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ABSTRACT: 
 
Image Matching is often one of the first tasks in many Photogrammetry and Remote Sensing applications. This paper presents an 
efficient approach to automated multi-temporal and multi-sensor image matching based on local frequency information. Two new 
independent image representations, Local Average Phase (LAP) and Local Weighted Amplitude (LWA), are presented to emphasize 
the common scene information, while suppressing the non-common illumination and sensor-dependent information. In order to get 
the two representations, local frequency information is firstly obtained from Log-Gabor wavelet transformation, which is similar to 
that of the human visual system; then the outputs of odd and even symmetric filters are used to construct the LAP and LWA. The 
LAP and LWA emphasize on the phase and amplitude information respectively. As these two representations are both derivative-free 
and threshold-free, they are robust to noise and can keep as much of the image details as possible. A new Compositional Similarity 
Measure (CSM) is also presented to combine the LAP and LWA with the same weight for measuring the similarity of multi-temporal 
and multi-sensor images. The CSM can make the LAP and LWA compensate for each other and can make full use of the amplitude 
and phase of local frequency information. In many image matching applications, the template is usually selected without 
consideration of its matching robustness and accuracy. In order to overcome this problem, a local best matching point detection is 
presented to detect the best matching template. In the detection method, we employ self-similarity analysis to identify the template 
with the highest matching robustness and accuracy. Experimental results using some real images and simulation images demonstrate 
that the presented approach is effective for matching image pairs with significant scene and illumination changes and that it has 
advantages over other state-of-the-art approaches, which include: the Local Frequency Response Vectors (LFRV), Phase 
Congruence (PC), and Four Directional-Derivative-Energy Image (FDDEI), especially when there is a low signal-to-noise ratio 
(SNR). As few assumptions are made, our proposed method can foreseeably be used in a wide variety of image-matching 
applications. 
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1. INTRODUCTION 

Multi-temporal and multi-sensor image matching is an 
inevitable problem arising in a variety of applications, such as 
multisource data fusion, change analysis, image mosaic, vision 
navigation, and object recognition. Because the reference image 
and the searching image differ in relation to time or the type of 
sensor, the relationship between the intensity values of the 
corresponding pixels is usually complex and unknown. For 
instance, the contrasts of the images may differ, or the scenes 
may change dramatically over time. In other words, the two 
images are not globally correlated. Therefore, multi-temporal 
and multi-sensor image matching presents a challenging 
problem. Note that we assume that the matching image pairs 
have already been registered, hence geometric distortion is not 
discussed in this paper. 
The current automatic matching techniques generally fall into 
two categories: feature-based methods and area-based methods. 
Feature-based methods, which are by far the most popular, 
utilize extracted features, with the most widely used features 
including regions, lines or curves, and points [1-3]. If features 

can be extracted robustly and the feature correspondences are 
reliably established, then the feature-based methods can be 
successfully applied [4, 5]. However, for multi-temporal and 
multi-sensor images, it is very difficult to extract common 
features that exist in both images because of harsh contrast 
changes, different sensors and scene changes. In addition, 
because the templates surrounding each feature point are not big 
enough, the correct rate of feature correspondences is quite low. 
As Figure 1 shows, the reference image is captured by an 
infrared camera, whereas the searching image is captured by a 
visible light camera. We use the most commonly used feature-
based method, SIFT, to detect and then match the feature points. 
From Figure 1, we can easily see that few common features are 
detected and only four pairs of points are correctly matched, 
which is far from meeting the requirements of the application. 
In contrast with the feature-based methods, area-based methods 
usually take advantage of much larger template, which means 
they are able to tolerate more noise and scene changes. The 
area-based methods commonly involve image representation 
and similarity measurement [6, 7]. Some common similarity 
measurements used in the existing matching algorithms are: (i) 
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normalized-correlation, (ii) sum of squared brightness 
differences, and (iii) mutual information [8].  
The image representations commonly used for area-based 
methods are some gradient operators which include: Canny, 
Sobel, Prewitt, Kirsch, Laplacian of Gaussian, and Susan etc.. 
Using these spatial derivative operators, one can emphasize the 
edges, corners, and blobs that represent some illumination 
invariant component of images. However, these gradient 
representations are usually sensitive to noise. Therefore, the 
gradient representations are not able to handle some noisy 
multi-sensor and multi-temporal images efficiently. 
Representation based on local frequency information was 
introduced in [9]. Working in the frequency domain, local 
phase and amplitude information over many different scales and 
orientations were used to construct a dimensionless measure of 
similarity that has high localization. However, due to the un-
weighted local frequency, the algorithm was unable to clearly 
emphasize common information, such as edges and corners. 
Therefore, the performance of our evaluation experiment is 
unsatisfactory. As phase congruence is condition-independent 
and invariant to illumination changes, it was employed to 
represent images in [10]. However, when calculating phase 
congruence with the denominator representing the sum of the 
amplitude in the Log-Gabor expansion spaces, a division 
operator is inevitably involved. As the value of the denominator 
is usually small in the texture-less regions, the method 
presented in [10] is quite sensitive to noise in the texture-less 
regions, as shown in Figure 2. This paper addresses these 
difficulties by using local frequency information obtained from 
Log-Gabor wavelets over many scales and orientations. A 
compositional similarity measurement and a local best matching 
point detection are also presented to make the presented image 
matching approach more robust and accuracy. 
 

 
 
 

2. LOCAL AVERAGE PHASE AND LOCAL 
WEIGHTED AMPLITUDE 

2.1 Local Average Phase 

In this working, the wavelet transformation is used to obtain the 
frequency information which is local to a point in the signals. 
To preserve phase information, the nonorthogonal wavelets in 
the symmetric/anti-symmetric quadrature pairs are adopted. 
Rather than using Gabor filters, we prefer to use Log-Gabor 
functions, because Log-Gabor filters allow arbitrarily large 
bandwidth filters to be constructed, while maintaining a zero 

DC component in the even-symmetric filter. (A zero DC value 
cannot be maintained in Gabor functions for bandwidths over 
one octave [11].)  On the linear frequency scale, the Log-Gabor 
function has a transfer function of the form: 
 
 

 

2
0

2
0

(log( / ))
2(log( / ))( )g e

ω ω

κ ωω
−

=        (1) 

 
 
where 0ω is the filter’s centre frequency. To obtain constant-
shape ratio filters, the term 

0/κ ω must also be held constant for 

varying 0ω . Let I denote the signal, ,
e
s rM and ,

o
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even-symmetric (cosine) and odd-symmetric (sine) wavelets, 
respectively, and 

, ,( ), ( )s r s re x o x denote the even-symmetric and 

odd-symmetric filter outputs at location x .We can think of the 
responses of each quadrature pair of filters as forming a 
response vector, 
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At each point x in a signal, we will have an array of these 
response vectors, with one vector for each scale and orientation 
of the filter. These response vectors form the basis of our 
localized representation of the signal. An estimate of F(x) can 
be formed by summing the even filter convolutions. Similarly, 
H(x) can be estimated from the odd filter convolutions. 
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The average phase is given by  
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where ( )xφ ranging from 0 to 180 can be seen as the phase of 
the sum of the response vectors over many scales and 
orientations. The local average phase which emphasizes the 
phase information of local frequency is used as one of the image 
representations for multi-temporal and multi-sensor images. 
Another representation, Local Weighted Amplitude, is designed 
for extracting the amplitude information of local frequency. 
Apparently, it is independent of LAP. The calculation of the 
LWA is similar to that of phase congruence, except the division 

Figure 1. The 
results of the 
SIFT feature 
detection and 
matching. From 
top to bottom: the 
reference image 
and searching 
image; the results 
of the feature 
detection; the 
results of the 
feature matching 
after outlier 
removal. 
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operator is not introduced, which makes our new image 
representation more robust to noise, even in the texture-less 
image region. 
 
2.2 Local Weighted Amplitude 

In this work, we extend the phase congruence to LWA, which is 
more suitable for multi-temporal and multi-sensor image 
representation. The equation of LWA ( wA ) is expressed as the 
summation of orientations r and scales s: 
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where    denotes that the enclosed quantity is not permitted to 

be negative; ,s rA represents the amplitude at scale s and 

orientation r ; andT compensates for the influence of noise and 
is estimated empirically. ( )r xφ∆ is a sensitive phase deviation 
of the rthorientation and is defined as: 
 
 

( ) ( ), ,( ) cos ( ) ( ) sin ( ) ( )r s r r s r rx x x x xφ φ φ φ φ∆ = − − −
       (7) 

 
 
The calculation of this new LWA, ( )wA x , can be performed 
using dot and cross products between the filter output response 
vectors to calculate the cosine and sine of ( ), ( ) ( )s r rx xφ φ− . 
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Using dot and cross products one can obtain: 
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Clearly, a point of frequency amplitude is only significant if it 
occurs over a wide range of frequencies. Thus, as a measure of 
feature significance, frequency amplitude should be weighted 
by some measure of the spread of the frequencies present. A 
phase significance weighting function can then be constructed 
by applying a sigmoid function to the filter response spread 
value: 
 
 

( ( ))

1( )
1 c s xW x

eγ −=
+

      (10) 

 
 

where c is the ”cut-off” value of the filter response spread, 
below which the frequency amplitude values become penalized, 
and γ is a gain factor that controls the sharpness of the cut-off.  
Eq.6 – Eq.10 give us the quantities needed to calculate this 
version of the LWA without any division operator. 
The LAP and LWA are both used to extract the common 
components of multi-temporal and multi-sensor images, such as 
edges, contours, and blobs. Note that the two image 
representations do not involve any thresholding and, therefore, 
preserve all the image details. This is in contrast to commonly 
used representations (e.g., edge maps, contours, point features), 
which eliminate most of the detailed variations within the local 
image regions. 
 

 
Figure 2. The results of PC and LWA. From left to right: the 
raw image; the PC map; and the LWA map. Note that the LWA 
map is much more robust and stable than the PC map, 
especially in texture-less image regions such as the sky, sea, and 
ground. 
 
 

3. THE COMPOSITIONAL SIMILARITY 
MEASUREMENT 

As discussed above, The LAP and LWA are independent of 
each other. In order to combine the information of the LAP and 
LWA, we present a new similarity measurement: CSM, which is 
able to take advantage of more information than those 
commonly used similarity measures [9, 10] and is therefore able 
to improve the robustness and applicability of image matching.  
The LWA is designed to emphasize the common amplitude 
components for multi-temporal and multi-sensor images, and 
has a stronger anti-noise capability than the commonly used 
Phase Congruence. However, from the theoretic analysis and 
experimental results, we know that the LWA is an image 
contrast-dependent variation. To overcome this problem, we 
employ the zero-mean normalized cross-correlation (ZNCC) as 
the similarity measure function, which is a contrast invariant 
variation. If we define Af and Ag as the corresponding LWA 
map pair, 

Af and
Ag as the mean value within the template 

window W around pixel ( , )x y  in Af and ( , )u v  in Ag , 
respectively, and S  as the searching window, where 
( , ) , ( , )i j W u v S∈ ∈ , the ZNCC can be expressed as follows: 
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Because of the normalization, ZNCC is invariant to image 
contrast linear changes, which can be used to compensate the 
disadvantage of the LWA. 
As the LAP represents the phase of local frequency vectors, it is 
an image contrast invariant variation. Therefore, for efficiency, 
we present an Extended Mean Absolute Difference (EMAD) as 
the similarity measure rather than ZNCC. If we define fp and gp 
as the LAP pair, the definition of EMAD is given by: 

( )( )( , ) 255 ( , ) ( , )P P
i j

EMAD u v f x i y j g u i v j= − + + − + +∑∑   (12) 

If we define 
ZNCCMax as the maximum value of ZNCC matrix and 

EMADMax as the maximum value of EMAD matrix respectively, 
then the newly presented CSM can be expressed as follows: 

( , ) 1 ( , )( , )
1ZNCC EMAD

ZNCC u v EMAD u vCSM u v
Max Maxε ε

+
= +

+ + +
    (13) 

A very small positive constant ε is added to the denominator in 
case of a small 

ZNCCMax and/or
EMADMax . From Equ.13, we can 

see the value range of EMAD and ZNCC are both normalized, 
therefore, they have the same value range. The maximum value 
of the ZNCC component, ( , ) 1

1ZNCC

ZNCC u v
Max ε

+
+ +

, is 1, and the same 

applies to the EMAD component, ( , )

EMAD

EMAD u v
Max ε+

. Therefore, 

the CSM is able to combine the LAP and LWA information 
with equal weight, and make full use of them. 
 
 

4. LOCAL BEST MATCHING POINT DETECTION 

In this work, the goal of local best matching point detection is 
to determine the template which has the highest matching 
accuracy within a certain image region. The centre of the 
template is named as Local Best Matching Point. In order to 
find this template, we must clarify what the feature of the 
template is. If the template centered on a point is shifted, the 
texture within the template obviously changes, and then we can 
know this template is unique, and is also suitable for image 
matching. Therefore, the local best matching point can be 
detected using the self-similarity measurement. We first need to 
evaluate the suitability measurement of each point surrounding 
the target point and then choose the point with the highest 
suitability measurement as the local best feature point. The 
detailed algorithm proceeds as follows: 
(1) Pick a point from the region centered on the target point, 
and then calculate the suitability of the selected point. The 
definition of suitability can be expressed as follows: 
First, as shown in Figure 3, pick another eight points which are 
centered on the selected point, and equally spaced on a circle of 
radius, r; Second, if we define the template centered on the 
selected point as the centre template, and the template centered 
on the other eight points as the neighboring templates, we can 
choose the centre template as the reference template, and 
calculate its self-similarity measurement with neighboring 
templates. In this work, we use ZNCC as the self-similarity 
measurement. If we define ZNCCN

as the self-similarity 
measurement of the neighboring template, then the suitability 
measurement of the template, S , can be defined as: 

 
 

1 ( )NS Max ZNCC= −        (14) 
 
 
where ( )NMax ZNCC is the maximum self-similarity value 
of ZNCCN

.  
(2) Successively pick a point from the region, which are 
centered on the target point with a circle of radius, R, as shown 
in Figure 3. Similar to step 1, get the suitability measurement 
for all these selected points.  
(3) Find the point with the highest suitability measurement, and 
identify this point as the local best matching point.  
(4) Conduct the image matching using the template centered on 
the local best matching point. After matching, based on the 
geometric transformation between the reference image and the 
searching image, calculate the corresponding point of the target 
point.  
 

 
 

Figure 3. Local Best Matching Point Detection 
 
 

5. EXPERIMENTS 

 
5.1 Experiments Using Real Images 

We evaluate the performance of the proposed method using 
some real images, which include: a pair of infrared and visible 
images and a pair of SAR and visible images. We compare the 
matching results obtained from the proposed algorithm with 
those from three existing state-of-the-art methods based on 
Local Frequency Response Vectors (LFRV) [9], Phase 
Congruence (PC) [10], and Four Directional-Derivative-Energy 
Image (FDDEI) [12].  As shown in Figure 4, many target points 
are first selected from the reference image (left), and the interval 
of the target points is 20 pixels. The four different image 
matching approaches then conduct on the searching images 
(right) to search the corresponding points. The size of the 
template is 101(pixel) × 101(pixel), and the size of the 
searching region is 201(pixel)×201(pixel).  If the distance from 
a matching result to its corresponding truth-value is less than 
1.5 pixels, we identify this matching result as correct. The 
Correct Rate obtained from four different methods are shown in 
Figure 5. 
The experiments using real images show that our new method is 
effective for matching multi-sensor and multi-temporal images 
which cannot be effectively handled by the traditional methods. 
From Figure 5, we can see the average accuracy rate of our new 
method is much higher than other methods. Moreover, when 
matching the SAR and Visible images pair, the performances of 
the three traditional methods reduce dramatically. However, our 
new method is still able to robustly handle the image pair. 
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Figure 4. The raw image pair of SAR & Visible and Infrared& 

Visible light 
 

 
Figure 5. Correct Rate obtained from four different methods  

 
 
5.2 Experiments Using Simulation Images 

In order to evaluate the performance of our presented method 
comprehensively, we also do many experiments using 
simulation images. The simulation images are made as follows: 
add Gaussian white noise to the raw image. The Gaussian noise 
is generated by imnoise function of Matlab. The mean of 
Gaussian is given a same value of 0 for all simulation images, 
and the values of the variance are ascending from 0.1 to 3.5. 
Without loss of generality, SNR is employed to describe the 
degree of noise. The definition of SNR goes as follows:  
 
 

( )

( )

2

1 1
10

2

1 1

( , )
10 log

( , ) ( , )

M N

i j
M N

i j

v i j
SNR

u i j v i j

= =

= =

 
 
 = ×
 − 
 

∑∑

∑∑
           (15) 

 
 
Where M, N is defined as the height and width of image 
respectively, ( , )v i j  is the gray value of pixel without noise, 
and ( , )u i j  is the gray value of pixel with noise. If we define 
the value of noise is ( , )n i j  , then we can get the equation: 
 
 

( , ) ( , ) ( , )u i j v i j n i j= +      (16) 

   
   

 
Figure 6. The images with different SNRs. The values of SNRs 

are 5.1728 and -0.0007 from left to right. 
 

The images with different SNRs are shown in Figure 6. The 
experiments using simulation images are similar to experiments 
using real images. We choose the image without Gaussian noise 
as  the reference image, and the image with Gaussian noise is 
used as the searching images. After Image Matching 
experiments, we can get many different correct rates 
corresponding to different SNRs, as shown in Figure7. 
 

 
Figure 7. Correct Rate obtained from four different methods 

with different SNRs 
 

From the experiments using the simulation images, as shown in 
Figure 7, we can easily know that our represented method can 
handle the Gaussian noise robustly. As SNR decreases, the 
correct rates of the three traditional methods decrease 
dramatically. However, the correct rate of our method decreases 
very slowly.  The proposed method has a significant advantage 
in the case of low SNR. 
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6. CONCLUSION 

This paper presents a new matching approach for multi-
temporal and multi-sensor images. We propose the LAP and 
LWA to represent the image. The new representations, which 
are based on Log-Gabor wavelet transformation, are derivative-
free and threshold-free. Therefore, the new representations are 
robust to noise, and can extract the common components of 
image pairs without loss of image detail. The CSM is then 
presented to combine the information from the LAP and LWA 
(independent of each other) with the same weight. Using this 
compositional scheme, we are able to make full use of the LAP 
and LWA to improve the robustness and accuracy of the image 
matching. A local best matching point detection method based 
on self-similarity analysis is presented to choose the template 
with the most distinct feature in the region centered on the 
target point. Compared with the traditional matching methods 
based on local frequency response vectors, phase congruence, 
and four directional-derivative-energy images, our method has 
significant advantage. From the experiments using real images 
and simulation images, we have demonstrated that the presented 
method can obtain more robust and accuracy matching results 
even in the case of very low SNR and for the very noisy SAR 
and visible images. Because few assumptions are made, our 
proposed method can foreseeably be used in a wide variety of 
image-matching applications. 
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