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ABSTRACT: 

 

In this paper, detailed studies have been performed for developing a real time system to be used for surveillance of the traffic flow by 

using monocular video cameras to find speeds of the vehicles for secure travelling are presented. We assume that the studied road 

segment is planar and straight, the camera is tilted downward a bridge and the length of one line segment in the image is known. In  

order  to  estimate  the  speed  of  a  moving  vehicle  from a video camera, rectification of video images is performed to eliminate the 

perspective effects and then the interest region namely the ROI is determined for tracking the vehicles. Velocity vectors of a 

sufficient number of reference points are identified on the image of the vehicle from each video frame. For this purpose sufficient 

number of points from the vehicle is selected, and these points must be accurately tracked on at least two successive video frames. In 

the second step, by using the displacement vectors of the tracked points and passed time, the velocity vectors of those points are 

computed. Computed velocity vectors are defined in the video image coordinate system  and  displacement  vectors  are  measured  

by  the  means  of  pixel  units.  Then the magnitudes of  the  computed vectors  in  the image  space  are transformed  to  the object 

space  to  find  the  absolute  values  of  these  magnitudes. The accuracy of the estimated speed is approximately ± 1-2 km/h.  In 

order to solve the real time speed estimation problem, the authors have written a software system in C++ programming language. 

This software system has been used for all of the computations and test applications. 

 

                                                                 

*  Corresponding author.   

1. INTRODUCTION 

Using of video sequences are increasing in several applications 

for automation, for instance tracking moving objects, extracting 

trajectories, finding traffic intensity or estimating vehicle 

velocity etc. In this paper we explain the results of our system 

which we have developed for automatic real-time estimation of 

the speed of moving vehicles from video camera images. This 

approach requires only the knowledge of two lengths on the 

ground plane, no interior or exterior calibration parameters are 

required if frontal image acquisition plan is assumed. So we 

assume that the rest of interesting road segment is planar and 

straight and the camera is fixed on the ground. Our system can 

determine vehicle speed in real time and with high accuracy by 

using any kind of digital camera. This procedure involves two 

main steps to be solved. At the first step, enough number of 

points from the vehicle is to be selected, and these points should 

be tracked at least on two successive video frames. At the 

second step, by using the displacement vectors of the tracked 

points and passed time, velocity vectors of those points are 

computed. Due to the nature of the images’ perspective effects, 

the certain geometric properties of the scene such as lengths, 

angels and area ratios are distorted. These distortions must be 

corrected. At first, the background image is detected by using 

background extraction methods and lines on the images are 

detected automatically with Hough Transformation approach. In 

order to rectify images of the scene, we use vanishing point 

geometry and thus solve the scale problem. Vanishing points 

are automatically detected with those extracted lines by using 

least squares adjustment. Subsequently a projective 

transformation is applied to rectify images by using these 

vanishing points. Actually there is no need to apply projective 

transformation for all over the image for rectification. Instead of 

rectifying the whole image, we only rectify the values of the 

distorted velocity vectors and thus gain time for real time 

computations.  

In order to track moving objects from video images, the points 

to be tracked which belong to the moving object on the 

successive video frames should be selected automatically. For 

this purpose we use corner detection algorithms to 

automatically select those points.  

 

In the literature, generally two methods are used for tracking the 

selected points. Maduro et al. (2008), have used Kalman 

filtering method for tracking points on the subsequent frames to 

estimate the velocities of the vehicles, and they have reported 

2% accuracy. In the similar manner,  Li-Qun et al. (1992), Jung 

and Ho (1999), Melo et al. (2004) and Hu et al. (2008b) have 

also used the Kalman filtering method for tracking the selected 

points. The other method used for tracking the selected points is 

optical flow. Sand and Teller (2004), Sinha et al. (2009), Doğan 

et al. (2010) and Santoro et al. (2010), have used optical flow 

method for tracking points in subsequent frames. 

 

For tracking of the selected points we use Lukas – Kanade (LK) 

Optical Flow approach.  In order to test the system, we have 

monitored a car which moves with a GPS receiver to measure 

its speed by GPS technique and compared the GPS speed values 

to the values of our video camera speed estimation system and 

we obtained the vehicle speed within ± 1 km/h accuracy. In this 

paper, we explain the determination of the vehicle’s speed and 

we give sample applications selected from our test studies. We 

also explain the approaches and mathematical models that we 

used for the solution of the problem. Solutions and the models 

to be used for speed estimation problem vary according to the 

applications and their final purposes. When applications related 

to vehicle speed estimation problems are investigated, two main 

fields are distinguished: traffic surveillance (Gupte, et al., 2002) 
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and driver assistance systems or intelligent vehicle systems 

(Guo, et al., 2005).  

 

Traffic surveillance systems generally involve those 

applications which require global information on the general 

traffic situation of the roadways rather than individual vehicles 

travelling on the roads. For example, estimation of the speed of 

a traffic flow of a roadway at different times and dates (Dailey, 

et al., 2000), (Schoepflin and Dailey, 2003) belongs to this 

group, as well as determination of the traffic density, timing of 

the traffic lights, signalization works, etc.  

 

2. RECTIFICATION OF FRAMES 

Due to the nature of the images’ perspective effects, certain 

geometric properties such as lengths, angels and area ratios are 

distorted. These distortion effects must be corrected. If the 

image plane is in the ideal case, then any parallel line in the 

vertical planes must remain parallel in the image plane. 

Similarly, the parallel lines on the horizontal plane must also 

remain parallel in the image plane. If the image plane is far 

away from the ideal situation, these parallel lines will not be 

parallel in the image plane. This means that those parallel lines 

in the object space intersect to each other on the image plane. 

Intersection points of the parallel lines are known as vanishing 

points. By using vanishing points and their corresponding 

vanishing planes at the horizontal and vertical directions, the 

images can be rectified by using vanishing points geometry 

(Heuvel, 2000), (Simond and Rives, 2003), (Cipolla, et al., 

1999), (Grammatikopoulos, et al., 2002) so that they represent 

the ideal case. For this purpose, we used two methods. The first 

one is finding the lines manually and the second one is finding 

the vanishing lines automatically by using the Hough 

transformation. After Hough transformation, we compute the 

intersection points (vanishing points) of the selected lines in the 

image coordinate system. By using those vanishing points we 

rectify the image by making the vanishing lines parallel to each 

other. Figure 1 shows original and rectified frames. 

 

   
 

Figure 1. The original (left) and the rectified (right) frame.  

 

When the rectification parameters are found for the first time, 

they can be used until the camera changes its position. Thus, at 

the beginning of the speed estimation application, at first the 

rectification parameters can be found for the first time and these 

parameters can be used as long as the camera stays stable. For 

the speed estimation problem, after rectification parameters 

have been found, it is not necessary to rectify the whole image. 

Instead, only the selected and tracked point coordinates may be 

rectified for speed improvement of the real time computational 

cost. But however, we give the wholly rectified image on the 

right image of the Figure 1, for visual evaluation of the reader. 

 

 

3. SPEED ESTIMATION 

At the first step, enough number of points from the vehicle 

should be selected, and these points should be tracked at least 

on two successive video frames. 

 

3.1 Automatic Selection of Points to be Tracked 

In order to track moving objects with video images, points to be 

tracked which belong to the object on the successive video 

frames, should be selected automatically. It is well known that 

good features to be tracked are corner points which have large 

spatial gradients in two orthogonal directions. Since the corner 

points cannot be on an edge (except endpoints), aperture 

problem does not occur. One of the most frequently used 

definitions of a corner point is given in (Harris and Stephens, 

1988). This definition defines a corner point by a matrix which 

is expressed by second order derivatives. These derivatives are 

partial derivatives of pixel intensities on an image and are ∂2x, 

∂2y and ∂x∂y. By computing second order derivatives of pixels 

of an image, a new image can be formed. This new image is 

called “Hessian image”. The name “Hessian” arises from the 

Hessian matrix that is computed around a point (Doğan, et. al, 

2010).  The Hessian matrix in 2D space is defined by: 

 

 

(1) 

 

 

 

 

 

Shi and Tomasi (1994), suggest that a reasonable criterion for 

feature selection is for the minimum eigenvalue of the spatial 

gradient matrix to be no less than some predefined threshold. 

This ensures that the matrix is well conditioned and above the 

noise level of the image so that its inverse does not 

unreasonably amplify possible noise in a certain critical 

directions.  

 

When it is desired to extract precise geometric information from 

the images, the corner points should be found within a sub-pixel 

accuracy. For this purpose, the all candidate pixels around the 

corner point can be used. By using the smallest eigenvalues at 

those points, a parabola can be fitted to represent the spatial 

location of the corner point. The coordinates of the maximum of 

the parabola is assumed to be the best location for being a 

corner. Thus the computed coordinates are obtained in subpixel 

precision (Doğan, et. al, 2010). 

 

In our system, as soon as the camera begins for image 

acquisition, points are selected continuously in real time from 

the frame images. On the first frame, points are selected and on 

the next frames those points are tracked and instantaneous 

velocity vectors of those points are computed. 

 

3.2 Tracking of Selected Points 

For speed estimation, correspondence of each selected point on 

the first frame on which the vehicle appears for the first time, 

must be found on the next (successive) frame. In the ideal case, 

correspondence of a selected point must be the same point on 

the next frame. In order to find the corresponding point, there is 

no prior information other than the point itself. If we assume 
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that each image in the each frame is flowing by the very short 

time period and thus changing the position during the flow, then 

a modelling approach which models this flow event can be 

used. These kinds of flow models are called “optical flow”. 

 

3.2.1 Lukas-Kanade (LK) Optical Flow Method: When 

only one video camera is used, there is no information other 

than themselves of the selected points to find their 

correspondences on the next frame. For this reason, it is not 

possible to know exactly where the corresponding points are on 

the next frame. But however, by investigating the nature of the 

problem, some assumptions may be made about the possible 

locations where the corresponding points might be located. In 

order to ensure these assumptions are as close to the physical 

reality as possible, there must exist a theoretic substratum at 

which these assumptions are supported. Furthermore, this 

theoretic substratum must be acceptable under some certain 

situations. Lukas and Kanade have cleverly given three 

assumptions for the solution of the correspondence problem in 

their paper (Lukas and Kanade, 1981). The assumptions of 

Lukas-Kanade Method are: 

 

1. Intensity values are unchanged: This 

assumption asserts that the intensity values of a 

selected point p(t) and its neighbours on the frame 

image I(t), do not change on the next frame I(t + Δt), 

where Δt is too short time period less than one 

second. When the time interval Δt that passed 

between two successive image frames is too short, it 

can be seen that really the possibility of the 

occurrence of this assumption is too high. Because, in 

a very short time period which is measured in 

milliseconds, the effects such as the lighting 

conditions of the scene medium etc. that cause the 

intensity values to be changed must not lead to 

meaningful change effects since the time is too short. 

2. Location of a point between two successive 

frames changes by only a few pixels: The reasoning 

which the assumption is based on, is similar to the 

reasoning of the first assumption. Between the frame 

images I(t) and I(t + Δt), when Δt is getting smaller, 

then the displacement amount of the point also gets 

smaller. According to this observation, a point p(t) at 

(x,y) coordinates of image I(t) will be at the 

coordinates (x + Δx, y + Δy) on image I(t + Δt) and 

these new coordinates will be closer to the previous 

coordinates within a few pixels. Thus the positions of 

the corresponding points on both images will be very 

close to each other. 

3. A point behaves together with its neighbours: 

The first two assumptions, which are assumed to be 

valid for a point must also be valid for its neighbours. 

Furthermore, if that point is moving with a velocity v, 

then its neighbours must also move with the same 

velocity v, since the motion duration Δt is too short. 

 

The three assumptions above help develop an effective target 

tracking algorithm. In order to track the points and to compute 

their speeds by using the above assumptions, it is necessary to 

express those assumptions with mathematical formalisms and 

then velocity equations must be extracted by using these 

formalisms. For this purpose, the first assumption can be written 

in mathematical form as follows: 

 

 

(2) 

where I(p,t) is the intensity value of a point p on the image I(t) 

which was taken at the time instant t. Note that the geometric 

location of the point is expressed by its position vector p Є R2 

(i.e., in 2D space). Here I(p,t) expresses the intensity value of a 

pixel at the point p on the frame image I(t). In similar way, the 

right side of the equation expresses the intensity value of the 

corresponding pixel at the point p + Δp on the frame image I(t + 

Δt). Accordingly, Equation (2) says that the intensity value of 

the point p on the current image frame does not change during 

the time period Δt that passed. In other words, it expresses that 

the intensity I(p,t) does not change by the time Δt. In the more 

mathematical sense, change rate of I(p,t) iz zero over the time 

period Δt. This last situation is formally written as follows: 

 

 

(3) 

 

 

If the derivative given in Equation (3) is computed by using the 

chain rule of derivative, we obtain: 

 

 

(4) 

 

 

In Equation (4), the derivative pI  / is spatial derivative at 

point p on the image frame I(t). Thus it can be expressed by 

IpI  /  . We can write this expression in explicit form as 

follows: 

 

 

(5) 

 

 

The derivative tt  /)(p can also be written in a more explicit 

form: 

 

 

(6) 

 

 

If Equation (6) is investigated carefully, it can easily be seen 

that the vector itx )/(   is equal to the velocity of the point p 

in the x-axis direction. In other words, it is the x component 

namely vx component of the velocity vector v. In similar way, 

the vector jty )/( 
 
is the y component namely vy component 

of the velocity vector v. Now we can rewrite the Equation (6) as 

follows: 

 

 

                                (7) 

 

 

If again Equation (4) is investigated, it is seen that the 

derivative tItI  /
 
expresses the change rate of the intensity 

values at point p, between the frame images I(t) and I(t + Δt). 

Thus, Equation (4) can be rewritten as follows: 

 

 

(8) 

 

 

where: 
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                                   and        (9) 

 

Then Equation (8) can be written as: 

 

 

(10) 

 

 

The values of Ix, Iy and It in Equation (10) can easily be 

computed from the frame images. The variables vx and vy are 

two unknown components of the velocity vector v and these are 

respectively the components in the directions x and y axes of 

the image coordinate system. In Equation (10), we have two 

unknowns to be solved, but we only have one equation. Since 

only one equation is not enough for unique solution of the 

unknowns, at the moment it seems not possible to solve these 

unknowns. In order to solve these two unknowns, we need more 

independent equations. For this purpose, the third assumption 

of the LK algorithm is used. That is, point p behaves together 

with its neighbours. So its neighbours must also satisfy the 

Equation (10). In other words, neighbour points (or pixels) of 

point p must move with the same velocity v(vx,vy). According to 

these explanations, the same equations as (10) are written for 3 

× 3 or 5 × 5 neighbourhood of the point p. In this case, we 

totally have 9 or 25 equations with the same unknowns vx and 

vy. Now the unknowns can be solved with overdetermined set of 

Equations (10) by using least squares or total least squares 

estimation method (Doğan, et. al, 2010). 

 

During the real time tracking, some selected points may not be 

seen on the next frame. This situation may arise because of 

different reasons. Especially, when the vehicle is entering into 

or exiting from the FOV of the camera, the possibility of 

occurrence of this situation is too high. In order to prevent such 

situations, we have interpreted the algorithm with the image 

pyramid approach, which uses coarse to fine image scale levels. 

For details of the image pyramid approaches, we refer the reader 

to (Bouget, 2000) and (Bradsky and Kaehler, 2008). 

 

 

3.3 Estimation of Speed 

To find the vehicle speed, successive frame images of the 

camera can be used. In this case, only the instantaneous speed 

can be found. This instantaneous speed is computed as follows: 

 

 

(11) 

 

 

where v is instantaneous velocity vector of a point and v Є R2 

(i.e., in 2D space since one camera is used), Δp is displacement 

vector of that point and Δp Є R2. The displacement vector 

expresses the spatial displacement of a point during the time 

interval Δt. Here the time interval Δt is equal to the time which 

passes between two successive video frames and is equal to the 

frame replay rate (or frame capture rate) of the camera. In the 

experiments given in this paper, Δt is 33.3 milliseconds, which 

is the frame capture time of the camera that we used. Equation 

(11) gives the instantaneous speed (or velocity) of a point which 

is marked on the vehicle and selected for tracking. To find the 

velocity of the vehicle, only one point is not enough. During the 

selection of the points from the image of the vehicle, local 

approaches are used. If some errors occur during this selection 

step, the computed velocity vector will be affected by those 

errors and so the computed speed will be erroneous. For this 

reason, to estimate the speed of a vehicle, many more than one 

point should be selected and all of their instantaneous velocity 

vectors should be computed. Then by averaging the 

instantaneous velocity vectors of the whole selected points, the 

instantaneous velocity vector of the vehicle is found. For the 

formal expression, let us assume that n points are selected from 

the vehicle to be tracked and let vi (t) (i = 1, ..., n) represent the 

instantaneous velocity vectors of each of n points at time 

instance t. Then by using those instantaneous velocity vectors, 

we can find the instantaneous velocity vector of the vehicle by: 

 

 

(12) 

 

 

where viv is the instantaneous velocity vector of the vehicle at 

time instance t, vi is the instantaneous velocity vector of ith point 

on the vehicle and n is the number of the selected and tracked 

points. Here, it should be noted that, if some of the vi vectors 

are erroneous, then viv will also be erroneous. So, before 

computing the instantaneous velocity viv of the vehicle, the 

erroneous vi vectors must be eliminated. Then the value of n 

also changes, i.e., number of the points decreases. For the 

elimination of the erroneous vectors, standard deviation of the n 

velocity samples can be used for fast evaluation: 

 

 

(13) 

 

 

In order to find absolute values of displacement vectors or 

velocity vectors in object space, the vectors computed in video 

image coordinate system should be transformed to the object 

coordinate system which is in the object space. For this 

purpose, at least the length of a line joining two points within 

the field of view of the camera and on the road and aligned 

along the velocity vectors, must be measured precisely. In this 

paper, we measured the lengths of two lines along the road by 

geodetic measurements using a simple measurement tape, 

within a precision of ±1 millimetre.  

 

 

4. EXPERIMENTS  AND RESULTS 

In this paper, we propose a method for real-time estimation of 

the speed of moving vehicles by using uncalibrated monocular 

video camera. Since it is not possible to extract 3D geometric 

information with one camera, in order to solve the speed 

estimation problem, some geometric constraints are required 

and the images should be taken under these constraints and the 

processing procedures should also be performed with those 

restrictions. For example, we assume that the imaged scene is 

flat. Perspective distortions on the acquired images must be 

either very small or of a degree that they can easily be rectified. 

 

We have used a camera with a frame rate of 30 fps and with an 

effective area of 640 x 480 pixel2. The pixel size which 

corresponds to the effective area of the camera is 9 microns. 

The focal length of the camera is 5.9 mm. We capture images in 

grey level mode at 30 fps (frames per second), meaning that a 

frame is captured within 33.3 milliseconds after the previous 
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frame had been obtained. In order to solve the real time speed 

estimation problem, the authors have written a software system 

in C++ programming language. This software system has been 

used for all of the computations and test applications. Our 

software consists of two steps which contains offline and online 

operations, for details refer to (Doğan, et. al, 2010). The 

operations of step I are performed offline at the beginning of the 

speed estimation problem and it contains rectification 

procedures. After step I has been completed, the real time 

procedures begin. We have used OpenCV API functions to 

perform the capturing images from camera and eliminate 

undesired background changes operations. The rest of the 

operations are performed with our own codes written with 

Visual Studio C++  2010. The total time of the operations takes 

about 30 milliseconds for our real time applications with a 

laptop computer (Intel Core i7 2.6 Ghz CPU, 8 GB RAM). 

Figure 2 shows a general view of our software.  

 

 
 

Figure 2. Estimation of speed. 

 

Accuracy of the estimated speed of our system is ±1-2 km/h. 

We tested the system by comparing the estimated speeds to GPS 

measured speeds which measures speeds with very high 

accuracy about 0.1 knot (0.05 m/s) or 0.018 km/h (Keskin and 

Say, 2006), (Al-Gaadi, 2005). 

 

 

5. CONCLUSIONS 

In this paper, we have explained the real time speed estimation 

problem and its solution by using monocular video images of 

the vehicle. The accuracy of the estimated speed had been 

obtained and is approximately ±1- 2 km/h. The sparse optical 

flow technique is a very effective technique for the speed 

estimation of the vehicles. 

 

In our earlier study, we have used our technique for the speed 

estimation of the vehicles from side view images of the road 

scene (Doğan, et. al, 2010). In this current paper, we have 

modified some steps of our earlier system and used a camera 

tilted downward a bridge and so we have acquired the top view 

images of the road scene. As seen from the results related to the 

test experiments, both of our methods give the same accuracy.  
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