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ABSTRACT: 
 
In this paper we present a fast power line detection and localisation algorithm as well as propose a high-level guidance architecture 
for active vision-based Unmanned Aerial Vehicle (UAV) guidance. The detection stage is based on steerable filters for edge ridge 
detection, followed by a line fitting algorithm to refine candidate power lines in images. The guidance architecture assumes an UAV 
with an onboard Gimbal camera. We first control the position of the Gimbal such that the power line is in the field of view of the 
camera. Then its pose is used to generate the appropriate control commands such that the aircraft moves and flies above the lines. We 
present initial experimental results for the detection stage which shows that the proposed algorithm outperforms two state-of-the-art 
line detection algorithms for power line detection from aerial imagery. 

 

                                                             
*  Corresponding author. 

1. INTRODUCTION 

In recent years, there has been a considerable interest in civilian 

applications of unmanned aerial vehicles (UAVs), especially in 
electrical infrastructure inspection and corridor monitoring 
applications (Li, et al., 2010;Mills, et al., 2010;Rathinam, et al., 
2008). UAVs for this type of tasks offer benefits such as 
reduction in the cost per kilometre of infrastructure inspected. 
However, currently they have payload limitations in size, 
weight and power (SWaP). For this reason, in some 
circumstances onboard sensors used typically for inspection or 

data collection can be seamlessly used for navigation purposes. 
This duality of purpose provides benefits when it comes to 
performing a more accurate inspection task. Most existing UAV 
guidance approaches assume that the location of network assets 
is known and that GPS can provide highly accurate real-time 
position information. However in practice, network GIS data 
available is often incomplete, inaccurate or even non-existent in 
some regions. Vision-based method provides a good alternative 

for navigating UAVs directly over power line networks, 
especially in GPS-denied environments. In vision-based active 
UAV guidance, images taken from a onboard video camera are 
used to estimate the relative position of the plane with regards 
to the objects and assist the UAV navigation. The challenge for 
vision-based navigation is the real-time detection and 
localization aspects.  
 

Objects of interest used for UAV guidance vary from case to 
case. In this paper, we consider object of interest power lines, 
and therefore their location in the sensor frame is proposed for 
UAV guidance. Using power lines to achieve active UAV 
guidance will be very beneficial to perform more advanced and 
optimal aerial inspection tasks. From the sensor perspective, a 
power line is a linear feature with specific width and length that 
changes with the sensor height.  

 
Linear feature detection is an important field in computer vision 
and has been intensively investigated in the past few years 
(Akinlar & Topal, 2011;Nieto, et al., 2011;Von Gioi, et al., 
2010). Most of the recently proposed methods are based on 
either gradient/edge (Akinlar & Topal, 2011;Fernandes & 

Oliveira, 2008;Nieto, et al., 2011;Von Gioi, et al., 2010) or 
ridge/valley information(Jang & Hong, 2002;Koller, et al., 
1995;Steger, 1998). Another well known approach is the Hough 
transform (Hough, 1962). More recently, a fast version called 
kernel-based Hough transform has been proposed by using an 
efficient voting scheme, but produces infinitely long lines rather 
than line segments (Fernandes & Oliveira, 2008). Moreover, it 
detects more false positive lines and the line position is shifted 

from the original position. At gradient/edge level, Line Segment 
Detector (LSD) is a technique that uses connected component 
analysis (CCA) on quantized gradient orientation to obtain co-
linear pixels, then calculate eigenvector of these pixels as line 
segment (Von Gioi, et al., 2010). Although LSD produces 
accurate line segment, the involved region growing on the 
whole image makes it computationally expensive and 
unsuitable for real-time applications. Another gradient/edge 

approach is the Edge Drawing algorithm (EDLines) which 
extracts lines from the edge pixel chains based on the least 
squares line fitting method (Akinlar & Topal, 2011). It is the 
fastest line segment approaches to the best of our knowledge. 
However, both of them respond to all kinds of edges and 
generate two edge lines for a line, which make them unsuitable 
for power line detection. Some authors have considered lines as 
an object with two parallel edges. Koller et al. used two first-
order Gaussian derivative for the left and right line sides 

respectively, and combined the response of the two filters in a 
nonlinear way as the final response of line (Koller, et al., 1995). 
Line can also be estimated by extracting the centre line or ridge. 
Steger computed ridge points by approximating the image with 
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a quadratic polynomial of image convolutions with Gaussian 
derivatives(Steger, 1998). Steger's method can detect centre line 
with subpixel precision. Similarly, Jang and Hong extracted 
ridge points from the distance map generated by performing 
Euclidean distance transform on the edge map, but distance 

transform is slow for a large image (Jang & Hong, 2002). 
 
Generally speaking, existing line detection approaches either 
suffer from heavy computational cost or fail to obtain robust 
feature detection performance. Some so-called “real-time” line 
detection methods often generate too many false positives while 
the object semantics have seldom been considered. In this paper, 
we have evaluated several state-of-the-art line detection 

algorithms for power line detection from aerial imagery. A new 
real-time power line detection algorithm is proposed by using 
steerable filters as well as prior knowledge of objects 
surrounding the environment where the power line is. 
 
 

2. THE STEERABLE FILTER 

2D oriented filters, such as Gaussian filter and Gabor filter, 
have been widely used for robust edge and ridge detection 
(Casasent & Smokelin, 1994;Liu & Dai, 2006;Mehrotra, et al., 
1992). One approach is to convolve the oriented filter with the 
image at each orientation and analyse each filter response. 

Rotating filters at many directions is time consuming, 
especially if one filter is different from another by some small 
rotations. To address this computational cost, Steger proposed 
steerable filters (Steger, 1998). In this section, the idea of 
steerable filter is briefly introduced. 
 
Steerable filters are based on a small number of basis filters 
defined at pre-specified orientations, the filter response rotated 

at arbitrary direction is synthesized from the linear combination 
of these basis filters. These filters can be rotated efficiently by 
the proper interpolation of basis filters. Given 𝑓(𝑥, 𝑦)  as the 

filter response, and 𝑓𝜃 (𝑥, 𝑦) as the filter response rotated at the 
angle 𝜃, the steerable filters can be written in Equation 1.  

 

 
 

𝑓𝜃  𝑥, 𝑦 =  𝑘𝑖 𝜃 𝑓
𝜃𝑖(𝑥, 𝑦)

𝑀

𝑖=1
 (1) 

 

where      𝜃𝑖  = the 𝑖𝑡𝑕  basis angle, 𝑖 ∈ 1,2,… ,𝑀   

                𝑘𝑖 𝜃  = the 𝑖𝑡𝑕  interpolation function 

                𝑓𝜃𝑖(𝑥, 𝑦) = the 𝑖𝑡𝑕  basis function 

                𝑀 = the number of basis filters 

 
Gaussian derivatives are widely used in computer vision due to 
their desirable properties such as steerability. Additionally they 
are band-pass filters which reinforces the response along its 
direction while suppress the response orthogonal to its 
orientation. Generally odd-order filters are used for edge 
detection, while even-order filters are for ridge detection, the 

second-derivative Gaussian is chosen as we focus on ridge 
detection for power line detection. The filters are formed by 
steerable quatrature pair filters - a second-derivative Gaussian 
and its Hilbert transform. This is able to determine the line type 
and direction. 
 
Let 𝐺2  be the steerable filter, its quadrature pair steerable 

quadrature filter 𝐻2  is the approximation to the Hilbert 

transform of 𝐺2. 𝐻2 is achieved by finding the least squares fit 

to a polynomial times a Gaussian in (𝑥, 𝑦). It is found that the 

satisfactory approximation could be achieved by using a third 

order, odd parity polynomial. It means that four basis filters 
suffice to steer the quadrature filter 𝐻2  at any arbitrary 

orientation, and 𝐺2  requires three basis functions. Figure 1 

illustrates the basis filters of 𝐺2  and 𝐻2 . The steerable 

quadrature filter pairs at any direction 𝜃 are implemented:  

 
 
 

𝐺2
𝜃 =  𝑘𝑖

𝐺
3

𝑖=1
(𝜃)𝐺2

𝜃𝑖 𝐻2
𝜃 =  𝑘𝑖

𝐻
4

𝑖=1
(𝜃)𝐻2

𝜃𝑖  (2) 

 

where     𝐺2
𝜃 ,𝐻2

𝜃 = 𝐺2 and 𝐻2 rotated by an angle 𝜃 

               𝑘𝑖
𝐺(𝜃)   = the 𝑖𝑡𝑕  interpolating function for the 

steerable filter, they are 𝑐𝑜𝑠2(𝜃), −2𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛(𝜃), 𝑠𝑖𝑛2(𝜃)  

               𝐺2
𝜃𝑖  = the 𝑖𝑡𝑕  basis filters for the steerable filter. 

               𝑘𝑖
𝐻(𝜃)  = the 𝑖𝑡𝑕  interpolating function for quadrature 

filter, 𝑐𝑜𝑠3(𝜃), −3𝑐𝑜𝑠2(𝜃)𝑠𝑖𝑛(𝜃), 3𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛2(𝜃), 𝑠𝑖𝑛3(𝜃) 

              𝐻2
𝜃𝑖  = the 𝑖𝑡𝑕  basis filters for the quadrature filter 

 

 
(a) 𝐺2 

 
(b) 𝐻2 

Figure 1. The basis filters of 𝑮𝟐 and 𝑯𝟐 

 
In the implementation of steerable quadrature pair filters, the 
first step is to create 2D basis filters. Gaussian function  𝐺(𝑥, 𝑦) 

is the unique rotationally symmetric function with the linearly 
separable property, i.e. 𝐺 𝑥, 𝑦 = 𝑔 𝑥 ∗ 𝑔(𝑦). To facilitate the 

computation, the first and second derivatives of Gaussian 
function and their Hilbert transform is calculated in one 
dimension as well as the polynomial fitting of Hilbert 
transformation. 

 
2D filter convolution with the image is implemented by 
convolving each row in the image with the horizontal projection, 
and then convolving each column with the vertical projection.  
 
 

3. POWERLINE DETECTION ALGORITHM 

In this section, the proposed power line detection algorithm is 
presented. The main idea is to obtain the ridge points rather 
than edges based on the energy functions of the steerable 
oriented filter, and then extract linear features by grouping the 
collinear ridge points. In addition, knowledge is used to 

distinguish power lines from surrounding linear objects. The 
characteristics are summarized as follows: 1) symmetry: 
geometry similarity along the main axis. The left and right sides 
have similar magnitude. 2) elongation:  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡𝑕 ≫
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑖𝑑𝑡𝑕 . 3) parallelism: the left and right borders 

should be locally parallel. 4) homogeneity: the region should be 
homogeneous, and the profile of the region intensities 
resembles a Mexican hat. 
 
3.1 Ridge Points Identification 

Power line segments can be identified by detecting the ridge 
points of the linear patterns. Most previous power line detection 
methods used edge detection-based method, which we believe 
are not appropriate because: 1) a thick power line segment 
represented with more than two pixels in an image will be 
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detected as two parallel edge lines after edge detection; 2) due 
to the complexity of the environment (e.g. nearby linear objects 
such as fences and roads) many false positive edge lines will 
also be detected. In this paper, we propose oriented Gaussian 
filter to detect ridge points in image. 

 
It is well known that Gaussian derivatives perform well to 
detect elongated structures with small width variations along 
their axes, due to 1) they are band-pass filters which suppress 
lines whose width is smaller than a threshold; 2) all pixels 
within the filter kernel are used, which have advantages in 
suppressing the noise (Cai, 2011;Koller, et al., 1995;Steger, 
1998). In this section, two energy functions, oriented energy 

and ridge energy, are analyzed and compared for determining 
the ridge points. 
 
The two-dimensional Gaussian function, 𝐺(𝑥, 𝑦) is utilized: 

 
 

𝐺 𝑥, 𝑦 = 𝑒
−(

𝑥 2+𝑦2

2𝜎2 )
 (3) 

 

 
where      𝜎 = the standard deviation which depends on the line's 

width. It is recommended to set 𝜎 as 𝑤/ 3 in which 𝑤 is the 
line width (Steger, 1998). The kernel size of Gaussian is set to 
±3𝜎 without losing discernible accuracy.  

 

Let 𝐺2
𝜃  and 𝐻2

𝜃  be the steerable quadrature pair filters at the 

angle 𝜃,  ⊗ be the convolution operation, the convolution of 

the pair filters with the image 𝐼 can be obtained as: 

 
 
 𝐺2(𝜃) = 𝐺2

𝜃 ⊗𝐼 𝐻2(𝜃) = 𝐻2
𝜃 ⊗ 𝐼 (4) 

          
The oriented energy 𝐸2(𝜃) , which is the combination of 

response of  𝐺2
𝜃  and 𝐻2

𝜃 , is defined as (Steger, 1998):  

 
 
 𝐸2𝑜 𝜃 =  𝐺2(𝜃) 2 +  𝐻2(𝜃) 2 (5) 

 
 

For any pixel  𝑗, there exist a largest oriented energy at an angle 

𝜃𝑑 . This angle is the principal orientation of the pixel  𝑗.  
 
 
 𝜃𝑑𝑜 =

arg𝑚𝑎𝑥
𝜃

𝐸2𝑜 𝜃  (6) 

 
In order to extract ridge points and exclude more edge points, 
the ridge energy function 𝐸2𝑟 𝜃  is defined as (Cai, 2011): 

 
 

               𝐸2𝑟  𝜃 =  
0  𝐺2(𝜃) 2 −  𝐻2(𝜃) 2 < 0

 𝐺2(𝜃) 2 −  𝐻2(𝜃) 2 𝑜𝑡𝑕𝑒𝑟𝑠𝑤𝑖𝑠𝑒
  (7) 

 
 
The profile of the steerable quadrature filter 𝐻2(𝜃) is for edge 

detection, while the shape of steerable filter 𝐺2(𝜃) is for ridge 

detection. Ridge points would increase the response of 𝐺2(𝜃)  

and suppress the response 𝐻2(𝜃). The ridge energy could be 

treated as the ridge strength of a pixel. If pixel 𝑗's ridge energy 

is smaller than 0, then pixel 𝑗  is categorized to edge pixels, 

otherwise it is ridge pixel. The orientation, at which pixel 𝑗 has 

the largest ridge energy, is the principal orientation of the pixel. 
 
 

 𝜃𝑑𝑟 =
arg𝑚𝑎𝑥

𝜃
𝐸2𝑟 𝜃  (8) 

 

The steerable quadrature pair filters reinforce the energy along 
the direction of the pair filters while suppress the energy 
perpendicular to the direction, thus the ridge points would have 
larger energy than their surrounding pixels. The procedure of 
identifying the ridge points 1) calculating the oriented and ridge 
energy 𝐸2(𝜃, 𝑗) for each pixel 𝑗 at each orientation by steering 

the quadrature pair filters, and then 2) setting the largest value 
of oriented energy and ridge energy 𝐸2(𝜃𝑑 , 𝑗)  functions as the 

value of the pixel  𝑗. If 𝐸2(𝜃𝑑 , 𝑗) is larger than a pre-defined 

threshold, pixel 𝑗 is classified as the ridge point. In this paper, 

we divide [0, 𝜋] into 8 directions 𝜃 =  𝑖/8 𝜋, 𝑖 = 0,1,… ,7 for 
computational efficiency, and locate the largest energy value 
from these 8 directions. 
 

An example of ridge point detection is given in Figure 2 in 
which column (a) represents the original image, and column (b) 
and column (c) are the ridge point detection results by oriented 
filter and ridge energy respectively. As convolution of the 
quadrature filter pairs involves all pixels in the kernel, it is clear 
to see that the noise is filtered out as well as the thin lines 
whose width is smaller than the width of the interest line. It 
should be noticed that the ridge detector only run once and the 
ridge is not thinned out to be one pixel width as other method 

do. The reason is that: 1) a power line might be too weak to be 
thinned, otherwise power line could be broken into to many fine 
segments which makes further long, difficult and inaccurate 
detection process. 2) performing the ridge detector to detect one 
pixel width ridge significantly increases the computational 
burden, which is not suitable for the real-time application. 
 

 

 
                   (a)                           (b)                        (c) 

Figure 2. Examples of ridge point detection 
 
3.2 Line Feature Extraction 

At this stage the ridge points have been detected as candidate 
power lines, but the number of power lines and which ridge 
points belong to power lines are still unknown. Not all linear 
features are power lines, so these noise linear features should be 
removed as they will affect the computation of the direction and 

position of the power lines. The pose of the flying UAV is 
adjusted based on power lines captured by the on-board Gimbal 
camera, so the direction and position of the power lines are 
critical to guide UAV flying directly above the power lines. In 
this section, we will focus on how to extract power lines from 
the candidate ridge points. 
 
Hough transform (HT) is the most widely used method for line 

detection. The major drawback of the HT is the multiple 
response of a line and detection of infinite lines on edge map 
with one pixel width, which makes it unsuitable for power line 
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detection (Fernandes & Oliveira, 2008). Inspired by (Von Gioi, 
et al., 2010), the idea of region growing and connected 
component analysis are adopted in this paper. The connected 
ridge points are grouped into a connected region, and treated as 
a subset of power lines. As the power line region is 

homogeneous, if the difference between the pixel value and the 
average pixel value is smaller than a threshold, that pixel 
belongs to the same power line region. The merging process is 
repeated until no new pixel can be added. 
 
Each connected region is a line, and its orientation and position 
can be calculated from its covariance matrix and the 

eigenvalues (Lee, et al., 2006). Let 𝑅𝑖 = {𝑝𝑗 (𝑥𝑗 , 𝑦𝑗 )|𝑗 =

1,2,… ,𝑚  be the 𝑖𝑡𝑕  connected region with 𝑚  pixels, its 

covariance matrix is computed by 
 
 

            C =  
c11 c12

c21 c22
     c11 =

1

m
 (xj − xm )2

j=1,…,m  

c12 = c21 =
1

m
 (xj − xm )(yj − ym )

j=1,…,m

 

            c22 =
1

m
 (yj − ym )2

j=1,…,m  

 

(9) 

 
where       xm , ym  = the centroid of the connected region Ri,  

xm =
1

m
 xjj=1,…,m , ym =

1

m
 yjj=1,…,m  

 
The line angle θ is defined as  

 

               θ = tan−1 (λ1−c11)

c12
= tan−1 c21

(λ1−c22)
 (10) 

 

where       λ1 = small eigenvalue of the covariance matrix 

 
After detection of connected components, collinear line 
segments are linked to form a long line by using the line fitting 
algorithm. Figure 3 shows an example of line detection result. 

 

 
                (a)                             (b)                            (c) 

 
                                 (d)                             (e) 

Figure 3. Linear feature detection result. (a) original image; (b) 
ridge points; (c)-(d) connected components and their colour 
representation; (e) detected power lines 
 
 

4. ACTIVE UAV GUIDANCE 

The active guidance proposed in this paper assumes that the 
aircraft has a Gimbal camera with at least two degrees of 

freedom (e.g pan and tilt). The aircraft is guided through the 
implementation of two control loops, Gimbal and aircraft 
respectively. We first control the position of the Gimbal such 
that the power line is in the field of view of the camera (𝜃 = 0 

and 𝑇1 = 0). To accomplish this control task we extract two 

variables from the lines. Their distance to the image centre (𝑇1) 

and their orientation with regards to the vertical (𝜃). Figure 4 

illustrates the estimated variables in the image plane. 
 

 
Figure 4. Variables obtained from the image plane for control 

perpose. 𝜃 is the angle with regards to the vertical and 𝑇1 is the 

distance to the image center 
 
Once the Gimbal is actively tracking the power line. Its pose is 
then used to generate the appropriate control commands such 
that the aircraft moves and flies above the lines. This is 
achieved comparing the actual Gimbal pose with the desired 
pose (90 deg tilt and 0 deg pan).  The desired Gimbal pose is 
seen as the pose the Gimbal would have if the aircraft was at 

flight level flying directly above the power lines with the 
Gimbal looking downward. A high level control architecture is 
shown in Figure 5 in which dotted-lines represents the cross-
coupling between the aircraft orientation, the Gimbal pose and 
the position of the features in the image planes. 
 

 
Figure 5. High level control architecture for the active guidance. 
Sub-index 𝒅 denotes desired values and 𝜹 are the commanded 

values. 
 

Overall the control task will command the Gimbal and aircraft 
simultaneously to achieve the desired flight trajectory (directly 
above the power lines). 
 

5. EXPERIMENTS AND RESULTS 

This section presents the experimental results. A number of 
aerial images taken from our flight trials with an UAV have 
been used in the test. The images were taken at altitude ranging 
from 20 to 60 meters above power lines. A power line in an 
image is represented as at least 2 pixels.  
 
Two state-of-the-art line detection methods, LSD (Von Gioi, et 

al., 2010) and EDLines (Akinlar & Topal, 2011), are used to as 
baseline to evaluate the proposed algorithm. Both LSD and 
EDLines detect lines based on edges. To illustrate the 
advantage of using ridges in line detection, the results on a 
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synthetic image is show in Figure 6. From left to right the input 
image with a thick line, line detection with our algorithm,  and 
line detection with EDLine are shown as (a), (b) and (c) 
respectively. From the result, it is obvious that for a line 
represented as more than 2 pixels, edge based line detection 

produces two edges lines. While for ridge based line detection 
there is only one response for a line. 
 
Figure 7 shows more comparison results of our algorithm and 
the two baseline algorithms in real images. Each row in Figure 
7 represents a test set and the columns from left to right are the 
input image and the results of EDLines, LSD and our algorithm 
respectively. Overall, the proposed algorithm obtained better 

detection results with less false positive lines than the EDLines 
and LSD. Moreover, as stated before, EDLines and LSD cannot 
be used to estimate the number of power line as they are based 
on edges. However, it is noted that some fence lines (Figure 7 
(d)) and road centrelines (Figure 7 (c)) have also been detected. 
Discriminating these very similar line features from power lines 
could be very difficult given no elevation clues can be used 
from image only. A line feature tracking scheme in the power 

line detection process will be helpful in the future.    
 

 
                         (a)                    (b)                      (c) 

Figure 6. Illustration of ridge-based and edge-based line 
detection on a synthetic image 

 
To achieve real-time vision-based UAV guidance, the 
processing speed of the computer vision algorithm is of great 
importance. Compared to EDLines and LSD, the proposed 
algorithm is much faster because the line fitting are conducted 
in the filtered image using steerable filters. While line fitting 
and pixel searching are applied to the all edges for EDLines and 
time-consuming region growing method is applied on the 

gradient map of the whole image for LSD. 
 

Table 1.  Comparison of computational time 

Image Size EDLines (ms) LSD (ms) 

Our algorithm 

(ms) 

(a) 477×411 12.4 100 3.4 

(b) 604×704 12.4 100 3.9 

(c) 566×369 9.2 800 2.1 

(d) 960×960 40.6 1400 14.7 

(e) 1178×714 44.4 1600 19.2 

(f) 1111×685 37.7 1200 17.3 

 
 

6. CONCLUSION 

This paper presented a fast power line detection method and a 
UAV active guidance control concept. The two steps involved 
in the proposed detection algorithm are: 1) identifying ridge 
points from the energy functions of a steerable filter; 2) line 
fitting on the detected ridge points using connected component 
analysis. The proposed algorithm can reduce false positive lines 
and is computationally efficient. The experimental results 
against two state-of-the-art line detection algorithms 

demonstrate the performance of the proposed algorithm.  
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Figure 7. Results Comparison: each row represents a test set, column 1 are the original images, column 2-4 are the detection results 
by EDLines, LSD and our algorithm respectively.  
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