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ABSTRACT:

Obtaining an appropriate 3D description of the local environment remains a challenging task in photogrammetric research. As terrestrial
laser scanners (TLSs) perform a highly accurate, but time-dependent spatial scanning of the local environment, they are only suited for
capturing static scenes. In contrast, new types of active sensors provide the possibility of simultaneously capturing range and intensity
information by images with a single measurement, and the high frame rate also allows for capturing dynamic scenes. However, due to
the limited field of view, one observation is not sufficient to obtain a full scene coverage and therefore, typically, multiple observations
are collected from different locations. This can be achieved by either placing several fixed sensors at different known locations or by
using a moving sensor. In the latter case, the relation between different observations has to be estimated by using information extracted
from the captured data and then, a limited field of view may lead to problems if there are too many moving objects within it. Hence,
a moving sensor platform with multiple and coupled sensor devices offers the advantages of an extended field of view which results
in a stabilized pose estimation, an improved registration of the recorded point clouds and an improved reconstruction of the scene.
In this paper, a new experimental setup for investigating the potentials of such multi-view range imaging systems is presented which
consists of a moving cable car equipped with two synchronized range imaging devices. The presented setup allows for monitoring
in low altitudes and it is suitable for getting dynamic observations which might arise from moving cars or from moving pedestrians.
Relying on both 3D geometry and 2D imagery, a reliable and fully automatic approach for co-registration of captured point cloud data
is presented which is essential for a high quality of all subsequent tasks. The approach involves using sparse point clouds as well as a
new measure derived from the respective point quality. Additionally, an extension of this approach is presented for detecting special
objects and, finally, decoupling sensor and object motion in order to improve the registration process. The results indicate that the
proposed setup offers new possibilities for applications such as surveillance, scene reconstruction or scene interpretation.

1 INTRODUCTION (Rusinkiewicz and Levoy, 2001). Iteratively minimizing the dif-
ference between two point clouds however shows a high compu-
An appropriate 3D description of the local environment is repre- tational effort for large numbers of points. Hence, other regis-

sented in the form of point clouds consisting of a large number of ~ tration approaches are based on information extracted from the
measured 3D points and, optionally, different attributes for each point clouds. This information may for instance be derived from
point. Such point clouds can directly be acquired with different the distribution of the points within each point cloud by using the

scanning devices such as terrestrial laser scanners (TLSs), time- normal distributions transform (NDT) either on 2D scan slices
of-flight (ToF) cameras or devices based on the use of structured (Brenner et al., 2008) or in 3D (Magnusson et al., 2007). If the
light. However, a single scan often is not sufficient and hence, presence of regular surfaces can be assumed in the local environ-
multiple scans have to be acquired from different locations in or- ment, various types of geometric features are likely to occur, e.g.

der to get a full scene coverage. As each captured point cloud planes, spheres and cylinders. These features can directly be ex-
represents 3D information about the local area only with respect tracted from the point clouds and strongly support the registration
to a local coordinate frame, a basic task for many applications  process (Brenner et al., 2008; Pathak et al., 2010; Rabbani et al.,

consists of a point cloud registration. This process serves for es- 2007). In cluttered scenes, descriptors representing local surface
timating the transformation parameters between different point patches are more appropriate. Such descriptors may be derived
clouds and transforming all point clouds into a common coordi- from geometric curvature or normal vectors of the local surface
nate frame. Existing techniques for point cloud registration rely (Bae and Lichti, 2008).

on

As the scans are acquired on a regular grid resulting from a cylin-
drical or spherical projection, the spatial 3D information can also
e 3D geometry and the respective 2D representation as range  be represented as range image. This range image provides addi-

image and tional features such as distinctive feature points which strongly
support the registration process (Barnea and Filin, 2008; Steder
et al., 2010).

e 3D geometry,

e 3D geometry and the corresponding 2D representation of
intensity values.

Standard approaches involving only the spatial 3D information Currently, most of the scanning devices can not only capture
for calculating the transformation parameters between two par- 3D information but also either co-registered camera images or
tially overlapping point clouds are based on the Iterative Closest panoramic reflectance images representing the respective energy
Point (ICP) algorithm (Besl and McKay, 1992) and its variants of the backscattered laser light. The additional information typ-
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ically is represented as intensity image. This intensity image
might provide a higher level of distinctiveness than shape fea-
tures (Seo et al., 2005) and thus information about the local en-
vironment which is not represented in the range measurements.
Hence, the registration process can efficiently be supported by
using reliable feature correspondences between the respective in-
tensity images. Although different kinds of features can be used
for this purpose, most of the current approaches are based on the
use of feature points or keypoints as these tend to yield the most
robust results for registration without assuming the presence of
regular surfaces in the scene. Distinctive feature points simplify
the detection of point correspondences and for this reason, SIFT
features are commonly used. These features are extracted from
the co-registered camera images (Al-Manasir and Fraser, 2006;
Barnea and Filin, 2007) or from the reflectance images (Wang and
Brenner, 2008; Kang et al., 2009). For all point correspondences,
the respective 2D feature points are projected into 3D space us-
ing the spatial information. This yields a much smaller set of 3D
points for the registration process and thus a much faster estima-
tion of the transformation parameters between two point clouds.
Furthermore, additional constraints considering the reliability of
the point correspondences (Weinmann et al., 2011; Weinmann
and Jutzi, 2011) allow for increasing the accuracy of the registra-
tion results.

Once 2D/2D correspondences are detected between images of
different scans, the respective 3D/3D correspondences can be de-
rived. Thus knowledge about the closest neighbor is available
and the computationally expensive ICP algorithm can be replaced
by a least squares adjustment. Least squares methods involv-
ing all points of a scan have been used for 3D surface matching
(Gruen and Akca, 2005), but since a large overlap between the
point clouds is required which can not always be assumed, typi-
cally sparse 3D point clouds consisting of a very small subset of
points are derived from the original 3D point clouds (Al-Manasir
and Fraser, 2006; Kang et al., 2009). To further exclude unre-
liable 3D/3D correspondences, filtering schemes based on the
RANSAC algorithm (Fischler and Bolles, 1981) have been pro-
posed in order to estimate the rigid transformation aligning two
point clouds (Seo et al., 2005; Bohm and Becker, 2007; Barnea
and Filin, 2007).

For dynamic environments, terrestrial laser scanners which per-

form a time-dependent spatial scanning of the scene are not suited.

Furthermore, due to the background illumination, monitoring out-
door environments remains challenging with devices based on
structured light such as the Microsoft Kinect device which uses
random dot patterns of projected infrared points for getting re-
liable and dense close-range measurements in real-time. Hence,
this paper is focused on airborne scene monitoring with range
imaging devices mounted on a sensor platform. Although the
captured point clouds are corrupted with noise and the field of
view is very limited, a fast, but still reliable approach for point
cloud registration is presented. The approach involves an ini-
tial camera calibration for increased accuracy of the respective
3D point clouds and the extraction of distinctive 2D features.
The detection of 2D/2D correspondences between two succes-
sive frames and the subsequent projection of the respective 2D
points into 3D space yields 3D/3D correspondences. Using such
sparse point clouds significantly increases the performance of the
registration process, but the influence of outliers has to be con-
sidered. Hence, a new weighting scheme derived from the re-
spective point quality is introduced for adapting the influence of
each 3D/3D correspondence on a weighted rigid transformation.
Additionally, an extension of this approach is presented which is
based on the already detected features and focuses on a decou-
pling of sensor and object motion.
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The remainder of this paper is organized as follows. In Section 2,
the proposed methodology for successive pairwise registration in
dynamic environments is described as well as a simple extension
for decoupling sensor and object motion. The configuration of
the sensor platform is outlined in Section 3. Subsequently, the
performance of the presented approach is tested in Section 4. The
derived results are discussed in Section 5. Finally, in Section 6,
the content of the entire paper is concluded and suggestions for
future work are outlined.

2 METHODOLOGY

The proposed methodology provides fast algorithms which are
essential for time-critical surveillance applications and should be
capable for a real-time implementation on graphic processors.
After data acquisition (Section 2.1), a preprocessing has to be
carried out in order to get the respective 3D point cloud (Section
2.2). However, the point cloud is corrupted with noise and hence,
a quality measure is calculated for each point of the point cloud
(Section 2.3). Subsequently extracting distinctive features from
2D images allows for detecting reliable 2D/2D correspondences
between different frames (Section 2.4), and projecting the respec-
tive 2D points into 3D space yields 3D/3D correspondences of
which each 3D point is assigned a value for the respective point
quality (Section 2.5). The point cloud registration is then carried
out by estimating the rigid transformation between two sparse
point clouds where the weights of the 3D/3D correspondences are
derived from the point quality of the respective 3D points (Sec-
tion 2.6). Finally, a feature-based method for object detection and
segmentation is introduced (Section 2.7) which can be applied for
decoupling sensor and object motion.

2.1 Data Acquisition

In contrast to the classical stereo observation techniques with pas-
sive sensors, where data from at least two different viewpoints
has to be captured, the monostatic sensor configuration of the
PMD[vision] CamCube 2.0 preserves information without the
need of a co-registration of the captured data. A PMD]vision]
CamCube 2.0 simultaneously captures various types of data, i.e.
geometric and radiometric information, by images with a single
shot. The images have a size of 204 x 204 pixels which corre-
sponds to a field of view of 40° x 40°. Thus, the device provides
measurements with an angular resolution of approximately 0.2°.
For each pixel, three features are measured, namely the respec-
tive range R, the active intensity I, and the passive intensity I,.
The active intensity depends on the illumination emitted by the
sensor, whereas the passive intensity depends on the background
illumination arising from the sun or other external light sources.
As a single frame consisting of a range image Ir, an active in-
tensity image I, and a passive intensity image I, can be updated
with high frame rates of more than 25 releases per second, this
device is well-suited for capturing dynamic scenes.

2.2 Preprocessing

In a first step, the intensity information of each frame, i.e. I, and
I,,, has to be adapted. This is achieved by applying a histogram
normalization of the form

I, = L= lImin_ oer

I’maw - ['min

ey

which adapts the intensity information I of each pixel to the in-
terval [0, 255]. The modified frames thus consist of a normalized
active intensity image I, o, a normalized passive intensity image
I, , and the range image Ir which are illustrated in Figure 1.
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For all subsequent tasks, it is essential to get the 3D informa-
tion as accurate as possible. Due to radial lens distortion and
decentring distortion, however, the image coordinates have to
be adapted in order to be able to appropriately capture a scene.
Hence, a camera calibration is carried out for the used devices.
This yields a corrected grid of image coordinates with the prin-
cipal point as origin of the new 2D coordinate frame. For each
point x = (x,y) on the new grid, the respective 3D informa-
tion in the local coordinate frame can then be derived from the
measured range value R with

R=+/X24Y2+4+ 22 2)
and a substitution of X and Y with

X=2.72 and Y=L .7 3)

fe [
where f; and f, are the focal lengths in x- and y-direction. Solv-
ing for the depth Z along the optical axis yields

Z= d 4)

L \2 2
(7) + (%) +
and thus, the 3D point X = (X, Y, Z) corresponding to the 2D
point x = (x,y) has been calculated. Consequently, the undis-

tortion of the 2D grid and the projection of all points onto the new
grid lead to the respective point cloud data.

Figure 1: Image representation of normalized active intensity,
normalized passive intensity and range data.

2.3 Point Quality Assessment

For further calculations, it is feasible to derive a measure which
describes the quality of each 3D point. Those points which arise
from objects in the scene will probably provide a smooth surface,
whereas points corresponding to the sky or points along edges of
the objects might be very noisy. Hence, for each point on the reg-
ular 2D grid, the standard deviation o of all range values within a
3 x 3 neighborhood is calculated and used as a measure describ-
ing the reliability of the range information of the center point.
This yields a 2D confidence map according to which the influ-
ence of a special point on subsequent tasks can be weighted. For
the example depicted in Figure 1, the corresponding confidence
map is shown in Figure 2.

Figure 2: Range image, confidence map (pseudo-color represen-
tation where reliable points are marked in red and unreliable ones
in blue) and thresholded confidence map (green: o < 0.05 m).

2.4 2D Feature Extraction

As each frame consists of range and image data acquired on a reg-
ular grid, the alignment of two point clouds is based on using both

kinds of information. However, instead of using the whole 3D in-
formation available which results in a high computational effort,
the intensity information is used to derive a much smaller set of
3D points. Hence, distinctive 2D features are extracted from the
intensity information which later have to be projected into 3D
space. For this purpose, the Scale Invariant Feature Transform
(SIFT) (Lowe, 2004) is carried out on the normalized active in-
tensity image as well as on the normalized passive intensity im-
age. This yields distinctive keypoints and the respective local
descriptors which are invariant to image scaling and image rota-
tion, and robust with respect to image noise, changes in illumina-
tion and small changes in viewpoint. The vector representation
of these descriptors allows for deriving correspondences between
different images by considering the ratio

d(Ny)
d(N2)

r= (5)
where d(V;) with ¢ = 1,2 denotes the Euclidean distance of a
descriptor belonging to a keypoint in one image to the i-th near-
est neighbor in the other image. This ratio r» € [0, 1] describes
the distinctiveness of a keypoint. Distinctive keypoints arise from
low values and hence, the ratio r has to be below a certain thresh-
old tqes. Typical values for this threshold are between 0.6 and
0.8. This procedure yields n, correspondences between the nor-
malized active intensity images of the two frames and n,, corre-
spondences between the normalized passive intensity images. For
the registration process, it is not necessary to distinguish between
the two types of correspondences as only the spatial relations are
of interest. Hence, a total number of n = n, + n, correspon-
dences is utilized for subsequent tasks.

2.5 Point Projection

In contrast to the measured range and intensity data which are
only available on a regular grid, the location of SIFT features is
determined with subpixel accuracy. Hence, an interpolation has
to be carried out in order to obtain the respective 3D information
as well as the respective range reliability. For this purpose, a bi-
linear interpolation is used. Assuming a total number of m SIFT
features extracted from an image, this yields a set of samples s;
with¢ = 1,..., m which are described by a 2D location x;, a 3D
location X; and a quality measure o;. Compared to the original
point cloud, the derived 3D points X; represent a much smaller
point cloud where each point is assigned a quality measure o;.

Extending this on two frames with m; and my SIFT features,
between which n < min{ml, mz} correspondences have been
detected, yields additional constraints. From the set of all n cor-
respondences, it is now possible to derive subsets of

e 2D/2D correspondences x; <+ x; which can be used for
image-based techniques, e.g. using the fundamental matrix
(Hartley and Zisserman, 2008),

e 3D/3D correspondences X; > Xj which can be used for
techniques based on the 3D geometry such as the ICP algo-
rithm (Besl and McKay, 1992) and approaches estimating a
rigid or non-rigid transformation, or

e 3D/2D correspondences X; <+ xj which can be used for
hybrid techniques such as the methods presented in (Wein-
mann et al., 2011) and (Weinmann and Jutzi, 2011) which
involve the EPnP algorithm (Moreno-Noguer et al., 2007).

The additional parameters o; can also be included for weighting
the influence of each correspondence on any of the algorithms
described above.
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2.6 Point Cloud Registration

The spatial relation between two point clouds with n 3D/3D cor-
respondences X; > X/, with X;, X, € R® can formally be
described as

X, =RX; +t (6)

where R € R**? represents a rotation matrix and t € R? rep-
resents a translation vector. A fully automatic estimation of the
transformation parameters can be derived from minimizing the
error between the point clouds. Including a weighting w; € R for
each 3D/3D correspondence X; <+ X/ yields an energy function
E with

n
E=) w|X;— (RX; +t) | (7)
i=1

for the registration process. For minimizing this energy function
E, the registration is carried out by estimating the rigid trans-
formation from all 3D/3D correspondences and the weigths are
derived from a histogram-based approach. This approach is ini-
tialized by dividing the interval [Om, 1m] into 1, = 100 bins of
equal size. For all detected correspondences, the calculated qual-
ity measures o; and o} assigned to the 3D points X; and X/, are
mapped to the respective bins b; and b;. Points with standard
deviations greater than 1 m are mapped to the last bin. The oc-
currence of mappings to the different bins is stored in histograms
h = [h;],_, 0 and h' = [h]] 100+ Subsequently, cu-
mulative histograms ’

h. = [ZZ: h]':| and h, = [i: h;}
j=1 Jj=1

are derived. The entries of the cumulative histograms reach from
0 to the number n of detected correspondences. As points with
a low standard deviation are more reliable, they should be as-
signed a higher weight. For this reason, the inverse cumulative
histograms

j=1,...

i=1,...,100 i=1,...,100

hc,inv = |n— Z hj (8)
L 3=t dy=1,.. 100
and ) o
W, iy = |n =Y I ©)
L J=1 1i—1 ... 100

are calculated. Finally, the weight w; of a 3D/3D correspondence
X, < X/ is set to

Wi = min{hCyi”w (O—’i)a h;,inu(o—;)} (10)
where o; and o, are considered as quality measures for the re-
spective 3D points X; and X}. Estimating the transformation
parameters can thus be carried out for both range imaging de-
vices separately. However, as the relative orientation between the
devices is already known from a priori measurements and both
devices are running synchronized, the rigid transformation can be
estimated from the respective correspondences detected by both
devices between successive frames. Combining information from
both devices corresponds to extending the field of view and this
yields more reliable results for the registration process. The ex-
tension can be expressed by transforming the projected 3D points
X which are related to the respective camera coordinate frame
(superscript c) into the body frame (superscript b) of the sensor
platform according to

X =R% XS+ t° an
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where R? describes the rotation and t? denotes the translation
between the respective coordinate frames. For this, it is assumed
that the origin of the body frame is in the center between both
range imaging devices.

2.7 Object Detection and Segmentation

As 2D SIFT features have already been calculated for the reg-
istration process, they can also be utilized for detecting special
objects in the scene. This allows for calculating the coarse area
of an object and for automatically selecting features which should
not be included in the registration process as they arise from ob-
jects which are likely to be dynamic. These features have to be
treated in a different way as the static background being relevant
for registration. For this purpose, image representations of sev-
eral objects have to be stored in a database before starting the
surveillance application. One of these images contains a tem-
plate for the object present in the scene, but from a different
measurement campaign at a different place and at a different sea-
son. Due to a similar altitude, the active intensity images show a
very similar appearance. Comparing the detected SIFT features
of the normalized active intensity image to the object templates
in the database during the flight yields a maximum similarity to
the correct template. Defining a spatial transformation based on
the SIFT locations as control points, the template is transformed.
The respective area of the transformed template is then assumed
to cover the detected object. This procedure allows for detecting
both static and moving objects in the scene as well as for decou-
pling sensor and object motion. Hence, the presented approach
for registration also remains reliable in case of dynamic environ-
ments if representative objects are already known.

3 ACTIVE MULTI-VIEW RANGE IMAGING SYSTEMS

The proposed concept focuses on airborne scene monitoring with
range imaging devices. For simulating a future operational sys-
tem involving such range imaging devices fairly realistically, a
scaled test scenario has been set up. However, due to the large
payload of several kilograms for the whole system, mounting the
required components for data acquisition and data storage on an
unmanned aerial vehicle (UAV) still is impracticable. Hence,
in order to investigate the potentials of active multi-view range
imaging systems, a cable car moving along a rope is used as
sensor platform which is shown in Figure 3. The components
mounted on this platform consist of

e two range imaging devices (PMD][vision] CamCube 2.0) for
recording the data,

e anotebook with a solid state hard disk for efficiently storing
the recorded data and

e a 12V battery with 6.5 Ah for independent power supply.

As the relative orientation of the two range imaging devices can
easily be changed, the system allows for variable multi-view op-
tions with respect to parallel, convergent or divergent data acqui-
sition geometries.

However, due to the relatively large influence of noise effects aris-
ing from the large amount of ambient radiation in comparison to
the emitted radiation as well as from multipath scattering, the uti-
lized devices only have a limited absolute range accuracy of a few
centimeters and noisy point clouds can be expected. Furthermore,
due to the measurement principle of such time-of-flight cameras,
the non-ambiguous range R, with

C

R, =
fm

12)

N —
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Figure 3: PMD][vision] CamCube 2.0 and model of a cable car
equipped with two range imaging devices.

depends on the modulation frequency f.,, where co denotes the
speed of light. A modulation frequency of 20 MHz thus corre-
sponds to a non-ambiguous range of 7.5 m. In order to overcome
this range measurement restriction, image- or hardware-based un-
wrapping procedures have been introduced (Jutzi, 2009; Jutzi,
2012). When dealing with multiple range imaging devices, it also
has to be taken into account that these may influence each other
and that interferences are likely to occur. This can be overcome
by choosing different modulation frequencies.

4 EXPERIMENTAL RESULTS

The estimation of the flight trajectory of a sensor platform re-
quires the definition of a global world coordinate frame. This
world coordinate frame is assumed to equal the local coordinate
frame of the sensor platform at the beginning. The local coor-
dinate frame has a fixed orientation with respect to the sensor
platform. It is oriented with the X -direction in forward direction
tangential to the rope, the Y -direction to the right and the Z-
direction downwards. For evaluating the proposed methodology,
a successive pairwise registration is performed. The threshold for
the matching of 2D features is selected as tqes = 0.7. The result-
ing 2D/2D correspondences are projected into 3D space which
yields 3D/3D correspondences. Including the weights in the esti-
mation of the rigid transformation yields position estimates and,
finally, an estimated trajectory which is shown in Figure 4 in nadir
view and in Figure 5 from the side. The green and blue points
describe thinned point clouds captured with both range imaging
devices and transformed to the global world coordinate frame.

¥ [m]

¥ [m]

Figure 4: Projection of the estimated trajectory and thinned point
cloud data onto the XY -plane.

A limitation of the experimental setup seems to be the fact that
no reference values are available for checking the deviation of
the position estimates from the real positions. However, due to
the relative orientation of the sensor platform to the rope, the
projection of the real trajectory onto the XY -plane should ap-
proximately be a straight line. Additionally, the length of the real
trajectory projected onto the ground plane can be estimated from
aerial images or simply be measured. Here, the distance A ground
between the projections of the end points onto the ground plane
has been measured as well as the difference Agititude between
maximum and minimum altitude. From the measured values of
Agrounda = 7 m and Agjritude = 1.25 m, a total distance of
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Figure 5: Projection of the estimated trajectory and thinned point
cloud data onto the X Z-plane.

approximately 7.11 m can be assumed. A comparison between
the start position and the point with the maximum distance on the
estimated trajectory results in a distance of 6.90 m. As a con-
sequence, the estimated trajectory can be assumed to be of rela-
tively high quality. The results for a subsequent object detection
and segmentation is illustrated for an example frame in Figure 6.

Figure 6: SIFT-based object detection and segmentation: normal-
ized active intensity image, template and transformed template
(upper row, from left to right). The corresponding point cloud for
the area of the transformed template and the sensor position (red
dot) are shown below.

5 DISCUSSION

The presented methodology is well-suited for dynamic environ-
ments. Instead of considering the whole point clouds, the prob-
lem of registration is reduced on sparse point clouds of physically
almost identical 3D points. Due to this fact and the non-iterative
processing scheme, the proposed algorithm for point cloud reg-
istration is very fast which is required for monitoring in such
demanding environments. Although the current Matlab imple-
mentation is not fully optimized with respect to parallelization of
tasks, a total time of approximately 1.63 s is required for pre-
processing, point quality assessment, feature extraction and point
projection. Further 0.46 s are required for feature matching, cal-
culation of weights and point cloud registration. This can signif-
icantly be reduced with a GPU-implementation of SIFT, as the
calculation of SIFT features already takes approximately 1.54 s.

Furthermore, the simple estimation of a rigid transformation is
not sufficient, as used 3D/3D correspondences have the same
weight, even if the uncertainty of the respective 3D points is very
high or if outlier correspondences not fitting to the transforma-
tion have been detected. Hence, a quality measure for 3D/3D
correspondences has been introduced which is based on the qual-
ity of the respective 3D points. This quality measure is used for
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weighting the influence of each 3D/3D correspondence on the es-
timation of the rigid transformation. As most of the 3D points
of a frame are assigned a higher quality, the introduced weights
of 3D/3D correspondences with low quality are approximately 0.
Consequently, the presented approach shows similar characteris-
tics as a RANSAC-based approach, but it is faster and a deter-
ministic solution for the transformation parameters is calculated.

6 CONCLUSIONS AND FUTURE WORK

In this paper, an experimental setup involving a moving sensor
platform with multiple and coupled sensor devices for monitor-
ing in low altitudes has been presented. For successive pair-
wise registration of the measured point clouds, a fast and reliable
image-based approach has been presented which can also cope
with dynamic environments. The concept is based on the extrac-
tion of distinctive 2D features from the image representation of
measured intensity information and the projection into 3D space
with respect to the measured range information. Detected 2D/2D
correspondences between two frames, which have a high reliabil-
ity, thus yield sparse 3D point clouds of 3D/3D correspondences.
For increased robustness, the influence of each 3D/3D correspon-
dence is weighted with a new measure derived from the quality
of the respective 3D points. Finally, the point cloud registration
is carried out by estimating the rigid transformation between two
sparse point clouds which involves the calculated weights. As
demonstrated, this approach can easily be extended towards us-
ing the already detected features for object detection and, even
further, decoupling sensor and object motion which significantly
improves the registration process in dynamic environments. The
results indicate that the presented concept of active multi-view
range imaging strongly supports navigation, point cloud registra-
tion and scene analysis.

The presented methodology can further be extended towards the
detection, the segmentation and the recognition of multiple static
or moving objects. Furthermore, a tracking method for estimating
the trajectory of a moving object could be introduced as well as a
model for further stabilizing the estimated trajectory of the sensor
platform. Hence, active multi-view range imaging systems have
a high potential for future research on dynamic scene analysis.
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