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ABSTRACT:

This paper presents a motion detection and object tracking technique for digital video surveillance applications. Motion analysis algo-

rithms are based on processing of multiple-regression pseudospectrums. Complete object detection and tracking scheme is described.

Results of testing on public PETS and ETISEO test beds are outlined.

1 INTRODUCTION

The video surveillance is one of the key technologies of modern

security systems. Digital video surveillance presumes the visual

control of some territory with one or more video cameras, that

allows storing and viewing digital video data, continuously eval-

uating the state of controlled region and detecting some changes

in observed scene as “security events”.

The main drawback of traditional video surveillance systems pro-

viding raw video to a human operator is a serious decreasing

of operator’s response capability, while the system is growing

in size. This problem is especially urgent in case of city-level

surveillance systems. Well-known business case is an implemen-

tation of video surveillance system in London, Great Britain in-

cluding tens of thousands of cameras in a single network and

more than half a million cameras in the whole city. Unfortu-

nately, it did not provide a serious reduction of crime incidents

or increasing of crime detection rate. Now we know that it is not

enough just to broadcast cameras’ video to the surveillance cen-

ter. Video should be processed and alarms should be generated in

real-time to attract the attention of operator in critical situations.

So, the design of high-performance intellectual video analytic

systems is a very actual practical task. Moreover, such intelli-

gent systems can address both security and counterterrorism ob-

jectives, and can be of use in some business applications. For

example, they can collect statistical information about the atten-

dance of observed object, distribution of visitors over time, main

routes of movement, etc. Other possible application is a traffic

monitoring and so on.

The Motion analysis is a basis of all intelligent video surveillance

technologies. In particular, it provides the fundamentals for au-

tomatic detection and tracking of moving objects and automatic

detection of new or disappeared objects of observed scene. It is

the well-studied area of computer vision including many differ-

ent techniques. The brief overview of these techniques is given

in next section.

This paper contains a description of proposed technique accom-

panied with testing results on PETS (PETS video database, n.d.)

and ETISEO (ETISEO video database, n.d.) public video test

beds.

2 RELATED WORKS

The motion detection and tracking problem is widely studied all

around the world. There are lots of methods and algorithms, that

detect motion and trace moving objects. Let us dwell on main

approaches in video analysis task. First one is the optical flow

approach (Horn and Schunck, 1981, Nagel, 1983, Barron et al.,

1994). It was the first mentioned in (Horn and Schunck, 1981).

This approach is based on finding the pixel speed from previous

to current frames. Let I(k) be an input image pixel matrix with

width w and height h on frame number k. It is assumed that the

brightness of a point remains constant during a short period of

time, which is expressed by the equation

dI(k)x,y
dk

= 0.

Hence we get an equation

∇I(k)x,y · (u, v)T +
∂I(k)x,y

∂k
= 0,

where (u, v)T – vector of pixel movement.

Hence optical flow speed (u, v)T can be found via iteration method

from (Horn and Schunck, 1981, Barron et al., 1994). In different

books and papers the number of required iterations varies, but to

achieve a good result you have to make over 100 iterations over

full image, what is very time consuming.

The optical flow approach is useless if image sequence contains

large amount of pixel noise. The next correlation approach (Anan-

dan, 1989, Singh, 1992) is based on computing correlation func-

tion of some area and minimizing it in surrounding region to find

the best match for it and speed vector (u, v)T . Most of correla-

tion algorithms are based on minimization of SSD-function (Sum

of Squares Difference):

SSDk(x, y, u, v) =

=

i=n
∑

i=−n

j=n
∑

j=−n

Wi,j (Ix+u+i,y+v+i(k + 1) − Ix+i,y+i(k)) ,

where Wi,j is weight function for the area.
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In (Anandan, 1989) SSD-function is sequentially optimized by

the Laplacian pyramid. Minimum is found for all levels of the

pyramid to begin with the highest level (the smallest image) and

dropping to the lowest level (the whole image). Speed vector is

being obtained more accurate on each level. In (Singh, 1992)

minimum of SSD-function is found through iteration process.

But correlation approach is not robust too because it strongly de-

pends on invariability of scene brightness. In (Heeger, 1988) fre-

quency approach is proposed. This approach is based on “power”

function, evaluated as the Gabor filter (Gabor, 1946) with fre-

quencies Lx, Ly , ω:

R(u, v) = exp

{

−4π2σ2
xσ

2
yσ

2
k(uLx + vLy + ω)

(uσxσk)2 + (vσyσk)2 + (σxσy)2

}

,

where σx, σy, σk – standard Gabor filter derivatives.

Speed vector (u, v)T is found during minimization of function

f(u, v) =

12
∑

i=1

mi −mi
Ri(u, v)

Ri(u, v)

with respect to u and v, where mi – measured power value, Ri –

predicted power value, mi and Ri are average power values.

3 REGRESSION PSEUDOSPECTRUMS

In this section we introduce the notion of multiple-regression

pseudospectrums.

Let again I(k) be an input image pixel matrix with width w and

height h on frame number k, I(k) ∈ IRw×h. It is assumed that

I(k) is a grayscale image, so 0 ≤ I(k)x,y ≤ 255 ∀x =
1 . . . w, y = 1 . . . h. Let us call Mn(k) an regression accu-

mulator of n frames with parameter α, calculated on frame k. It

will be a matrix Mn(k) ∈ IRw×h(Box et al., 1994):

Mn(k + 1) = αMn(k) + (1− α)I(k). (1)

You can calculate the accumulator value Mn(k) on frame k by

adding each older member in series (1):

Mn(k) = (1− α)

k−1
∑

i=0

α
k−1−i

I(i). (2)

Let us assume that l(k) is an element of the image matrix I(k)
and mn(k) is an element of the accumulator matrix Mn(k) with

the same coordinates, as l(k). Let us suppose that on an initially

zero input of accumulator (2) since some moment k0 (without

loss of generality, let k0 = 0), during enough long time some

signal with intensity l is being given:

mn(k) = l(1− α)

k−1
∑

i=0

α
k−1−i = l(1− α

k). (3)

Now it’s quite simple to find such α, so that mn(k) would surely

exceed β share of signal l after n frames:

mn(n) = l(1− α
n) = βl.

Hence

αn = n

√

1− β. (4)

Thus, αn is such time averaging parameter, at which the accu-

mulator sum will be equal to mn(n) = βl through n frames. At

the same time n here can be called β memory length or, simply,

length of accumulator memory with the corresponding averaging

parameter αn = n

√
1− β.

Given αn can be found as (4), the whole accumulator sum in one

pixel at variable frame k can be found as

mn(k) = l(1− α
k
n) = l

(

1− (1− β)k/n
)

. (5)

The mn(k) graphs for different αn, n = 4, 8, 16, 32 values are

shown in Figure 1, supposed β = 0.5, l = 100, k0 = 10.

Figure 1: Accumulated pixel mn(k) for different αn.

Thus, time averaging parameter αn, defined in (4), is in fact the

satiety parameter of the filter response function. It allows to judge

after which time (in frames) n accumulated sum will be equal to

βl.

According to (5), αn possesses the multiplicity property:

αn = α
s
n·s. (6)

Indeed, αs
n·s =

(

n·s

√
1− β

)s
= n

√
1− β = αn. Let us call

Dn,s(k) = mn(k)−mn·s(k)

a difference between the responses of accumulators with multi-

ple smoothing parameter n and n · s. By (6) and assuming that

some signal with intensity l is being given from time k0 = 0, this

difference will possess a very interesting property:

Dn,s(n · s) = mn(n · s)−mn·s(n · s) = (7)

= l

(

1− (1− β)
n·s

n

)

− l

(

1− (1− β)
n·s

n·s

)

=

= l(1− β)
(

1− (1− β)s−1
)

= l(1− β)

s−1
∑

i=1

β
i
.

Consider the behaviour of derivatives Dn,s(k) function. Let s =
2 and β = 0.5. Then, according to (7), difference between accu-

mulator with memory of 2n frames and accumulator with mem-

ory of n frames will be equal to

Dn,2(2n) = 0.25l. (8)

Figure 2 shows differences Dn,s between accumulators with vari-

able n and s = 2, l = 100.
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Figure 2: Pseudospectrum: accumulator derivatives Dn,s(k).

As you can see, quadruplicate difference of multiple accumula-

tors 4 · Dn,2(k) is a partially convex function on the segment of

the signal presence. This maximum is single and equal to l, more-

over, it is reached on the frame with number 2n (if this maximum

can be reached at all).

Thus, first order regression derivatives behaviour with multiple

memory length recalls spectral decomposition, or rather signal

wavelet transformation. Let us call a multiple-regression pseu-

dospectrum – set of differences of first-order regressive accumu-

lators (7) with multiple characteristics of memory length by a

sequence of powers of two: 1, 2, 4, 8, . . . (view Figure 2). This

pseudospectrum allows to qualitatively and quantitatively investi-

gate both the duration and amplitude of the input time signal such

as ”meander.”

If the maximum of differences between the responses has been

consistently achieved for all accumulators with memory length

N , but for accumulator with memory length n = N+1 predicted

signal maximum was not reached, it means that a constant input

signal had a length of 2N frames, and then began to decrease or

was otherwise dramatically changed.

Similarly, we can make conclusions about the magnitude of the

signal. Cause Dn,2(2n) = 0.25l, for all n whose maximum was

reached,

l = 4Dn,2(2n). (9)

Expected maximum value of Dn,2(k) can be easily found, for

example, for n = 1. Further it should be compared with the

value of differences between accumulators Dn,2(k) for other n

until maximum on frame k = 2m will be less than all previous

maximums for n < m.

Now consider the problem of determining the sensitivity thresh-

old of the algorithm, detecting the changes of brightness in im-

ages. Figure 3 shows the shape of multiple-regression pseudospec-

trum for the case of shorter time of signal presence on the image

sequence.

Apparently, for lesser duration of the signal, lower frequency

components of pseudospectrum start to move in the negative di-

rection from higher initial values (after a reaction to the passage

of the front edge of the signal) and thus achieve the appropriate

extremum (in this case it will be minimum) at values lower in

magnitude than the specified threshold, based on the expected

drop estimate (8). Figure 3 illustrates it well by the function

D16,2(k) (the lowest frequency component of the presented pseu-

dospectrum). However, this problem can be solved if we jointly

consider a pair of consecutive pseudospectrum components.

Consider previous D8,2(k) to D16,2(k) pseudospectrum compo-

nent on Figure 3. Since its response to input signal change is

Figure 3: Dynamic brightness threshold correction based on

pseudospectrum.

much faster, it crosses the zero line much earlier, according to

signal disappearance. At this point, the value of current D16,2(k)
component still significantly greater than zero. This value (the

value of the D16,2(k) pseudospectrum component when preced-

ing component D8,2(k) crosses zero line) is proposed to mem-

orize for each pixel and then to use in dynamic corrections to

the threshold that detects brightness changes. As shown in Fig-

ure 3, detection of the back front of the signal with the threshold

with dynamic correction is successful even in case of significantly

short, compared with the characteristic time of accumulation of

this pseudospectrum component, input signal.

Analysis of the introduced multiple-regression pseudospectrums

is particularly useful in the case of image analysis that studies

moving objects or left/missing items. Since, on the one hand, the

object’s motion relative to the background due to the effect of

image pixels obstruction generates in each individual pixel tem-

poral ”meander” signal, which has clearly defined leading and

trailing edges (brightness fluctuations over time). On the other

hand, the possibility of signal analysis based on the difference

between the accumulators with multiple memory lets you signifi-

cantly decrease processing time of machine vision systems. Since

estimates of the time signal characteristics must be obtained in-

dependently for each image pixel, in the case of using more com-

plex statistics than the accumulated sums, the necessity to cal-

culate the corresponding parameters estimates of the time signal

directly leads to a huge increase of either computation time, or

use of the program memory, or both.

4 ALGORITHMIC SCHEME

In this section we introduce the algorithmic scheme, which in-

cludes image preprocessing, motion detection and object track-

ing.

Objects detection and tracking are implemented as a modular

three-stage procedure:

1. Detection of moving pixel groups based on pseudospectrum

analysis.

2. Forming of object hypotheses and interframe object track-

ing.

3. Spatiotemporal filtration of object motion parameters.

Let us consider first and second stages of this procedure.

Detection of moving pixel groups is performed as follows:
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• Calculate Dn,2(k) pseudo-spectrums for various n, for ex-

ample, n = 2, 4, 8, 16 in each pixel of the image on frame

number k.

• If signal exits in some pixels, then |Dn,2(k)| in them will

be greater than zero. It can be or a signal from the object, or

some noise on the image sequence. To make an algorithm

more robust, we should filter the noise with some threshold.

This threshold can be found adaptively on each frame using

methods described above.

• Divide the whole accumulator image on many square parts

using grid. Assume each small square as moving if its value

is greater than threshold and not moving (background) oth-

erwise. Let us call these small image squares moving image

elements ω1 . . . ωm.

Moving object is created from moving image elements ω1 . . . ωm.

Various moving elements exist for all values of n (or don’t exist

if there’s no moving objects on video sequence on current frame).

It’s obvious that pseudospectrums with longer memory are more

robust to noise, but it takes longer to react for them, when a sig-

nal in some pixels starts being received. Pseudospectrums with

shorter memory react to a pixel signal much faster, but they react

to noise as well as to a real signal. So if an element is a moving

one, its signal should exist on most of faster pseudospectrums.

And if it is a new or disappeared object, its signal should ex-

ist on most of slower pseudospectrums. Let us suppose that we

have a set of moving objects Λ1 . . .Λs1 and set of new or dis-

appeared objects ∆1 . . .∆s2 on a previous frame, set of moving

image elements ω1 . . . ωm1 and elements that concern to new or

disappeared objects ω1 . . . ωm2 on current frame. So we must

somehow associate all objects with their new regions. Let us see

hypotheses forming for moving objects:

• No object associates with the moving element. So this mov-

ing element belongs to a new object.

• No moving element associates with the object. This object

is treated as lost on this frame. Maybe it will be found in

future.

• Several moving elements are associated with the object. This

object is treated as found on this frame. New position is cal-

culated for it.

• Several objects are associated with one moving element.

This case is called a “collision”. It’s the most difficult case,

it should be treated very carefully. We have to use additional

algorithms to parse this conflict.

As a result, on each frame we have a number of moving objects

with their unique IDs and a number of new or disappeared objects

with their unique IDs too.

5 EXPERIMENTAL RESULTS

Described algorithms were tested using the private video bases

and public domain video bases like PETS (PETS video database,

n.d.), ETISEO (ETISEO video database, n.d.). Typical screen-

shot of object tracking visualization is presented on Figure 4.

We created an algorithm analyzing and testing block that is based

on comparison of automatic object detection and tracking results

with results of manual object marking. Performance is measured

in FPS (frames per second processed). Detection probability is

estimated in terms of “precision” and “recall”.

The “Precision” is a percentage ratio of real (human-marked) ob-

jects traced by the algorithm to all number of objects traced by

algorithm. Simply put, 100% minus precision is a percentage of

outliers provided by algorithm. The “Recall” equals is a percent-

age ratio of human-marked objects found by the algorithm to all

number of human-marked objects in a sequence, i.e. 100% minus

recall means percentage of real objects that were not found by the

algorithm somehow.

The table 1 contains some video sequences from PETS and ETISEO

databases and corresponding processing results. FPS was espe-

cially estimated for budget PC configuration: Intel Atom N270

1600 MHz processor and 1 Gb of RAM memory.

6 CONCLUSION

The problem of automatic video analysis for object detection and

tracking is the most significant algorithmic topic in the digital

video surveillance. The new motion analysis and object tracking

technique is presented. Motion analysis algorithms are based on

forming and processing of multiple-regression pseudospectrums.

The object detection and tracking scheme contains: detection of

moving pixel groups based on pseudospectrum analysis; forming

of object hypotheses and interframe object tracking; spatiotem-

poral filtration of object motion parameters. Results of testing on

public domain PETS and ETISEO video test beds are outlined.
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Video name Frame dimensions Detection Type Precision Recall FPS

PETS-2001-SEQ1-CAM1 768x576 Moving objects 80% (8/10) 100% (8/8) 110

PETS-2001-SEQ1-CAM2 768x576 Moving objects 88% (8/9) 100% (8/8) 109

PETS-2006-S1-T1-C3 720x576 Moving objects 74% (26/35) 85% (24/28) 115

ETISEO-VS2-BE-19-C2 768x576 Moving objects 100% (4/4) 100% (4/4) 110

ETISEO-VS1-AP-5-C5 720x576 Moving objects 88% (8/9) 100% (6/6) 124

ETISEO-VS1-AP-5-C7 720x576 Moving objects 100% (9/9) 100% (7/7) 124

ETISEO-VS2-BC-17-C1 640x480 New/diss. objects 66% (2/3) 100% (2/2) 142

ETISEO-VS1-BC-12-C1 640x480 New/diss. objects 100% (1/1) 100% (1/1) 144

Table 1: Video analysis algorithms testing results

Figure 4: Sample frame of PETS-2001-SEQ1-CAM1 video sequence. Objects, tracked on this frame: walking man (7), moving car (5)

and parking car (3).
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