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ABSTRACT: 

 

To deal with the problem of spectral variability in high resolution satellite images, this paper focuses on the analysis and modelling 

of spatial autocorrelation feature. The semivariograms are used to model spatial variability of typical object classes while Getis 

statistic is used for the analysis of local spatial autocorrelation within the neighbourhood window determined by the range 

information of the semivariograms. Two segmentation experiments are conducted via the Fuzzy C-Means (FCM) algorithm which 

incorporates both spatial autocorrelation features and spectral features, and the experimental results show that spatial autocorrelation 

features can effectively improve the segmentation quality of high resolution satellite images. 
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1. INTRODUCTION 

High spatial resolution remote sensing imagery obtained from 

satellite (IKNOS, Quickbird, GeoEye-1, WorldView-2, etc) and 

airborne sensors have become increasingly available in recent 

years (Johnson & Xie, 2011). These data provide amazing 

details of the Earth’s surface, but for information extraction 

from complex scene such as urban environment, it is difficult to 

obtain satisfactory results using only spectral information (Byun 

et al., 2011). 

 

It is well known that combining spatial and spectral information 

is a good strategy to improve urban land use classification. 

Features extracted by using co-occurrence matrices, Gabor 

wavelets, morphological profiles, and Markov random fields 

have been widely used in the literature to model spatial 

information in neighborhoods of pixels (Akcay & Aksoy, 2008). 

 

Spatial autocorrelation as spatial information is an inherent 

feature of remote sensing data and a reliable indicator of 

statistical separability between spatial objects. In remote 

sensing，spatial autocorrelation means the spectral dependence 

existing between a pixel and its neighbors, that is, spectral value 

of a pixel is usually not independent but correlated with those of 

its neighboring ones. Spatial autocorrelation provides us the 

structural information between spectral values of pixels, which 

is usually more stable and robust to noise than individual pixel. 

This information may be used to improve the segmentation 

quality or classification accuracy for spectrally heterogeneous 

classes and overcome the current spectral limitations of very 

high spatial resolution satellite images. 

 

The basic approach modelling spatial autocorrelation is to use 

spatial autocorrelation statistics, including global statistics and 

local statistics. Global statistics of spatial autocorrelation such 

as Moran’s I and Geary’s C, are simple summary measures 

which are difficult to uncover the local spatial variability. Getis 

statistic (Ord & Getis, 1995) is a measure of local spatial 

autocorrelation, which is quite effective in distinguishing “hot 

spots” and “cold spots”. Thus, it could be used, for example, to 

identify a group of bright or dark pixels that represent a spectral 

response from a homogeneous feature (Myint et al., 2007). 

Another approach modelling spatial autocorrelation is 

semivariogram, which is a geostatistical function and can be 

used to model spatial variation patterns of typical object classes 

in the image, providing structure information of spatial 

autocorrelation. The range of the semivariogram can be used as 

a measure of spatial dependency or homogeneity (Franklin et al., 

1996) and it has been proved to be directly related to the size of 

objects or patterns in an image (Balaguer et al., 2010). 

Therefore, it may be used to determine the proper window size 

for each pixel in local spatial autocorrelation analysis. 

  

This paper focuses on the analysis and modelling of spatial 

autocorrelation features for improving the segmentation quality 

of high resolution satellite images. The semivariograms are used 

to model spatial variability of typical object classes, while Getis 

statistic is used to calculate the local spatial autocorrelation 

based on range information provided by semivariograms. Two 

segmentation experiments based on Fuzzy C-Means (FCM) 

clustering algorithm (Bezdek, 1981) are conducted. The results 

show that spatial autocorrelation features can effectively 

improve the segmentation quality of high resolution satellite 

images. 

 

 

2. STUDY AREA AND DATA 

In this paper, the experimental data are Quickbird images of two 

different sites in Wuhan, China, with the resolution of 

panchromatic band 0.61 m and multi-spectral band 2.44 m. The 

image sizes of the two sites are 798 pixels×642 pixels and 349 
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pixels×220 pixels, respectively. In this paper, multi-spectral 

bands (band 4, band 3 and band 2) are used for experiments. 

The color images by fusing 4, 3, 2 bands are showed in Figure 1, 

and by field survey, the object classes of site 1 mainly include 

vegetation, waters, roads and ships, and in site 2, its typical 

object classes include buildings, shadows, vegetation and bare 

lands. Most of these object classes are spectrally heterogeneous 

in the images. 

 

  
 (a) site 1  

  

 
               (b) site 2 

Figure 1. Quickbird color images of the study area 

 

 

3. METHODOLOGY 

3.1 Semivariogram 

The semivariogram is a geostatistical function which describes 

the spatial variability of the values of a variable. The 

experimental semivariogram is defined as  
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where z (xi) is a regionalized variable, representing the value of 

the variable at the location xi . The lag h is the vector from pixel 

xi to pixel xi + h, and N (h) is the number of pixel pairs xi and xi 

+ h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Semivariogram and its parameters 

 

Semivariogram has three basic parameters (Figure 2): nugget, 

sill and range. The nugget is an estimate of variance at distance 

(or lag) zero, which may be interpreted as a measure of 

variability inside the pixel cell. The semivariance is a function 

of lag h, and the sill is the maximum semivariance level reached. 

The lag at which the sill reached is the range, which can be used 

as a measure of spatial dependency or homogeneity (Franklin et 

al., 1996) and it has been proved to be directly related to the 

size of objects or patterns in an image (Balaguer et al., 2010). In 

this paper, it is used to guide the selection of proper window 

sizes for local spatial autocorrelation analysis. 

 

3.2 Getis statistic 

Getis statistic is a local indicator describing spatial 

autocorrelation, which provides a measure of spatial 

dependence for each pixel. The standardized Getis statistic  

Gi*(d) is defined as (Wulder & Boots., 1998) 
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where {wij (d)} is a symmetric one/zero spatial weight matrix, 

with ones assigned to all locations within distance d of 

observation i, including i itself (i.e. wii=1), and zero otherwise; 
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are the mean and variance of values of all pixels, respectively.  

 

Getis statistic describes the autocorrelation of a variable in a 

local region, and in particular, it is effective in identifying 

clusters of high values called “hot spots” or clusters of low 

values called “cold spots” in an image. In this paper, it is used to 

calculate the degree of local spatial autocorrelation.  

 

3.3 Window determination by semivariogram and spatial 

autocorrelation analysis by Getis statistic 

Since Getis statistic is a function of distance d, it has the 

characteristics of scale. Therefore, one problem we have to deal 

with is how to select proper parameter d for local spatial 

autocorrelation analysis, which is also a problem determining 

proper window size (defined as (2d+1)*(2d+1)) for each pixel. 

We may take many different d values for repeated experiments, 

but it is time-consuming. Fortunately, the range of the 

semivariogram provides information about the length of spatial 

correlation in the images; pixels (or objects) separated by a 

distance less than the range are spatially correlated, whereas 

pixels at separations longer than the range are not (Meer, 2012).  

 

To make full use of local spatial autocorrelation information, we 

limit window width (2d+1) not exceeding the maximum range 

of all the semivariograms characterizing all selected object 

classes, which could greatly reduce repeated experiments but 

also include autocorrelation information as much as possible 

within the window. In detail, we first select typical objects or 

their samples in the image and then modelled them by 

semivariograms. From semivariograms, the range of spatial 

variability of each object can be determined approximately by 

visual inspection (As window parameter d is a positive integer, 

approximate range values are enough for window 

determination). Then spatial autocorrelation degree is easily 

calculated using Getis statistic by equation (2) within 

neighborhood window (2d+1)*(2d+1). For each spectral band, 

spatial autocorrelation feature band can be obtained by 

assigning the value of spatial autocorrelation degree of each 

pixel to this pixel. 
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3.4 FCM clustering segmentation  

For an image, clustering is a commonly used segmentation 

method, which usually employs spectral information of each 

pixel as feature vector and realize partition of the image in 

feature space by similarity measure.  

 

As a generalization of classical k-means clustering, Fuzzy 

C-Means (FCM) algorithm is also a partition-based clustering 

method, which realizes the soft partition of a data set by 

minimizing the objective function (Bezdek, 1981) 
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By solving the optimization problem (3), we obtain the 
following iterative formula (4) and (5) 
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where ( )ki C NU u  and ( )ki C NV v  are membership 

matrix and cluster prototype matrix, respectively, and xi is the 

ith feature vector, 
kid  is the dissimilarity measure between 

the ith feature vector and the kth cluster prototype, C is the 

number of clusters, N is the number of feature vectors, and m is 

a fuzzy factor (m >1). Note that for {0,1}kiu  , the Fuzzy 

C-Means (FCM) algorithm boils down to the hard c-means case 

(or classical k-means algorithm). 

 

For high resolution satellite images, clustering segmentation 

only using spectral information is difficult to obtain satisfactory 

results due to spectral variability. Spatial autocorrelation feature, 

as spatial information, may be incorporated into clustering 

segmentation algorithm to improve the segmentation quality. 

 

In this paper, segmentation experiments are conducted via the 

Fuzzy C-Means (FCM) algorithm, which incorporates both 

spatial autocorrelation features and spectral features. The 

expected results are that spatial autocorrelation features can 

effectively improve the segmentation quality of high resolution 

satellite images.  

 

 

4. RESULTS AND DISCUSSIONS 

4.1 Semivariogram modelling 

This paper first selects three typical object classes (figure 3) 

from the original image of site 1 (figure 1(a)): vegetation, water 

and road, but the other small objects like ships are not 

considered. The omni-directional semivariograms of theirs are 

calculated in three bands, respectively (figure 4). 

 

           
   (a) vegetation            (b) water         (c) road 

Figure 3. Typical object classes in site 1 

 

From figure 4, we know different object classes correspond to 

different semivariograms, and thus they have different spatial 

variabilities. Semivariograms of water and vegetation are quite 

simple and similar except in band 4, and their ranges are all 

about between 2~4 pixels by visual inspection. Comparing with 

water and vegetation, semivariogram of the road is relatively 

complex, which is continuously fluctuant and unstable when lag 

h exceeds the range, implying that roads have more complex 

variation structure. The range of its semivariogram is about 

between 8~9 pixels. The detailed range information of the three 

object classes in site 1 is listed in table 1. 
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(a) band 4                        (b) band 3                        (c) band 2       

Figure 4. Semivariograms of the three object classes in site 1 in three different bands 

 

 

 

 

 

 

 

Table 1. Ranges of object classes in site 1 

 

This paper focuses on ranges of these object classes, which can  

Table 2. Ranges of object classes in site 2 

 

provide a priori knowledge for the selection of neighborhood 

 Building 1 Building 2 Shadow Vegetation Bare land 

Band 4 10~11 6~8 2~4 2~4 2~4 

Band 3 10~11 6~8 2~4 2~4 2~4 

Band 2 10~11 6~8 2~4 2~4 2~4 

 Vegetation  Water  road 

Band 4 2~4 2~4 8~9 

Band 3 2~4 2~4 8~9 

Band 2 2~4 2~4 8~9 
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windows of spatial autocorrelation analysis，that is, window 

width (2d+1) is less than or equal to the maximum range of all 

the semivariograms characterizing all selected object classes. 

For detailed spatial variation structures or patterns, we have to 

study semivariance function models, which are not concerned in 

this paper.    

 

With the same procedures, we select five typical object classes 

in the image of site 2: building 1, building 2, shadow, vegetation 

and bare land, and by their semivariograms, we obtain their 

corresponding range information listed in table 2.  

 

 

4.2 Spatial autocorrelation analysis 

In this section, spatial autocorrelation analysis is made using 

Getis statistic in three bands of the original image of site 1, 

respectively. In experiments, we take different values for d, 

which do not make the window width (2d+1) exceed the 

maximum range of the typical object classes. By table 1, the 

maximum range is within 8~9 pixels, so the proper value for d 

is 1, 2, 3 and 4. For each spectral band, its spatial 

autocorrelation bands calculated by different parameter ds are 

visualized as images (figure 5). 

 

Figure 5 show that for each spectral band of original image, 

typical object classes (vegetation, water and road) in their 

spatial autocorrelation images are visible, and by the color bar, 

red regions and blue regions in autocorrelation images represent 

higher and lower autocorrelation degree, which correspond to 

“hot spots” and “cold spots” in original image, respectively. The 

autocorrelation images include most structure information of the 

object classes and filter out some small detailed information. 

 

    
(a) band 4, d=1             (b) band 4, d=2              (c) band 4, d=3             (d) band 4, d=4  

 

    
(e) band 3, d=1             (f) band 3, d=2              (g) band 3, d=3            (h) band 3, d=4 

 

    

(i) band 2, d=1             (j) band 2, d=2             (k) band 2, d=3            (l) band 2, d=4  

 

Figure 5. Spatial autocorrelation images of different spectral bands with different window parameter ds 

 

 

4.3 FCM clustering segmentation incorporating spatial 

autocorrelation features 

In this section, two segmentation experiments are conducted via 

the Fuzzy C-Means (FCM) algorithm, which employ the images 

of site 1 and site 2, respectively. The feature vectors for 

clustering segmentation consist of spectral features (three bands) 

and spatial autocorrelation features (also three bands). For 

comparison, the segmentation experiments only employing 

spectral features are also conducted. 

 

In the first experiment, the image of site 1 is used for clustering 

segmentation. As the experiment focuses on the segmentation of 

three typical object classes (vegetation, water and road), cluster 

number is set as C=4. When iterating 30 times, segmentation 

results are shown in figure 6 (a) and figure 7, where figure 6(a) 

is the result of FCM clustering only employing spectral features 

of three bands while figure 7 are the ones that employ both 

spectral features and spatial autocorrelation features (three 

spectral bands and their spatial autocorrelation bands).  

 

The second experiment uses the image of site 2 and for the 

segmentation of five typical object classes, cluster number is set 

as C=6. When iterating 50 times, segmentation results of FCM 

clustering are shown in figure 6 (b) and figure 8, where figure 6 
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(b) is the result of FCM clustering only employing spectral 

features of three bands while figure 8 are the ones that employ 

both spectral features and spatial autocorrelation features. 

               

  

   

(a) site 1                       (b) site 2 

Figure 6. Results of FCM clustering segmentation only employing spectral features 

 

    

(a) d=1                 (b) d=2                  (c) d=3               (d) d=4 

Figure 7. Results of FCM clustering segmentation employing both spectral features and spatial autocorrelation features in site 1 

 when window width (2d +1) is less than the maximum range 

 

     

(a) d=1                    (b) d=3                    (c) d=5                    

Figure 8. Results of FCM clustering segmentation employing both spectral features and spatial autocorrelation features in site 2 

when window width (2d +1) is less than the maximum range 

 

Due to spectral variability, the segmentation results in figure 6, 

which only employs spectral features in FCM algorithm, look 

“broken” and include too many noise-like speckles which 

reduce the homogeneity of segments. 

 

However, FCM clustering segmentation incorporating spatial 

autocorrelation features can obtain more homogeneous 

segments or objects (figure 7 and figure 8). Since window 

parameter d has great effect on calculation of local spatial 

autocorrelation, it also affects the results of clustering 

segmentation. Figure 7 and figure 8 show that as d increases, 

noise-like speckles disappear gradually, and segments are 

becoming more and more homogeneous, but  when window 

width (2d+1) approaches the maximum range of all the 

semivariograms characterizing the selected object classes, the 

edges of some small objects begin to become fuzzy and even 

disappear gradually.  

 

These facts show that the Getis statistic plays the role of a 

low-pass filter and spatial autocorrelation features can 

effectively suppress noise caused by spectral variability in FCM 

clustering segmentation. Therefore, this method can improve 

the quality of FCM clustering segmentation and obtain more 

homogeneous objects. However, there's one point which needs 

attention that improvement of segmentation quality does not 

necessarily mean the improvement of classification accuracy. 

 

 

5. CONCLUSION 

This paper focuses on the analysis and modelling of spatial 

autocorrelation features for improving the segmentation quality 

of high resolution satellite images. The semivariograms are used 

to model spatial variability of typical object classes while Getis 

statistic is used to calculate the degree of local spatial 

autocorrelation. Segmentation experiments are conducted via 

the Fuzzy C-Means (FCM) algorithm, which incorporate both 

spatial autocorrelation features and spectral features. The results 

show that spatial autocorrelation features play the role of a 

low-pass filter which can suppress noise caused by spectral 

variability and therefore improve the segmentation quality.  

 

For future research, we will focus on the determination of 

optimal neighborhood window width within the range of the 

semivariograms by quantitative evaluation on segmentation 

quality or classification accuracy.  
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