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ABSTRACT:

we present an accurate and efficient solution for pose estimation from line features. By introducing coplanarity errors, we formulate
the objective functions in terms of distances in the 3D scene space, and use different optimization strategies to find the best rotation and
translation. Experiments show that the algorithm has strong robustness to noise and outliers, and that it can attain very accurate results
efficiently.

1 INTRODUCTION

Camera pose estimation is a basic task in photogrammetry and
computer vision, and has many applications in visual navigation,
object recognition, augmented reality, and etc.

The problem of pose estimation has been studied for a long time
in the community of photogrammetry and computer vision, and
numerous methods have been proposed. Most existing approach-
es solve the problem using point features. In this case, the prob-
lem is also known as the Perspective-n-Point (PnP) problem (Har-
alick et al., 1989, Horaud et al., 1997, Quan and Lan, 1999,
Moreno-Noguer et al., 2007).

Although the point feature is first used in pose estimation, line
feature, which has the advantages of robust detection and hav-
ing more structural information, is gaining increasing attentions.
Typically, in the indoor environments, many man-made objects
have planar surfaces with uniform color or poor texture, where
few point features can be localized, but such objects are abundant
in line features that can be localized more stably and accurately.
Moreover, line features are less likely to be affected by occlusions
thanks to multi-pixel support.

Closed-form algorithms were derived for three-line correspon-
dences but multiple solutions may appear (Dhome et al., 1989,
Chen, 1991). Linear solution(Ansar and Daniilidis, 2003) was
proposed for solving the pose estimation problem from n points
or n lines. It guarantees a solution for n > 4 if the world objects
do not lie in a critical configuration. For fast or real-time applica-
tions, such closed-form or linear algorithms free of initialization
(Dhome et al., 1989, Liu et al., 1988, Chen, 1991, Ansar and
Daniilidis, 2003) can be used. In order to obtain more accurate
results, iterative algorithms based on nonlinear optimization (Liu
et al., 1990, Lee and Haralick, 1996, Christy and Horaud, 1999)
are generally required. However, they generally do not fully ex-
ploit the specific structure of pose estimation problem and the
usual use of Euler angle parameterization of rotation cannot al-
ways enforce the orthogonality constraint of the rotation matrix.
Moreover, the typical iterative framework that uses classical op-
timization techniques such as Newton and Levenberg-Marquardt
method may lack sufficient efficiency (Phong et al., 1995, Lu et
al., 2000).

One interesting exception among the iterative algorithms is the
Orthogonal Iteration(OI) algorithm developed for point features

(Lu et al., 2000), which is not only accurate, but also robust to
corrupted data and be fast enough for real-time applications. The
OI algorithm formulates the pose estimation problem as minimiz-
ing an error metric based on collinearity in object space, and it-
eratively computing orthogonal rotation matrices in a global con-
vergent manner.

Inspired by this method, we present an accurate and efficient
solution for pose estimation from line features. By introducing
coplanarity errors, we formulate the objective functions in terms
of distances in the 3D scene space, and use different optimiza-
tion strategies to find the best rotation and translation. We show
by experiments that the algorithm which fully exploits the line
constraints information can attain accurate and robust results ef-
ficiently even under strong noise and outliers.

2 CAMERA MODEL

The geometric model of a camera is depicted in Fig. 1. Let c−
xcyczc be the camera coordinate system with the origin fixed at
the focal point, and the axis zc coinciding with the optical axis
and pointing to the front of the camera. I denotes the normalized
image plane. o− xwywzw is the object coordinate system. Li is a
3D line in the space and li is its 2D image projection on the image
plane. It can be seen that the optical center, the 2D image line
li, and the 3D line Li are on the same plane, which is called the
interpretation plane (Dhome et al., 1989). In the object coordinate
system, Li can be described as λdi +Pi, where di = (dx

i ,d
y
i ,d

z
i )

T

is the unit direction of the line and, Pi = (xi,yi,zi)
T is an arbitrary

point on the line, and λ is a scalar. The 2D image line li in the
camera coordinate system can be expressed as: aix+biy+ci = 0.
We define a unit vector ni = (ai,bi,ci)

T , which represents li as
(x,y,1) · ni = 0. It is clear that ni is the normal vector of the
interpretation plane.

The direction vector di and the point Pi can be expressed in the
camera coordinate system as Rdi and RPi + t, where the 3× 3
rotation matrix R and the translation vector t describe the rigid
transformation between the object coordinate system and the cam-
era coordinate system. Since the two vectors are all in the inter-
pretation plane, we have:

nT
i Rdi = 0, (1)

nT
i (RPi + t) = 0. (2)
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Therefore each line correspondence provides two constraints. E-
quations (1) and (2) are the well known fundamental equations
of the pose estimation problem from 2D to 3D line correspon-
dences (Navab and Faugeras, 1993).

Figure 1: The geometry of the camera model

3 POSE FROM LINE CORRESPONDENCES

We developed a new algorithm of pose estimation from line cor-
respondences. Our algorithm is inspired by Lu et al.’s method (Lu
et al., 2000) which addresses pose estimation problem from points.
In comparison with other algorithms, the iterative method of (Lu
et al., 2000) can attain very accurate results in a fast and globally
convergent manner. It is regarded as one of the most accurate and
efficient pose estimation methods (Moreno-Noguer et al., 2007).

For pose estimation from line features, the existing linear algo-
rithms (Ansar and Daniilidis, 2003, Liu et al., 1990) often lacks
sufficient accuracy while the iterative algorithms (Phong et al.,
1995, Kumar, 1994), which generally uses classical optimization
techniques such as Newton and Levenberg-Marquardt method,
may not fully exploit the specific structure of the pose estimation
problem (Lu et al., 2000), and are usually sensitive to the initial
noise or outliers. Our new iterative algorithm is an extension of
the algorithm (Lu et al., 2000) to lines, which is named as Line
based Orthogonal Iteration algorithm (LOI). Experiments in Sec-
t. 4 demonstrate that our method is very efficient and can attain
very good performances in terms of both accuracy and robust-
ness.

3.1 Object-Space Objective Function

The fundamental equations indicate that each 3D-to-2D line cor-
respondence provides 2 constraints. If N-line correspondences
are available, the pose problem becomes the problem of mini-
mizing the following objective function (Phong et al., 1995, Lee
and Haralick, 1996, Kumar, 1994):

E(R, t) =
N

∑
i=1

(nT
i Rdi)

2 +
N

∑
i=1

(nT
i (RPi + t))2. (3)

Instead of using the objective function of Eq. (3), we present and
use an objective metric based on the coplanarity error in the ob-
ject space. In fact, just as the collinearity of point correspondence
in the way of orthogonal projection (Liu et al., 1990), the copla-
narity of a 3D-to-2D line correspondence can be understood in
the way that the projection of 3D line in the interpretation plane
should be coincide with its self. In the camera coordinate system,
the line direction vector is Rdi and its projection in the interpre-
tation plane can be obtained by (I−ninT

i )Rdi where I is a 3×3
identity matrix. Let Ki = I−ninT

i , we have:

Rdi = KiRdi. (4)

Similarly, for the point position vector RPi + t we have:

RPi + t = Ki(RPi + t). (5)

From the Eqs. (4) and (5), we have the corresponding vector
differences as:

ed
i = (I−Ki)Rdi, (6)

eP
i = (I−Ki)(RPi + t). (7)

We refer ed
i and eP

i as coplanarity errors. We then achieve the
following objective functions:

E1(R) =
N

∑
i=1

∥ed
i ∥2 =

N

∑
i=1

∥(I−Ki)Rdi∥2, (8)

E2(R, t) =
N

∑
i=1

∥eP
i ∥2 =

N

∑
i=1

∥(I−Ki)(RPi + t)∥2. (9)

Compared with Eq. (3), the two objective functions (8) and (9)
have clear geometry meaning that the optimal solution of pose
should achieve the minimum value of the sum of squares of copla-
narity errors (See Fig. 2).

Note that like the line-of-sight projection matrix Vi defined in (Li-
u et al., 1990), Ki is an interpretation plane projection matrix that,
when applied to a object vector, projects the vector orthogonally
to the interpretation plane. It owns the following properties:

∥Ki∥ ≥ ∥Kix∥, x ∈ R3, (10)

KT
i = Ki, (11)

K2
i = KiKT

i = Ki. (12)

Figure 2: Object-Space error of line correspondence

Since our new pose estimation method involves mainly the least-
squares estimation, we show a lemma given by the work of (Umeya-
ma, 1991) here before proceeding to the details of our method.

Lemma 1: Let A and B be m× n matrices, and R a m×m rota-
tion matrix, and UDVT a SVD of ABT (UUT = VVT = I, D =
diag(λi), λ1 ≥ λ2 ≥ ·· · ≥ λm ≥ 0). To minimize the objective
function

f (R) = ∥A−RB∥2, (13)

the optimal rotation matrix R such that

R = USVT . (14)

When rank(ABT )> m−1, S must be chosen as

S =

{
I i f det(ABT )≥ 0,
diag(1,1, · · · ,1,−1) else. (15)

When det(ABT ) = 0 (rank(ABT ) = m−1), S must be chosen as

S =

{
I i f det(U)det(V) = 1,
diag(1,1, · · · ,1,−1) i f det(U)det(V) =−1. (16)
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Algorithm 1: Rotation then Translation
1. Given N (N ≥ 3) 3D-to-2D line correspondences and initial

rotation R0, compute Ki for i = 1, . . . ,N. Define
B = (d1,d2, · · · ,dN). Set k = 0.

2. Perform the following steps:
(a) Compute A = (K1Rkd1, · · · ,KNRkdN).

(b) Compute M = ABT and perform SVD: UDVT = M.

(c) Compute Rk+1 = USVT , where S is set according to
Eqs. (15) and (16).

(d) Terminate the iteration if convergence is reached;
otherwise, k = k+1, go to setp (a).

3. Compute translation t via (18).

3.2 LOI-1: Rotation then Translation

We propose a pose estimation algorithm which optimizes alterna-
tively on the rotation matrix and translation vector.

Lemma 1 gives us a solution to the optimal estimate of rotation
matrix R. Let us assume we are given N 3D-to-2D line corre-
spondences and we have obtained the projection operator Ki for
each correspondence. We define:

A = (K1Rd1,K2Rd2, · · · ,KNRdN),

B = (d1,d2, · · · ,dN).

E1(R) then becomes :

E1(R) = ∥A−RB∥2. (17)

It is seen that Eq. (17) bears a close resemblance to Eq. (13).
This naturally lets us compute R iteratively as follows: given the
estimation rotation matrix Rk at k-th iteration, we compute A(Rk)
and seek to minimize ∥A(Rk)−RB∥2 to get the next estimate
Rk+1 according to the Lemma (1). This step is repeated until
convergence is achieved.

After attaining an estimate of rotation R, the optimal estimate of
translation t can be computed easily by minimizing E2(R, t) of
Eq. (9):

t = t(R) = (
N

∑
i=1

(I−Ki))
−1

N

∑
i=1

(Ki − I)RPi. (18)

Clearly the matrix (∑N
i=1(I−Ki)) must be invertible for Eq. (18)

to hold. Since I−Ki = ninT
i , we have (∑N

i=1(I−Ki)) = CCT ,
where

C =

a1 a2 · · · aN
b1 b2 · · · bN
c1 c2 · · · cN

T

.

Hence if rank(CCT ) ≡ 3, Eq. (18) can be well-defined. In fact,
rank(CCT ) = rank(C) = 3 is always true if N ≥ 3 and the N in-
terpretation planes do not all intersect in one line. In other words,
if there are at least three of the 3D lines that do not intersect in
one point, the value of translation t can always be computed by
Eq. (18).

We now achieve a two-step pose estimation algorithm(LOI-1):
firstly the optimal R∗ is iteratively computed, and then the best
translation t∗ is obtained given the estimated R∗. The algorithm
is summarized in Algorithm 1.

3.3 LOI-2: Alternative Optimization

In Algorithm 1, the objective function E1(R) is minimized firstly
to solve for rotation R. The estimate is then used to minimize the
objective function E2(R, t) to determine the translation t. This
method only uses the information of line direction to compute ro-
tation, and doesn’t use the set of constraints effectively. In the
framework of solving rotation and translation separately, the s-
mall errors in the rotation estimation are amplified into large er-
rors in the translation stage (Kumar, 1994). To fully exploit the
set of constraints, we can modify Algorithm 1 to optimize alter-
natively on the rotation matrix and translation vector.

Assuming we have obtained the k-th estimation of Rk, tk is com-
puted via t(Rk). We firstly use the rotation estimation iterative
step of Algorithm 1 to estimate a new rotation value R′

k+1, and
obtain a new estimate of translation t′k+1 via t(R′

k+1) from Eq.
(18). Then with (R′

k+1, t′k+1), we use the method of (Lu et al.,
2000) to obtain the final (k+1)-th estimation by minimizing the
objective function E2(R, t). The last step is described as follows.

In the algorithm of (Lu et al., 2000), R and t are iteratively opti-
mized by minimizing an object space objective function defined
for the point correspondences:

E(R, t) =
N

∑
i
∥(I−Vi)(RPi + t)∥2, (19)

where Vi is a projection matrix that, when applied to a point,
projects the point orthogonally to the line of sight defined by the
image point. When Rk and tk are obtained, the next estimate
Rk+1 is determined by solving the following absolute orientation
problem:

Rk+1 = argmin
R

N

∑
i=1

∥RPi + t−Viqk
i ∥2, (20)

where qk
i = RkPi + tk. This absolute orientation problem is then

solved by SVD method (Horn et al., 1988).

It is seen that the only difference in Eq. (9) compared with Eq.
(19) is the use of projection matrix Ki instead of Vi. Both projec-
tion vectors Ki and Vi bear the same properties (Sect. 3.1). Hence
after we have obtained the estimates (R′

k+1, t′k+1), an estimate of
rotation, Rk+1, can be computed by directly using the algorithm
of (Lu et al., 2000) to minimize the objective function (9). The
new algorithm is summarized in Algorithm 2.

Obviously if given an initial estimate for both R and t, purely
minimizing E2(R, t) by using the the method of (Lu et al., 2000)
leads to another algorithm (we denote it as LOI-3). Since the only
difference is the definition and use of a projection vector, we will
not go further on this algorithm. For more details, the readers are
referred to (Lu et al., 2000).

4 EXPERIMENTS

To evaluate our methods, we carried experiments on both syn-
thetic and real data.

4.1 Synthetic Data

A set of 3D lines are generated uniformly within a cube defined
by [−0.5,0.5]× [−0.5,0.5]× [−0.5,0.5] (Fig. ??) in the object
space. The corresponding 2D lines are then created by linear fit-
ting of the projections of a set of sampling points in the 3D lines.
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Algorithm 2: Alternative Optimization
1. Given N (N ≥ 3) 3D-to-2D line correspondences and initial

rotation R0, compute: Ki for i = 1, . . . ,N,
B = (d1,d2, · · · ,dN). Set k = 0.

2. Perform the following steps:
(a) Compute A = (K1Rkd1, · · · ,KNRkdN).

(b) Compute M = ABT and perform SVD: UDVT = M.

(c) Compute R
′

k+1 = USVT , where S is set according to
Eqs. (15) and (16).

(d) Compute t′k+1 = t(R
′

k+1)

(e) Given R
′

k+1 and t′k+1, compute Rk+1 using the
algorithm of (Lu et al., 2000).

(f) Compute tk+1 = t(Rk+1).

(g) Terminate the iteration if convergence is attained;
otherwise, k = k+1, go to step (a).

We add Gaussian noise to the projections of points and also con-
sider a percentage pout of outliers, for which a set of 3D lines are
randomly selected and replaced by another line generated within
the cube [−0.5,0.5]× [−0.5,0.5]× [−0.5,0.5]. For each setting
of the control parameters in every plot, the result is obtained by
running 1000 trials and the mean value is recorded. To facilitate
the description, we denote the Algorithm 1 ∼ 3 as LOI-1, LOI-2
and LOI-3 separately.

In Fig. 3, we plot the rotation and translation relative errors pro-
duced by the three algorithms as a function of Gaussian noise
with its standard deviation varies from 1 to 10 pixels. The num-
ber of sampling points that are used for creating the 2D lines is
set as 100. The line number is fixed to be 8 and the percentage
of outliers pout = 0. The plots show that “LOI-2” is consistently
more accurate than the other two algorithms.
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Figure 3: Relative rotation and translation error as a function of
image noise when the number of lines is fixed to be 8.

Fig. 4 plots the errors as the function of the number of 3D object

lines when the image noise is fixed (σ = 3 pixels). We compare
the performances of our algorithms with the OI method (Lu et
al., 2000), for which the corresponding 2N endpoints of the 3D
lines are used. It can be seen that all these algorithms can achieve
higher accuracy when the number of feature correspondence in-
creases. LOI-2 and OI algorithms show more accurate and stable
performances.
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Figure 4: Relative rotation and translation error as a function of
the number of object lines when the standard deviation of image
noise is fixed to be 3 pixels.

In Fig. 5(a), we give the percentage of convergence when the
initial poses are generated from a multinormal distribution with
mean as the true pose and the diagonal covariance δΣ0, where
the standard deviation element of Σ0 is about 1.5 degree for the
rotation angles, 0.2 for the x and y components of the translation
t, and 0.5 for the z component. δ varies from 1 to 20. The plot
indicates that LOI-2 shows very robust performance and slightly
outperforms the OI algorithm which is proved to be global con-
vergent. In contrast, the LOI-3 algorithm produces very poor per-
formance. We conclude that, without exploiting the direction in-
formation of the lines, LOI-3 is very sensitive to the image noise
as well as to the initial pose. Fig. 5(b) plots the number of it-
erations as the function of the number of object lines. With the
increase of the line number, the number of iterations needed de-
creases. Since in LOI-2 there are two updates of rotation, the
computation time taken by 1 iteration in LOI-2 is about double
of that in LOI-1 and LOI-3. This can be seen from Fig. 5(c),
which gives the computation times. The LOI-1 and LOI-2 use
almost the same running times. LOI-3 is faster with the increas-
ing of the number of lines. We compare our methods with the
iterative weak perspective (IWP) method (Christy and Horaud,
1999), which estimates a pose with a weak perspective camera
model and improves the estimation iteratively by solving an ap-
proximate system of linear equations. Our orthogonal iteration
methods are very efficient and comparable to the IWP method.

4.2 Real Data

We also validated our pose estimation approach for line corre-
spondences, by using the algorithm for 3D line object tracking.
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Figure 5: (a) the number of iterations and (b) the running times as a function of the number of lines. (c) the percentage of convergence
when initial poses are generated from a multinormal distribution.

The tracking is performed on an image sequence recorded from
a moving calibrated camera pointing towards the scene as shown
in Fig. 6. We implement a simple line tracker in a typical frame-
work where a local search along the normal direction of a model
edge line is performed for gradient maxima for a set of sampled
points in the line (Wuest et al., 2005). The strong maxima are
taken as the 2D feature points whose corresponding 3D sampled
points are in the object line. At run time, the tracker generates
a set of 3D-to-2D line correspondences among which outliers or
erroneous ones exist. Robust pose estimation method that well re-
sists outliers is evaluable for robust tracking. We use our method,
LOI-2 specifically, for the tracking. Fig. 6 shows four frames of
the tracked sequence. Our method consistantly tracks the whole
sequence.

5 CONCLUSIONS AND FUTURE WORK

Robust pose estimation is necessary for refining the pose. We p-
resented efficient and robust iterative pose estimation algorithms
for line features. Our method introduces coplanarity errors and
formulates objective function in the object space by employing
orthogonal projections. In the same framework, three pose esti-
mation algorithms are given and their performances are evaluat-
ed. Compared with other pose estimation algorithm for lines, one
of the proposed methods-LOI-2 algorithm is extremely robust,
accurate, and also converges fast.

For future work, we are interested in using our methods for real
applications, for example, robot navigation. By making use of
more other information like the appearance of object, the search
of pose from unknown line correspondences may speed up. We
are also interested in implementing our simultaneous pose and
correspondence method on GPU, for real-time virtual reality ap-
plications.
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(a) frame #1 (b) frame #52

(c) frame #86 (d) frame #135

Figure 6: Pose estimation for 3D object tracking on a sequnce recorded with a moving camera.
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