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ABSTRACT: 

Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have 
attracted great attention for Hyperspectral Image Classification. The manifold learning methods are popular for 
dimensionality reduction, such as Locally Linear Embedding, Isomap, and Laplacian Eigenmap. However, a 
disadvantage of many manifold learning methods is that their computations usually involve eigen-decomposition of 
dense matrices which is expensive in both time and memory. In this paper, we introduce a new dimensionality reduction 
method, called Spectral Regression Discriminant Analysis (SRDA). SRDA casts the problem of learning an embedding 
function into a regression framework, which avoids eigen-decomposition of dense matrices. Also, with the regression 
based framework, different kinds of regularizes can be naturally incorporated into our algorithm which makes it more 
flexible. It can make efficient use of data points to discover the intrinsic discriminant structure in the data. Experimental 
results on Washington DC Mall and AVIRIS Indian Pines hyperspectral data sets demonstrate the effectiveness of the 
proposed method. 

1. INTRODUCTION 

Hyperspectral image processing has become one of the 
hot topics in recent twenty years, because the 
hyperspectral images contain much useful information, 
and the information plays an important role in the 
development of society and economy. Hyperspectral 
images combine imaging techniques with the spectral 
techniques together, are widely used in civil and military 
areas. Compared with the moderate dimension images, 
hyperspectral images can get a finer spectral curve, also 
provide stronger evidence to the recognition of ground 
covers. Though the high resolution, the hyperspectral 
images inevitably contribute to information redundancy 
and difficulty to data processing. In order to solve these 
problems, we should reduce the dimensions of the 
images, because with the increase in the number of the 
dimensions, the number of the training samples must be 
increased exponentially [1]. 
 
Broadly speaking, there are many approaches to the 
dimensionality reduction [2], such as Principal 
Component Analysis (PCA) [3], Linear Discriminant 
Analysis (LDA) [4], Kernel Principal Component 
Analysis (KPCA) [5] and Neighborhood Preserving 
Embedding (NPE) [6]. These methods will result in a 
large consumption of time, money and energy, because 
they are all involved with the eigen-decomposition of 
dense matrices. As a matter of fact, the Principal 
Component Analysis (PCA) is a linear feature extraction 

method, whose shortcoming is that it extracts the 
principal information, but ignores the secondary 
information [7]. The Kernel Principal Component 
Analysis (KPCA) will improve the time complexity of 
the eigen-decomposition of a kernel matrix and decrease 
the speed of feature extraction for test samples. The 
Linear Discriminant Analysis (LDA) cannot directly 
apply the corresponding discriminant criterion to case of 
that the within-class scatter matrix is singular. Since the 
main goal of the Neighborhood Preserving Embedding 
(NPE) is to preserve localities or similarity ranking, these 
algorithms is appropriate for retrieval or clustering rather 
than for classification.  
 
To overcome the above shortcomings, a novel 
dimensionality reduction method, Spectral Regression 
Discriminant Analysis (SRDA), is presented in this paper. 
Spectral Regression Discriminant Analysis (SRDA) has 
recently emerged as a powerful and efficient tool for 
dimensionality reduction and manifold learning. This 
method uses information contained in the eigenvectors of 
a data affinity matrix to reveal the low dimensional 
structure in high dimensional data. The most popular 
manifold learning algorithms include Locally Linear 
Embedding [8], Isomap [9], and Laplacian Eigenmap [2]. 
However, these algorithms only provide the embedding 
results of training samples. With regression as the 
building block, various kinds of regularization 
techniques can be easily incorporated in SRDA which 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

503



makes it more flexible. And SRDA can be used in 
supervised, unsupervised and semi-supervised situations. 
It can make efficient use of both labeled and unlabeled 
points to discover the intrinsic discriminant structure in 
the data.  
 
The rest of the paper is arranged as follows. Part 2 is the 
detailed description of our proposed method. Part 3 will 
discuss some results of related experiments and the last 
part, the 4th part will draw some conclusions about all 
mentioned. 

 
 

2. SPECTRAL REGRESSION DISCRIMINATE 
ANALYSIS (SRDA) 

The Spectral Regression Discriminant Analysis (SRDA) 
will be introduced by three subsequent aspects. First of 
all, a graph embedding view of dimensionality reduction 
is mentioned, which is the fundamental of the SRDA. 
Secondly, the Spectral Regression Discriminant Analysis 
(SRDA) is discussed. Last but not the least, theoretical 
analysis is described. Details will be given by follows. 

 
2.1 Graph Embedding View of Dimension Reduction 

Given a data sample m
iix 1}{   in nR , the purpose of 

dimensionality reduction is to find a low dimension 

representation of }{ ix , here we name the low 

dimension representation ndRz dm
ii  ,}{ 1  . In 

recent ten years, no matter what presentations, many 
methods have been contributed to deal with this problem.  
All related algorithms, such as PCA, NPE, LDA, KPCA, 
can be efficiently interpreted in a general graph 
embedding framework [5, 10, and 11]. 
 
Consider a graph G with m vertices, and a vector 
presents a data point. W is a m×m matrix also is 
symmetrical and Wij has the weight of edge joining 
points i and j [12]. Graph embedding is to present each 
vector by a low dimension vector. 
 
Define y=[y1,y2,y3,...,ym] as the map from the graph to 
real line, let L = D - W, D is a diagonal matrix with 
entries are the column sum of W, so the optimal y will be 
obtained through minimizing 

            
ji

ijji Wyy
,

2)(             (1) 

under appropriate constraint. When the vertices i and j 
are mapped far apart, the objective functions incur a 
heavy penalty. Therefore, minimizing it is an attempt to 
ensure that if vertices i and j are “close” then yi and yj are 
close as well. So we can elaborate it in simple 
formulation as follows: 
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So, the minimum problem changes to find 
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Also, we can obtain the optimal y by solve the maximum 
eigenvector of         
                   DyWy                (4)  

 

Now define i
T

ii xaxfy  )(  as the map from the 

graph to real line, Eq.(1) can be written by:          
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aXWXa

Dyy
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a

TT
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T
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There X=[x1,x2,…,xm].Correspondingly, the optimal a is 
the eigenvector of the minimum eigenvalue of the follow 
eigen-problem:   

                  aXDXaXWX TT       (6) 
 
This method is named as Linear extension of Graph 
Embedding (LGE), and if we choose the different W, we 
get other’s methods of dimensionality reduction, such as 
LDA, NPE and LPP. Generally speaking, solving the 
eigen-problem of the Eq.(4) calls for not only time but 
also memory. And when the number of features is larger 
than the sample data, there is no efficient approach. 
Though we can seek Singular Value Decomposition for 
help, the complexity of the computation will increase. 

 
2.2 Spectral Regression Discriminant Analysis 

Seeking new method to solve the problem in Eq.(6) is an 
urgent task. First of all, we introduce a theorem as 
follows: 
Theorem 1: Define y as the eigenvector of the 
eigen-problem in Eq.(4), and whose eigenvalue is λ. If 

yaX T  , so a is the eigenvector of the eigen-problem 

in Eq.(6) with the same eigenvalue λ [13]. 
 
From theorem 1, we can solve the eigen-problem in 
Eq.(6), and the linear embedding functions can be 
obtained by two main steps: firstly, get y by solve the 
eigen-problem in Eq.(4). Secondly, search for the optimal 

a, make it satisfy yaX T  . As a matter of fact, the a 

maybe not exist. Practical solutions can be found through 
the follow equation: 

              



m

i
ii

T

a
yxaa

1

)(minarg 2    (7) 

Here yi represent the i-th element of y. 
 
The obvious advantage of the above two-way method is 
that the matrix D can be firmly proven to be positive 
definite and the solution to the eigen-problem in Eq.(4) is 
stable. In addition, the least square problem will be 
efficient solved since the related technique is nearly 
mature no matter the scale of the matrix is large or small 
[14]. 
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When the number of the sample data is smaller than the 
features', the minimum problem shows ill posed. There 
will be a lot of solutions to the linear equation 

system yaX T  . Common method is to bring in a 

norm 

      ))((minarg
1

22



m

i
ii

T

a
ayxaa     (8) 

 
This is called regularization, and the α is the parameter of 
scale control [15]. The third advantage of two-way 
method is that with the regularization can be 
incorporated to the model of regression; we can obtain 
stable and significant solutions [15]. 
 
This algorithm conducts regression processing after 
spectral analysis of the graph, so we name it the Spectral 
Regression Discriminant Analysis, or SRDA in short 
form [16]. 

 
2.3 Theoretical Analysis 

With the regularized least squares, the SRDA can get the 
embedding function. When the parameter to control the 
amount of shrinkage α > 0, the regularized solution 

cannot fit the linear equation system yaX T  , also a is 

not the eigenvector which satisfies the eigen-problem in 
Eq.(6) [17]. In addition, we should be care of that when 
the SRDA gives the exact solutions to the eigen-problem 
in Eq.(6). Here, we have the theorem follows: 
Theorem 2: Suppose y is in the space spanned by row 
vector of X, the corresponding projective function a 
calculated in SRDA will be the eigenvector of the 
eigen-problem in Eq.(8) as α decreases to zero. 
 
In a broad sense, we can get following corollary: 
Corollary 1: If the vectors of sample data are linearly 
independent, that is, rank(X) = m, all the projective 
functions in SRDA are the eigenvectors of the 
eigen-problem in Eq.(4) as α decreases to zero. These 
solutions are identical to the linear graph embedding 
solutions in section 2.1 [18]. 
 
SRDA seeks the projective functions by regularized least 
square, and this is the necessary steps in supervised case 
as well as the unsupervised case. In supervised case, 
SRDA has linear-time complexity, which is only 
concerned with m and n, while LDA has cubic-time 
complexity, and it is related to the minimum of m and n. 
Obviously, SRDA shows more advantages than LDA. In 
unsupervised case, SRDA uses regression to find out the 
projective functions, and the time complexity can be 
computed linearly, in addition this process almost cost 
little memory. Some linear extension methods, such as 
LDA, NPE obtain the projective functions through 
solving the dense eigen-problem. They need cubic-time 
complexity cost with about (m+n)  min(m,n) cost of 
memory. Also, SRDA is superior to the mentioned 
approaches above. 

 

 
3. EXPERIMENTAL RESULT 

In this part, we will carry out experiments on two dataset 
by the SRDA algorithm for classification to compare the 
effectiveness of SRDA with other methods. The first 
dataset is called Washington DC Mall, which has a 
dataset of 11414 samples which are all the labeled 
experiments, and the label ranges from 1 to 9. Each 
sample contains 12 bands. The second dataset is called 
AVIRIS Indian Pines, which has a dataset of 145*145 
samples, also the samples are all labeled, which ranges 
from 1 to 15. Each sample contains 220 bands. 

 
3.1 Experiments on Washington DC Mall 

In order to investigate the performance of our proposed 
SRDA, we should start our experiments in following 
steps. 
 
1) For each label, we find out 320 samples as 
experimental samples, that is to say, this dataset needs 
320*9 samples; 
 
2) For the chosen 320 samples, l(=5, 10, 15, 20) datum 
are randomly selected for training and the rest 300 datum 
are used for testing; 
 
3) The 1-nearest neighbor classifier is applied in PCA, 
KPCA, NPE and SRDA subspace. For PCA, KPCA and 
SRDA, the number of the subspace dimension is 12, 
while the counterpart of NPE is 7. The curves of 
recognition rate vs. dimension are shown in Fig.1. And 
the max recognition rates of each method are also 
reported in Tab.1. 
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Tab.1 The max recognition rates on Washington DC 
Mall(%) 

 

 

From Fig.1 and Tab.1, we can find that with increasing in 
the number of the training samples, the recognition rate 
increases. Also, we can notice that the SRDA shows the 
best performance around all the methods, that is to say, 
the SRDA, we proposed algorithm, always has the 
highest resolution. 

 
3.2 Experiments on AVIRIS Indian Pines 

In this section, we conduct our experiments in following 
steps: 
 
1) There are 16 labels in this dataset. In order to conduct 
the experiments reasonably, we reduce 6 labels whose 
sample numbers are all less than 320. Thus we need 
320*10 samples, and each sample contains 220 bands; 
 
 
2) As described above, for the chosen 320 samples, l(=5, 
10, 15, 20) datum are randomly selected for training and 
the rest 300 datum are used for testing; 
 
3) The 5-nearest neighbor classifier is applied in PCA, 
NPE and SRDA subspace. For PCA and SRDA, the 
numbers of the subspace dimension are 40, while the 
NPE’s are 14, 40, 40 and 40. The curves of recognition 
rate vs. dimension are shown in Fig.2. And the max 
recognition rates of each method are also reported in 
Tab.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Training Size NPE 
KPC

A 
PCA SRDA

5×12 76.70 79.11 75.53 79.32 

10×12 85.87 83.40 83.69 87.21 

15×12 89.57 85.74 85.52 89.83 

20×12 90.67 87.70 87.62 91.51 

(b) 10 Training Samples 

(c) 15 Training Samples 

(d) 20 Training Samples 

Fig.1 The curves of recognition rate vs. Dimension 
 of different training samples of each approaches
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Tab.2 The max recognition rates on AVIRIS Indian Pines 

(%) 

 
 
From the Fig.2 and Tab.2, we also can observe that the 
SRDA also has a higher recognition rate, compared with 
the PCA and NPE, especially when the number of the 
training samples increases to 20, the recognition of 
SRDA is the highest. Also with the number of training 
samples turns large, the recognition rate increases, and 
this is true to PCA and SRDA, but not fit with the NPE. 
And this is related to the neighbor classifier. 

 
3.3 Discussion 

The experiments on Washington DC Mall and AVIRIS 
Indian Pines have reflected some significant points. 
 
1) All methods mentioned in this paper shares higher 

classification with the increase in the number of the 
training samples, expect NPE when it is applied in 
5-nearest neighbor classifier.  
 
2) The NPE, KPCA, and PCA are all involved with 
eigen-decomposition of dense matrices, which is 
computational expensive. While SRDA only needs to 
solve c-1 regularized Least-Squares Problems which are 
efficient. Here the c represents the number of classes. 
 
3) When the number of training samples is small, the 
same dimensions cannot be access to all these methods. 
So we have to change the dimensions to meet the 
demands of the experiments.  

 
 

4. CONCLUSIONS 

In this paper, we developed an efficient and useful 
approach for dimension reduction, which is called the 
Spectral Regression Discriminant Analysis (SRDA). This 
method avoids the difficulty of eigen-decomposition and 
casts the problem of learning an embedding function into 
a regression framework, which is a huge save of time and 
memory. As we all know that, the SRDA can conduct 
discriminant analysis of large-scale high-dimensional 
data. With experiments, we can easily find that the 
SRDA shows higher recognition rate by comparison to 
other methods such as NPE, LDA, PCA and KPCA.  
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