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ABSTRACT: 
 
Modern pixel-wise image matching algorithms like Semi-Global Matching (SGM) are able to compute high resolution digital surface 
models from airborne and spaceborne stereo imagery. Although image matching itself can be performed automatically, there are 
prerequisites, like high geometric accuracy, which are essential for ensuring the high quality of resulting surface models. Especially 
for line cameras, these prerequisites currently require laborious manual interaction using standard tools, which is a growing problem 
due to continually increasing demand for such surface models. The tedious work includes partly or fully manual selection of tie- 
and/or ground control points for ensuring the required accuracy of the relative orientation of images for stereo matching. It also 
includes masking of large water areas that seriously reduce the quality of the results. Furthermore, a good estimate of the depth range 
is required, since accurate estimates can seriously reduce the processing time for stereo matching. In this paper an approach is 
presented that allows performing all these steps fully automated. It includes very robust and precise tie point selection, enabling the 
accurate calculation of the images’ relative orientation via bundle adjustment. It is also shown how water masking and elevation 
range estimation can be performed automatically on the base of freely available SRTM data. Extensive tests with a large number of 
different satellite images from QuickBird and WorldView are presented as proof of the robustness and reliability of the proposed 
method. 
 

1. INTRODUCTION 

Data from imaging remote sensing systems is a primary 
source for a huge variety of geo-spatial products and services. 
New technologies permit the generation of high resolution 
digital surface models (DSM). These products allow the 
generation of highly accurate orthophotos. In combination, 
these two types of products provide a standardized three-
dimensional spatial reference for each pixel including all 
spectral information (e.g. red, green, blue, height). This 
information is a prerequisite for most geo-spatial data 
products and services. Especially if their spatial resolution is 
in the sub-meter range, they offer a huge number of 
applications in the fields of change detection, urban noise 
modeling, radio propagation, flooding simulation, opencast 
mining, etc. Moreover, the new and quickly growing market 
of public on-line geo-information services (e.g. Google Earth, 
Bing Maps 3D, etc.) currently creates a very strong demand 
on these products in order to provide detailed landscape and 
city models. 
For the creation of such high resolution DSMs, Semi-Global 
Matching (SGM) (Hirschmüller, 2005 and 2008) turned out 
to achieve better results in many cases than other stereo 
matching methods (Hirschmüller and Bucher, 2010) and 
other technologies, e.g. LIDAR (Gehrke, 2010) or Radar. 
Moreover, stereo matching can be performed much more 
economically than its technological alternatives, as it does not 
require additional sensors. The images used for matching are 
required anyway in most cases. Despite of its relatively high 
computational complexity, the computation time can be 
handled very well by parallelization and/or optimization for 
special hardware like graphic cards (Ernst and Hirschmüller, 
2008) and FPGAs (Gehrig et al., 2009; Hirschmüller, 2011). 
But in order to achieve optimal results there are some prepro-
cessing steps, needed to meet the algorithm’s prerequisites. 

While the computation time was drastically reduced, the time 
consumption for these laborious steps became the critical part 
of the whole procedure. Therefore, during the last years, 
many different components have been developed to solve this 
problem (Hirschmüller, 2005 and 2008; Wohlfeil, 2010 and 
2012).  Their combination leads to a very operational solution 
for highly automated generation of high resolution digital 
surface models with high throughput. As most of the current 
imaging sensors with spatial high resolution are line scanners, 
using the pushbroom principle (e.g. WorldView 1/2, GeoEye, 
QuickBird, Pleiades), it is focused on this type of sensors. 
 

 
Figure 1: Overview of the processing steps 

 
Since dense matching is typically slow, the search range 
should be limited. The search range in the images can be 
computed from the height range of the terrain. An automatic 
solution of this problem is presented in Section 3.6. 
For computing geometrical reconstructions from images, the 
intrinsic and extrinsic geometry of cameras must be known. 
The intrinsic camera geometry (interior orientation) is 
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typically known due to camera calibration. For line cameras 
the extrinsic parameters (exterior orientation) essentially 
consists of 6 degrees of freedom for every captured camera 
line. Dense stereo matching requires that the remaining 
geometric error is less than 1 pixel in image space. However, 
if possible it should be below 0.5 pixels. Since the absolute 
pointing accuracies of satellites are much worse, the exterior 
orientation must be optimized with respect to a precise 
relative orientation, using homologous points (also called tie 
points). Especially for line imagery there was a lack of 
software for performing this task robustly and reliably. With 
an integrated approach, presented in the Sections 3.1 to 3.3 of 
this paper, this problem is solved.  
If the requirements in terms of relative orientation cannot be 
met, the resolution of the DSM has to be reduced. This task is 
also being automatized with the help of a suitable accuracy 
measure, introduced in Section 3.4. 
Another problem is water, which cannot be matched, since 
images are taken at different times, causing different textures 
in every image based on the movement of waves. Thus water 
should be identified, ignored while matching and smoothly 
interpolated from the shore, later on. The automatic water 
masking is described in Section 3.5. 
An overview of the processing chain is given in Figure 1. The 
only manual interaction that remains is the selection of the 
suitable stereo imagery and its housekeeping data (initial 
exterior and interior orientation, etc.), described in the 
following Section. 
 

2. PREPARATION 

For the generation of DSMs one or more groups of images 
are specified. Each group contains two or more images that 
are to be matched via SGM. If possible, the images of each 
group should be captured 

- with a large overlap, in which matching can be performed 
- with different along-track viewing angles (pitch angles) 
- at similar seasons and daytimes in order to avoid large 

differences of shadows and vegetation, which can reduce 
the quality of the result 

If it is not possible or not economic to meet these conditions, 
processing is possible as well, but the quality and resolution 
of the resulting products will be suboptimal, but still very 
useful for many application. 
The images of different groups should partly overlap. This is 
important to enable the generation of one large and continu-
ous DSM of the entire captured area. The homologous points, 
found in the overlapping areas, allow a global alignment of 
the images, reducing spatial discontinuities of the DSM 
between the areas in a high degree. It is also recommendable 
to use groups with different across-track viewing angles (roll 
angles) for the same area in order to resolve most of the 
occlusion in urban areas. At the current stage of development 
the selection of the images is performed manually because 
this only takes a few minutes. There are very good prospects 
to automatize even this step as well (see Section 5). 

 
3. PROCESSING 

3.1 Height Range Determination 

One important parameter for SGM process is the maximal 
occurring disparity i.e. the size of the search range for 
matching. This parameter negatively influences the result of 
the algorithm if set too low, which results in the search for 
matches being cancelled too early. If – on the other hand - it 
is set unnecessarily high, it slows down processing, since the 

computation time of the process depends on the size of the 
search range. 
Finding the right value for this parameter is essentially a 
matter of finding the maximum and minimum height in the 
scene being processed. We achieve this by consulting the 
digital elevation data of the Shuttle Radar Topography 
Mission (SRTM) of the year 2000.  
The SRTM data is freely available on the web from the U.S. 
Geological survey1, providing an elevation model of the 
world in 3 arc-second resolution. This information is 
downloaded and evaluated when needed and a safety buffer 
of 400 meter is added to allow for buildings and other 
deviations from the model. 
 
3.2 Automatic and robust tie point selection 

The relative orientation of images is optimized by bundle 
adjustment, which requires a sufficient number of homolo-
gous points visible in two or more images. Several ap-
proaches for automatic point selection were developed in the 
last decades. The general approach is to select small salient 
image regions (features) in one image and to find the 
corresponding image regions in the other images. This can be 
performed via cross correlation or the efficient implementa-
tion (Bouguet, 2000) of the KLT feature tracker (Tomasi and 
Kanade, 1991). In case of unknown scale and rotation differ-
ences between images, approaches like SIFT (Lowe, 2004) 
and SURF (Bay et al., 2008) are preferable. However, 
satellite images are typically provided with a good initial 
orientation and the KLT feature tracker is by far more 
efficient than the other options. 
Independent of the approach used for feature matching, there 
is always the problem of mismatches that can occur under 
suboptimal conditions. Especially if several difficulties like 
moving objects and shadows, repetitive patterns, changing 
vegetation and illumination, specular reflections, water sur-
faces, perspective distortion etc. come together, the number 
of mismatches easily exceeds the number of correct matches, 
even by multiples. In such cases almost all approaches for 
automatic point selection fail miserably. 
Two steps are vital to successfully process such difficult 
imagery. First, possible radiometric differences between 
images due to different spectral band characteristics of 
sensors, changed vegetation and sun angle have to be 
compensated as far as possible. This is performed by adaptive 
radiometric balancing (as explained in A.2.4 of Wohlfeil, 
2011). Second, the majority of mismatches have to be 
determined and eliminated already during tie point selection 
by a consistency check of redundant matches. Therefore, 
image features are being matched redundantly from every 
image to any other image in all possible directions. The 
consistency of different matches can then be checked. 
 

F Position  C 1 2 3 4 5 
1 x1,y1  1 X X  X X 
2 x2,y2  2 X X  X  
3 -  3      
4 x4,y4  4 X X  X X 
5 x5,y5  5 X   X X 

 

Table 1:  Exemplary information associated with one feature 
in N = 5 possible images. The feature is apparently not visible 
in image 3 and it couldn't be tracked between images 5 and 2. 
The score associated with this feature is 56% (14/25) 
 

                                                                 
1 http://dds.cr.usgs.gov/srtm/ 
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If SIFT or SURF feature descriptors are used it can be 
checked if corresponding features match each other better 
than any other feature (as explained in Wohlfeil, 2010). Much 
better performance has been achieved using the above 
mentioned KLT feature tracker and a special matching 
algorithm that is explained in this contribution. 
 
3.2.1 Redundant Matching with Consistency Check 
 

First, in all of N possibly overlapping images, features are 
determined according to Shi and Tomasi (1994). A given 
minimum distance between features limits their number and 
ensures a good distribution. For each of the selected features 
an N×N connectivity matrix C is created with one single 
positive entry at C(i, i), denoting that the position of the 
feature is yet only known in image i. All other entries are 
initialized negative. Also a vector of feature positions F is 
created for every feature with F(i) set to the feature’s position 
in image i. Next, the following algorithm is performed, 
written in pseudo code: 
 
FOR every tuple of images i and j with 𝑖 ≠ 𝑗 
   FOR all features with a positive entry in C(i,i)  
      Try to track the feature from image i to image j  
      (using the KLT feature tracker) to the position f.  
      IF tracking was successful 
         IF C(j,j) is positive 
            IF |F(i) – f | > dmax (with dmax ~ 0.5 pixel) 
              Feature positions are inconsistent. Discard feature. 
            ELSE  
              Set C(i,j) positive (tracking from i to j is consistent) 
            ENDIF 
         ELSE 
            Set C(j,j) and C(i,j) positive (first tracking from i to j) 
            Set F(j) to f 
         ENDIF 
      ENDIF 
   ENDFOR 
ENDFOR 
 
C is made symmetric by setting all elements C(i,j) negative 
for which the corresponding element C(j,i) is negative (Table 
1). The number c of the remaining positive elements of C is 
then used to calculate the rating 𝑟 = 𝑐 𝑁2⁄  for every feature.  
 
3.2.2 Multi Resolution Matching Approach 
 

In mountainous areas the displacement of features can differ 
by many hundreds or thousands of pixels in different images. 
For the KLT feature tracker such large displacements lead to 
many mismatches. With a simple approach this can be 
avoided. The previously explained feature matching 
algorithm is performed at two levels of image resolution. 
All images are scaled down to a manageable size (~10 
Megapixel) and are matched, resulting in a feature list Fglobal, 
providing information about the rough relative alignment of 
the different image regions. 
With this information, corresponding image tiles with a 
reasonable size and full resolution can be extracted from the 
original images. The algorithm is then repeated with each of 
these tiles. For all of the performed test it was enough to 
process only 30% well distributed tiles of the whole image 
area to retrieve enough homologous points for a reliable and 
accurate bundle adjustment. More points do not improve the 
results significantly, but unnecessarily increase the 
calculation time 
All features whose offset is larger than the maximum possible 
disparity (according to the limited height range), are regarded 

as outliers and removed from the list. Features showing a 
relatively high deviation (>2σ) are removed as well. 
Finally all features are sorted by descending rating and only 
the best are kept. Despite of the consistency check and 
statistical analysis there can still be a relevant amount of 
incorrect matches among the remaining features. But even in 
challenging situations their number is low enough to detect 
and eliminate them during the bundle adjustment. 
 
3.3 Bundle Adjustment 

As the positions of the center of projection can be determined 
with sufficient precision via GNSS for every captured line, 
only the errors in orientation determination – the rotational 
offsets between the measured and the real camera rotation - 
have to be determined together with the 3D-positions of 
homologous points. Depending on the platform and the 
orientation measurement system these rotational offsets drift 
slowly over time. These drifts are modeled by an orientation 
correction function, consisting of 𝐿 = 1. .𝑁 sets of rotational 
offsets, defined for equidistant points in time and interpolated 
over time via quadratic Bezier curves (Wohlfeil, 2010). The 
temporal distance between the correction parameter sets is 
chosen according to the drift characteristics of the orientation 
measurement error.  
Similar to the adjustment of frame images, the appropriate 
parameters of all rotational offsets are determined with the 
help of the selected homologous points. While the correction 
of a frame image’s orientation is typically expressed by a 
single spatial rotation, the orientation correction function of a 
line image has more correction parameters. In both cases 
correction parameters have to be found that meet best the 
collinearity constraints for all homologous points.  
The C implementation of sparse bundle adjustment from 
(Lourakis and Argyros, 2004) is used for performing this 
task. Due to errors in the automatically determined 
homologous points, bundle adjustment must be performed 
repeated in order to detect and eliminate incorrect points. 
They are detected due to their residuals, which are 
significantly larger than the RMS of all residuals. In practice, 
a threshold of three times the RMS worked well in all cases. 
 
3.4 Preventing loss of the absolute orientation 

After bundle adjustment with homologous points, the relative 
orientation of the involved images is optimal. But if no 
information about the measured absolute orientation of the 
images is given to the bundle adjustment, the accuracy of this 
orientation can get lost. This is especially the case for remote 
sensing satellites with a small field of view, such as most 
high resolution sensors with a narrow swath (i.e. few 
kilometers). Due to the small field of view and the large 
distance of the satellite from the earth, the rays of light 
corresponding to different pixels of the image are almost 
parallel. Due to that, the error function is very flat in terms of 
the absolute orientation. As a result, very small errors in the 
positions of the homologous points cause the absolute 
orientation to drift far away. 
This can be prevented by integrating ground control points 
(with known positions in object space) in the bundle 
adjustment. But the measurement of their positions is very 
laborious and not always possible.  
The problem is solved by using a small subset of homologous 
points remaining after bundle adjustment as pseudo ground 
control points. Their position is determined by spatial 
intersection of corresponding lines of sight, using the directly 
measured orientation. Finally, one additional bundle 
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adjustment is performed including both, homologous points 
and pseudo ground control points. In this way, the accuracy 
of absolute orientation can be retained at the level of direct 
geo-referencing capabilities of the remote sensing system 
while the relative orientation is improved without any ground 
control points. 
 
3.5 Accuracy Determination 

After bundle adjustment, the accuracy of the relative 
orientation is optimized. However, due to small errors in the 
determination of points, but also due to errors in the interior 
orientation, insufficiently uncorrected atmospheric effects, 
etc. the accuracy is limited and varies from scene to scene. 
SGM requires a relative orientation that allows the prediction 
of epipolar lines with less than one pixel of divergence in 
image space. In order to assure that this requirement is met, 
the resolution of matched images, and so the resulting DSM, 
must be reduced, if necessary.  
In order to check and reduce the DSM resolution 
automatically a special measure is introduced. It measures 
how accurate the epipolar curves (they are actually curves in 
line images, instead of lines) can be predicted. The epipolar 
curve is predicting possible locations of a point of image i in 
image j according to the given (interior and) exterior 
orientation of both images. As the images of one scene can be 
captured with different sensors, their resolution and geometry 
can differ. Therefore, the epipolar curve is projected onto a 
plane at mean terrain height, resulting in the curve 𝑐𝑖𝑗. 
𝑑(𝑐𝑖𝑗 , 𝑙𝑖) is defined to be the minimum distance between 𝑐𝑖𝑗, 
and the line of sight li corresponding to the point in image i. 
This distance can be calculated for all homologous points for 
any tuple of images i and j being matched. Finally, the RMS 
of all distances calculable for the given set of homologous 
points is defined to be the epipolar error ee. It represents the 
overall-accuracy of a set of images in terms of SGM. 
The epipolar error should not exceed half the GSD, in order 
to meet the constraints of SGM Matching. If it exceeds half 
the GSD of any of the involved images, the images have to be 
down-sampled to a GSD of 2 ∙ 𝑒𝑒. At the same time, this 
GSD is the resolution of the resulting DSM (GSDDSM). This 
means that, after calculating the epipolar error from 
homologous points used for bundle adjustment, the GSDDSM 
can automatically be chosen to achieve both, the best possible 
resolution and quality of the result. 
 
3.6 Water Masking   

There have been numerous research efforts into water body 
extraction from satellite imagery. (Zhaohui, 2003) relies on 
water bodies having a smooth untextured surface and can 
only detect large bodies. (Bovolin et al, 2006) suggest using 
the IR spectral band. Unfortunately, there exists no general 
solution to segment all sorts of water bodies in a limited 
number of spectral bands or even a panchromatic image.  
Fortunately, the U.S. Geological survey provides data on 
water bodies and coastlines in the resolution of the SRTM 
elevation data. The contours are downloaded for the given 
area. As both, the accuracy of the water mask and absolute 
pointing accuracy of the satellite is limited, water areas are 
dilated a suitable distance. The resulting contours are then 
simplified to facilitate processing (Figure 2). 
The SRTM data has already been manually processed and 
contains all types of water bodies, but it has the obvious 
disadvantage of not always being up to date, due to the 
volatile nature of coastlines. As a fall back mechanism, the 
user is provided the option to manually correct the mask.  

 

 
 

Figure 2: Dilated water mask generated from SRTM. The 
simplified water polygons are drawn white with blue edges. 

 
3.7 SGM Image Matching 

As soon as the mentioned requirements are met, stereo 
matching can be applied to overlapping images for 
computing a dense reconstruction of the scene. For a long 
time, local, correlation based methods dominated 
photogrammetry. Due to the size of the correlation window, 
resulting surface models have a lower spatial resolution than 
the input images. Fine structures are lost and object 
boundaries are smoothed. In contrast, global methods permit 
pixel-wise matching, which is guided by a global smoothness 
constraint. The resulting surface models have the same 
resolution as the input images, but global methods typically 
have a high processing time, which prevent their use for real 
world problems. The Semi-Global Matching (SGM) method 
provides a very good trade-off between accuracy and 
processing speed (Hirschmüller, 2005 and 2008). 
SGM performs matching of corresponding pixels along 
epipolar lines. Since, in general, line images cannot be 
rectified such that epipolar lines are exactly aligned with 
image rows, line images are projected onto a horizontal plane 
and matching is performed along calculated epipolar lines 
(Hirschmüller et al., 2005). As matching cost, Census is used, 
for radiometric robustness (Hirschmüller and Scharstein, 
2009), which is very important in satellite imagery, due to 
typically large time differences, which causes different 
shadows. 
 

 
 

Figure 3: Reconstruction of Mt. Everest in 50 cm/pixel from 
World View satellite images, provided by DigitalGlobe 
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The SGM method itself uses a smoothness constraint that 
penalizes neighboring pixels with different depth values. The 
matching cost and the smoothness constraint are expressed in 
a global cost function that is minimized by pathwise 
approximation. SGM is not sensitive to the choice of 
parameters, which is very important in practice since hand 
tuning of parameter is avoided. 
The inner processing loop of SGM is very regular and only 
compares and adds integer values: This allows very efficient 
CPU implementations using vector commands as well as 
implementations on graphic cards (Ernst and Hirschmüller, 
2008) and FPGAs (Gehrig et al., 2009; Hirschmüller, 2011). 
SGM produces dense matching results in the resolution of the 
input images (Figure 3). Typically, fine structures as well as 
sharp object boundaries are precisely reconstructed. 
Therefore, the method is very well suited for matching 
airborne as well as satellite images (Gehrke et al., 2010; 
Hirschmüller and Bucher, 2010). 
 

4. TESTS AND RESULTS 

The presented method for automatic processing has been 
tested with many different sets of stereo imagery from 
QuickBird II (QB2), WorldView I (WV1) and WorldView II 
(WV02), kindly provided by DigitalGlobe. From many 
successfully processed scenarios from 16 different sites of the 
world, the results of four exemplary cases were selected to be 
presented in detail. 
The first scenario consists of two WorldView I stereo triples 
of Berlin (Figure 4), an urban area with some small lakes and 
soft elevations. Every triple, consisting of a forward, nadir 
and backward scan, was taken within a few minutes from the 
same orbit. Experience has shown that with this configuration 
the best relative orientation between the images can be 
achieved. Indeed, the relative accuracy over all images was 
very high (Table 2), and the epipolarity error ee below half 
the GSD. This means that the DSM can be generated at the 
original resolution (GSDorig) of 0.55 m. 
The second scenario is CapeTown (Figure 5), a mainly flat 
urban area with high elevations in between and a coastline to 
the sea. All nine images were captured at different seasons. 
Therefore, the relative accuracy is much lower than in the 
previous scenario. But at least a DSM with a GSDDSM of  
2 ∙  𝑒𝑒 =  0.83 m was achieved. 
For the mountainous Dunedin scenario four stereo pairs were 
used. Two of them were taken by WorldView I and two by 
WorldView II. A similar accuracy as in as the Cape Town 
scenario was achieved. 
 
Scene Berlin 1 Cape 

Town 
Dunedin Berlin 2 

Sensors 2*3 WV1 1 WV1, 
8 WV2 

2*2 WV1, 
2*2 WV2 2*2 QB2 

Area 500 km² 430 km² 580 km² 700 km² 
GSDorig 0.55 m 0.55 m 0.57 m 0.63 m 
er 0.22 m 0.38 m 0.35 m 2.5 m 
ea 4.46 m 1.84 m 10.1 m 4.24 m 
ee 0.24 m 0.43 m 0.39 m 1.86 m 
tPreparation 1.23 hours 2.15 hours 0.88 hours 0.25 hours 
GSDDSM 0.55 m 0.76 m 0.70 m 3.72 m 
tSGM 40 hours 41 hours 87 hours 0.17 hours 
 

Table 2: Results of the tests. er: The RMS of the spatial 
distances of corresponding lines of sight of independently 
selected homologous points (relative accuracy). ea: The RMS 
of the distances of the lines of sights from the GCP's absolute 
positions (absolute accuracy). ee: epipolarity error. 

Finally, another scenario from Berlin was chosen, consisting 
of two Quickbird stereo pairs. All images were taken at 
different times and seasons. Despite of that, the automatic tie 
point selection worked very well. The achieved relative 
accuracy was much worse than with imagery of the 
WorldView satellites, also in other scenarios not included in 
this paper. Probably this is due to the generally lower 
geometrical precision of the QuckBird in compare to its 
successor WorldView. 
The achieved absolute accuracy (ea), as shown in Table 2, is 
within the range of the absolute pointing accuracy of the 
corresponding satellites. Both, the absolute and relative 
accuracy have been checked with a set of precisely measured 
and manually selected check points not used for bundle 
adjustment in order to provide an independent reference. 
The tests were performed on a Dell PowerEdge T610 with 
two Intel Xeon X5570 Qudcore CPUs at 2.93GHz. For all 
scenarios the manual preparation could be performed in at 
most a half an hour. The automatic preparation time tPreperation 
needed until the SGM processing step requires relatively little 
time when compared to the actual SGM processing step on 
the same computer (see Table 2). The Dunedin scenario took 
the longest to process, due to the larger height range, caused 
by the mountains. Berlin 2 only took very little time as 
GSDDSM was chosen to be 3.72 m because of the low 
accuracy of the relative orientation. 
The time consumption for SGM processing per square 
kilometer depends mainly on the GSDDSM, the number of 
matches and the height range. In Table 2 the processing times 
for the last two steps (SGM matching and orthophoto 
generation) are given for the different scenarios. 
 

 
 

 
Figure 4: Reconstruction of a part of Berlin, textured by 
panchromatic images. 
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For aerial image processing, it has been shown (Hirschmüller 
and Bucher, 2010) that the height error of SGM is around 
half of the GSD, additional to the registration error. In our 
experience, the same quality can be reached with satellite 
images. 
 

 
Figure 5: Reconstruction of a part of Cape Town 
 

5. CONCLUSIONS AND OUTLOOK 

It has been discussed that processing high resolution digital 
surface models from satellite images on a productive level 
requires a fully automatic and robust approach. This paper 
presented a solution to this problem. This results in a huge 
gain in productivity and cost-efficiency. From the large 
number of already processed scenes, examples were given 
with images from DigitalGlobe satellites. However, the 
developed method has also been tested with many datasets 
from an airborne line camera (Wohlfeil, 2010 and 2011). 
The processing times needed on the mentioned test machine 
can be reduced significantly to a very small fraction via 
parallelization since most time is consumed by SGM 
matching, which can run in parallel if more CPU cores or 
more computers are available.  
The remaining manual interaction can be reduced further. 
Suitable parameters (orientation, season, etc.) from an image 
database will be subject of further investigation in order to 
select images automatically. We also see good chances in 
refining the SRTM-based water masks by existing or new 
image processing algorithms in order to get optimal results 
even in regions where water covered areas change fast. 
Besides water masking, it is also important to mask clouds. 
As only in one of all processed scenarios clouds occurred this 
issue was not treated yet. But it is regarded to be solved 
easily as there are many different algorithms available that 
are capable of segmenting clouds automatically due to their 
high intensity values and homogenous structure. 
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