under the complex situations. The key concept is that 

to assume a tracking process as a data assimilation process, 

widely used in many fields of geosciences (e.g. Daley (1991) 

and Wunsch (1996)). As human behavior is uncertain and 

human is non-rigid object, stochastic and non-linear tracking 

process is suitable. Also as huge volumes of data are processed 

for tracking, sequential process is suitable. An on-line data 

assimilation system matches this two needs. It consists of 

observations, forecasting and filtering. In human tracking, 

observations correspond to observation data from sensors, 

forecasting to pedestrian behavior model and filtering to 

existing tracking method by image processing. 

 

The rest of the paper is organized as follows. In section 2, we 

describe how we apply data assimilation to human tracking. In 

section 3, we present the calculation method of this assimilation. 

In section 4, we define some components of the model 

according to the review on related works, both human tracking 

method by image processing and simulation model of pedestrian 

behavior. Finally, we apply the proposed method to real data in 

section 5 and conclude the paper in section 6. 

 

 

2. DATA ASSIMILATION 

2.1 Human Tracking as Data Assimilation 

We assume a human tracking process as an on-line data 

assimilation process as mentioned above. It consists of 

observations, forecasting and filtering step. In data assimilation, 

after the current state is predicted by forecasting step, 

observations of the current and past state are combined with 

them by filtering step. In human tracking, the process is 

repeated like this: In each frame, positions and shapes of people 

being tracked are estimated by pedestrian behavior model 

(forecasting step). Then estimated shapes and positions are 

optimized referring to the new observation data (filtering step). 

Each step in this paper in detail is described below. 
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2.2 Observations 

Observations are information that we can obtain from various 

sensors. In human tracking under complex situations, people 

may be occluded by others or close to each other even if there 

are no occlusions. We may be able to identify and track multiple 

people that are close to each other by color information, using 

color difference of clothes, for example. However, color 

information is not suitable for identification of people under 

occlusions. On the other hand, range information is robust to 

occlusion thanks to difference of distance to some people closer 

and farther. Nevertheless, range information cannot distinguish 

two people in proximity because the difference in distance is 

slight. In addition, it does not bring information about 

identification of each person because the observed shape is not 

so different from person to person. In consideration of such 

conditions, we use both color and range information, which can 

redeem their demerit each other. We use stereo video camera to 

acquire them simultaneously. 

 

2.3 Forecasting 

Forecasting step is a step to predict a current state of a system 

from the last state by numerical model. In human tracking, it is 

corresponding to the pedestrian behavior model. It predicts 

pedestrian's current position based on the last position and 

conditions around them. Among many models such as social 

force model and cellular automaton, we use discrete choice 

model in this paper.  This is because discrete choice model 

decides the next step of each pedestrian stochastically and can 

deal with interactions between pedestrians. Besides, the 

alternatives of next step are individual for each pedestrian for 

each time. Thus, we consider this forecasting process as non-

linear process, contrary to many literatures on human tracking, 

simply assuming random walk or linear process (e.g. Ali and 

Dailey (2009)). 

 

2.4 Filtering 

Filtering step is a step to balance the predicted current state by 

forecasting step and current observations. In human tracking, it 

is corresponding to the problem to evaluate the likelihood of the 

predicted state as person. Because background is not stable in 

complex situations, we evaluate the similarity of foreground 

area, the position and shape of human. Both color and range 

information is used for this filtering. 

 

 

3. GENERAL STATE SPACE MODEL 

3.1 General State Space Model 

This data assimilation system can be described in a form of 

general state space model (Higuchi, 2003). General state space 

model is widely used in many fields recently, for it can deal 

with non-linear time-series model. As shown in figure 1, 

general state space model is composed of state vector xt and 

observation vector zt. State vector is a vector of variables of 

human position and shape, which cannot be observed directly. 

Observation vector is a vector of variables of color and range, 

which we can observe directly from sensors. Then we define 

observation model p(zt|xt), a probability distribution of zt on the 

condition of xt, and system model p(xt|xt-1), a probability 

distribution of xt on the condition of xt-1. After we obtain z1:t = 

{z1, z2,..., zt}, series of observations from time 1 to t, xt is 

obtained by maximum a posteriori probability (MAP) estimate. 

According to Bayes' theorem, the posterior distribution of xt is 

as follows: 
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1 1 1: 1 1

( | ) ( | ) ( | )

( | ) ( | ) ( | )

t t t t t t

t t t t t t t

p p p

p p p d
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 

x z z x x z
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          (1) 

 

In this equation, p(zt|xt) is observation model, p(xt|xt-1) is system 

model and p(xt-1|z1:t-1) is the estimation result at time t-1. 

 

According to the general state space model, human tracking is 

processed like this: First, prior probability of xt is calculated by 

applying system model to the probability distribution of xt-1. 

Then obtained prior probability of xt is combined with 

observation zt, and posteriori probability of xt is calculated. In 

this framework, we need to define state vector xt and 

observation vector zt, and model system model p(xt|xt-1) and 

observation model p(zt|xt). We explain about their definition in 

section 4. 

 

3.2 Particle Filter 

To estimate a state vector, we need to calculate probability 

distributions in the equation (1) successively. We use particle 

filter for this calculation. Particle filter is a method to 

approximate the conditional distribution discretely by number 

of particles sampled from that distribution (Gordon et al., 1993). 

Calculation of the particle filter is processing as follows and in 

figure 2: 

 

1. Approximating the conditional distribution p(xt-1|z1:t-1) by 

number of particles independently sampled with weight 

(observation model). 

2. Resampling particles with equal weight according to the 

weight of each particle sampled at step 1. 

3. Moving each particle obtained at step 2 according to the 

system model p(xt|xt-1). 

4. Weighting particles according to the observation model 

p(zt|xt). 

5. Estimating xt as the expected value of weighted particles 

obtained at step 4. 

 

 

 

 

 State Vector x 

- cannot be observed directly 

(Human position and shape) 
System Model 

     
1( | )t tp x x 

 

Observation Model 

   ( | )t tp z x  

 xt-1  xt  xt+1 

 zt-1  zt  zt+1 

Observation Vector z 

- can be observed directly 

(Color/range information) 
 

 
Figure 1.  General state space model 
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Figure 3.  State vector 

x, y, z: 

central coordinate 

d: depth 
w: width 

h: height 

 

 
 

 
 

 

 
 

 
 

 

 

 

4. MODELLING 

In this section, we define and model the components of general 

state space model. 

 

4.1 State Vector 

State vector is corresponding to the position and shape of each 

person. We define a state vector as an ellipsoid and its 

coordinates, which is human shape and position, shown in 

figure 3. State vector is described as follows: 

 

 x = (x, y, z, w, h, d)   (2) 

 

where  (x, y, z) = central coordinates of ellipsoid 

            (w, h, d) = length of each axis 

 

4.2 Observation Vector 

We also define an observation vector as observations from 

sensor. Stereo video camera is used in this work so we acquire 

both color and range information. Observation vector at pixel (i, 

j) is as follows: 

 

 zij = (Xij, Yij, Zij, rij, gij, bij)  (3) 

 

where (X, Y, Z) = coordinates of observation point corresponds 

to pixel (i, j) 

           (r, g, b) = pixel value of red, green and blue at pixel (i, j) 

 

4.3 System Model 

System model explains sequential change of state vector. We 

define system model using simulation model of pedestrian 

behavior. We apply the model by Robin et al. (2009) because 

the parameters are evaluated on real data. This model describes 

features of pedestrian behavior, such as keeping direction, going 

toward destination, accelerating if current velocity is slow and 

vice versa, following the person in front of them and avoiding 

collision. Choice set is fan-shaped shown in figure 4. 

Alternatives of choice set are 33 in total, three for velocity 

(acceleration, constant speed and deceleration) and 11 for angle. 

The utility function is described as follows: 
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where   β, λ, α, ρ, γ, δ = parameters 

vmax = maximum speed of pedestrian (constant) 

vmaxLS = if pedestrian's current speed is below vmaxLS, 

utility to accelerate increases (constant) 

I = dummy for each alternatives 

dir = angle between current direction and direction to 

alternatives 

ddir = angle between directions to destination and 

alternatives from current position 

ddist = distance from alternatives to destinations 

D, Δv, Δθ = distance between pedestrians, difference in 

speed of pedestrians and difference in angle between 

current direction of pedestrians, respectively 

 

Using this choice model, we define system model as follows: 

 

 xt = xt-1 + vt-1 + wt-1    (5) 

 

Where vt-1 is the vector determined according to the choice from 

discrete choice model at time t-1, that is, the alternative with 

maximum utility. w is noise term with its expected value 0 and 

variance σ2. 

 
 

Figure 4.  Choice set from Robin et al. (2009) 
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1. Discrete approximation by weighted particles 

 

 

 

 

2. Resampling 

 

3. Moving particles by system model
1( | )t tp x x  

 

 

4. Weighting particles by observation model ( | )t tp z x  

 

 

 

 

5. Estimating xt as expected value of this particles 

 

Figure 2.  Calculation flow of particle filter 

Conditional distribution
  

 1:( | )t tp x z  

Conditional distribution 

 
1 1: 1( | )t tp  x z  

Conditional distribution
1: 1( | )t tp x z  
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Then we have to handle two problems remained. Firstly, 

although system model deals with three-dimensional ellipsoid, 

pedestrian behavior model deals with behavior on two-

dimension plane. Therefore we assume that ellipsoid is upright 

on the floor and set the coordinates parallel to the floor (ground 

coordinates). At the same time, we calculate the angle between 

camera coordinates and the ground coordinates. Secondly, 

behavior model assumes that destinations of every pedestrian 

are known in advance. However, in case of on-line tracking, we 

cannot know their destination in advance. Therefore, we omit 

the term about destination in this model, the term (b) in 

equation (4). After this step, all we have to do is to set initial 

position, shape and velocity for all people to be tracked. 

 

4.4 Observation Model 

We also model an observation model for filtering step. 

Observation model is a probability distribution of zt on xt, 

modeled by tracking method. We make both color and range 

model stochastically. The model is in a form of a product of 

color observation model and range observation model as 

follows: 

 

 p(zt|xt) = pcolor(zt|xt) prange(zt|xt)     (6) 

 

4.4.1 Color Observation Model:  pcolor(zt|xt) is a probability 

distribution according to the similarity between color 

histograms of pixels in the ellipsoid at time t-1 and t. We use 

Bhattacharyya coefficient B as follows, a coefficient correlation 

of color histogram as used in existing works (e.g. Wu and 

Nevatia (2007) and Ali and Dailey (2009)). 

 

  , 1,t m t m

m

B d d        (7) 

where  m = pixel value 

dt = normalized histogram at time t 

dt, m = relative frequency of pixel value m in histogram d 

 

We calculate this for each color r, g and b, and define 

pcolor(zt|xt) as a product of them. 

 

4.4.2 Range Observation Model:  prange(zt|xt) is a 

probability distribution according to the similarity between 

shape of predicted ellipsoid and observed object in actuality. 

For pixel P included in the ellipse made by projection of 

predicted ellipsoid to the obtained image, let ( )d P the distance 

from observed coordinates P(X, Y, Z) to the center of ellipsoid 

O. Let P' the point that half line from O to P intersects the 

ellipsoid, and ˆ( )d P the distance from O to P'. Here, we 

describe prange(zt|xt) as follows: 

 

             
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where I = number of pixel P in total 

 

 

5. APPLICATION 

5.1 Observation Conditions and Parameter Settings 

We apply the proposed method to the data acquired at the ticket 

gate of Tama-Plaza station, the railway station in the popular 

residential area about 20km west from central Tokyo. We took 

the data in the morning, the commuter rush hour and confirmed 

that people behavior was under the complex situations. The 

stereo video camera used in this observation is consisted of two 

cameras (SONY-DFW, 1.2 million pixels), set about one meter 

spaced, calibrated in advance. Frame rate is set at 7.5 

[frames/sec] from the constraints of the stereo synchronization 

process. In this condition, the video was taken from a point 

about 10m height, looking down obliquely (figure 5). 

In the proposed method, we need to set some initial values and 

parameters in advance. We set the number of particles as N=500. 

For the state vector, we get the initial position of people 

manually and set as the position (x, y, z). The size of the 

ellipsoid is set to w=0.4[m], h=1.6[m] and d=0.3[m] 

considering the size of people. We also set the initial velocity of 

each person manually. For the variance of system model, we set 

σ = (10, 5, 10, 0.05, 0.05, 0.05) [cm] after some trials. Finally 

we calculate the angle between camera and ground coordinate 

as ω=0.62[rad]. 

 

5.2 Results and Discussions 

We apply this method for 30 seconds (226 frames). During this 

period 51 people with 3,384 frames in total are to be tracked. 

We make a performance verification of the proposed method by 

comparison of the position of the person obtained from tracking 

result with manually read from the image. As a result, we 

succeeded in 2,626 frames (78%) in total and 40 people of 44 

are correctly tracked to the ticket gate (table 6). 

 

Table 6.  Tracking result with comparison by system model 

System model 
# of success 

frame 

Success 

rate 

Success # of 

person 

tracked to the 

ticket gate 

Proposed  2626 78% 40 / 44 

Noise only 1808 53% 35 / 44 

With destination 2238 66% 28 / 44 

 

Figure 7 shows a part of the results. Points in the image show 

the center of obtained ellipsoid by tracking. The numbers 

associated with points on the image is a unique number given to 

each ellipsoid, which is corresponding to the tracked person. 

 

Figure 5.  Example of obtained image 

 

Platform #2 Platform #1 

South Exit North Exit 
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We confirm that under the situation without occlusion and 

proximity between people or people and object, tracking 

succeeded in almost all frames. In addition, in situations 

involving a speed change, occlusion, proximity, avoidance 

behavior and direction change at around the gate, success rate 

stays at a high level. For example, two people shown as an oval 

of red and blue on figure 7 are successfully tracked under the 

condition that they are changing the direction and avoiding the 

collision near the ticket gate. 

 

Although the effectiveness of the proposed method has been 

shown from the results above, some points to be improved 

remain for more accurate tracking. For example, by introducing 

the interaction between person and object to system model, the 

accuracy when people pass through the ticket gate may improve. 

In addition, considering the interaction with the person beside 

and behind or minimum distance between people in system 

model would bring a more robust tracking. 

 

5.3 Comparison with Other System Model 

To verify the effectiveness of the proposed model, we use other 

system models and compare tracking results. Two cases are 

experimented: (a) system model with noise term only (vt-1=0 in 

equation (5)) and (b) system model with destination term (use 

term (b) in equation (4) and destinations are set manually). In 

case of (a), success rate dropped to 53% and the number of 

people tracked to the ticket gate to 35. This shows that 

integration of pedestrian behavior model with tracking method 

is meaningful. In the same way, in case of (b), the result is 66% 

and 28 people. Failure cases are mainly caused by direction 

change at the ticket gate, for the direction choice around there is 

not necessarily the same as the final destination (table 6). 

 

5.4 Acquisition of Passenger Flow 

We can get passenger flow information by projecting the 

tracking result to the ground floor. Figure 8 shows a part of the 

acquired passenger flow. From this flow information, we try to 

get passenger’s ticket gate choice automatically. This data are 

more useful than simple cross-sectional data because each 

passenger’s origin is related to the choice of the ticket gate. The 

result is shown in table 9. Compared with the data acquired 

manually, 37 of 42 people’s choices are successfully obtained. 

Another example shown in table 10 is OD data. 26 of 39 

person's OD data are correctly acquired. From this result we can 

grasp the general tendency like the flow between south exit and 

platform 2 is at a high level. In this way, the proposed method 

increases the possibility to acquire detail flow data of the 

individuals. It is expected that comprehension of people’s 

behavior using this flow data leads to more sophisticated and 

precise flow control and facility design. 

 

5.5 Integration with Detection Method 

We try to expand the method to achieve the long time tracking, 

integrating a detection method of people entering the image, 

instead of setting it manually. After person is detected at time t, 

we assume a probability distribution p(xt) and forecast the state 

xt+1 by system model with noise term only. Then we filter xt+1 

 

Figure 7. Results 

Frame #45 Frame #50 

Frame #35 Frame #40 
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Table 9.  Ticket gate choice with origin information 

 
A B C D E Total 

North exit 12/12 1/3 0/0 0/0 N/A 13/15 

South exit 0/0 5/5 3/4 4/4 N/A 12/13 

Platform 1 N/A 0/0 0/0 0/0 0/0 0/0 

Platform 2 N/A 0/0 0/1 7/7 5/6 12/14 

Total 12/12 6/8 3/5 11/11 5/6 37/42 

Result of automatic / manual acquisition. N/A means one-way 

gate. Row is origin, column is chosen gate. Gates are named 

from A to E, respectively from left to right on figure 5.  

 

Table 10.  OD matrix 

 
North South #1 #2 Total 

North exit ― 0/0 1/2 3/11 4/13 

South exit 1/1 ― 1/1 11/11 13/13 

Platform 1 0/0 0/0 ― 0/0 0/0 

Platform 2 3/3 6/10 0/0 ― 9/13 

Total 4/4 6/10 2/3 14/22 26/39 

Result of automatic / manual acquisition. Row is origin, column 

is destination. 

 

by observation model p(zt+1|xt+1), the same as tracking. This 

simple integration brings good result in plain situation like 

without occlusion and proximity. We need additional step to 

deal with complicated situation. 

 

 

6. CONCLUSION 

We propose a new method to track multiple human in complex 

situations. We assume human tracking as data assimilation and 

combine observed information of color and range with 

pedestrian behavior model in general state space model. From 

some applications, we show the high performance of proposed 

method. We also show the acquisition of passenger flow 

information using tracking result. It is expected that enormous 

human choices in the real situation will be offered, for 

automatic tracking can deal with much amount of data. 

 

Proposed method can be easily applied to other situations. 

According to observation sites and human behavior there, we 

can use different pedestrian behavior model by replacing system 

model. In the same way, we can introduce different sensors such 

as range scanner and infrared sensor by replacing observation 

vector and observation model. 

 

Further works are as follows. Firstly, we need to make better the 

components of general state space model defined in section 3 

for more accurate tracking. Secondly, automatic human 

detection is necessary to achieve the long time tracking. For this 

problem, simple framework is already completed as explained 

in 5.5, so their expansion is the next work. Furthermore, we aim 

to develop a method to analyze pedestrian behavior using 

tracking results. 
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