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ABSTRACT: 

Object identification and object processing in 3D point clouds have always posed challenges in terms of effectiveness and efficiency. In 

practice, this process is highly dependent on human interpretation of the scene represented by the point cloud data, as well as the set of 

modeling tools available for use. Such modeling algorithms are data-driven and concentrate on specific features of the objects, being 

accessible to numerical models. We present an approach that brings the human expert knowledge about the scene, the objects inside, and 

their representation by the data and the behavior of algorithms to the machine. This “understanding” enables the machine to assist human 

interpretation of the scene inside the point cloud. Furthermore, it allows the machine to understand possibilities and limitations of 

algorithms and to take this into account within the processing chain. This not only assists the researchers in defining optimal processing 

steps, but also provides suggestions when certain changes or new details emerge from the point cloud. Our approach benefits from the 

advancement in knowledge technologies within the Semantic Web framework. This advancement has provided a strong base for 

applications based on knowledge management. In the article we will present and describe the knowledge technologies used for our 

approach such as Web Ontology Language (OWL), used for formulating the knowledge base and the Semantic Web Rule Language 

(SWRL) with 3D processing and topologic built-ins, aiming to combine geometrical analysis of 3D point clouds, and specialists’ 

knowledge of the scene and algorithmic processing. 

1. INTRODUCTION 

A recent development in scanning technology is the ability to 

provide very precise data through the generation of highly 

dense 3D point clouds. Such high-density point clouds provide 

a digital replica of the scanned scene. From the early days in 3D 

point cloud processing, the research has been focused on 

investigating the reconstruction and recognition of geometrical 

shapes (Wessel, Wahl, Klein, & Schnabel, 2008), (Golovinskiy, 

Kim, & Funkhouser, 2009). More complex strategies try to 

reconstruct complete sites. They can be broadly categorized 

into two categories (Pu, 2010): data driven and model driven. 

Data driven methods (Beker, 2009), (Frueh, Jain, & Zakhor, 

2002) extract selected geometries from the point cloud and 

combine them into a final model. With these methods, the huge 

redundancy of point cloud data produces difficulties due to 

corresponding high ambiguity. Model driven methods try to 

take this into account. They use predefined primitive templates 

and information (as detected geometries) from the data to map 

them against the most likely templates (Ripperda, 2008).  

We present a knowledge driven method in which knowledge 

about the scene and the algorithmic processing is formalized 

logically for the generation of algorithmic sequences that detect 

objects automatically. The developments are part of the project 

WiDOP (Knowledge based detection of objects in point clouds 

for engineering applications), which implements this method in 

order to detect and identify objects in 3D point clouds. 

Knowledge driven methods for object detection are relatively 

new.  Pu (2010) detected exterior structures (mainly facades) of 

buildings through knowledge, and Maillot & Thonnat (2008) 

also detected complex features using a knowledge base. Both 

works separate detection and qualification into two independent 

steps. Detection is based on predefined algorithmic sets, while 

qualification uses knowledge to classify objects according to 

their nature. Our work avoids such a separation and provides a 

semantic bridge between scene knowledge and algorithmic 

knowledge. Knowledge is part of an Algorithm Selection 

Module (ASM), which guides the processing independently of a 

particular scene. As a generic solution, it is extendable to any 

scene or algorithm. 

The project uses environments from the Deutsche Bahn 

(German Rail**) and Fraport (operator of Frankfurt Airport)*** 

to demonstrate effectiveness and versatility. Terrestrial laser 

scanning technology is used to capture point cloud data. These 

datasets are then used on demand to create models of the 

objects inside of the installations. To date, the tasks of creating 

and evaluating the 3D object models are solely manual, and 

hence are costly in terms of both time and resources. The 

existing tools do not provide significant assistance either, as 

they are mostly data driven and concentrate on specific features 

of the objects to be used for numeric models. Algorithms have 

limited flexibility and can provide adverse effects when 

deviated. Knowledge of algorithms and their limitations during 

implementation could limit such adverse effects. In the 

meantime, it provides flexibility to algorithmic manipulation 

for different scenarios.   

                                                                    
** http://www.bahn.de 

*** http://www.fraport.com/content/fraport-ag/en.html 
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2. THE WiDOP PLATFORM 

Integrating knowledge into a processing strategy provides much 

needed flexibility. However, it is clear that knowledge varies at 

different stages. This variation depends mainly on type, 

amount, and the quality of knowledge available during 

processing, as well as on the ability to connect different sources 

and domains of knowledge (related to objects, algorithms, 

scenes, data and so on). Additionally, knowledge should 

increase step by step based on the quality of results collected 

from concrete applications. Success will also clearly increase 

with increasing amounts of available knowledge. We therefore 

distinguish different scenarios.  

2.1. The Scenarios   

2.1.1. Known objects, known positions 

Detailed knowledge (exact positions and characteristics) of 

objects already exists in such cases. The knowledge base 

(“KB”) supports the processing for verification.  

2.1.2. Known objects, unknown positions 

This case reflects a typical situation, in which knowledge about 

scene objects exists but not their location in the data. The KB 

that provides the scene knowledge interacts with the processing 

knowledge to determine the probable sequences that detect the 

objects and derive their location.  

2.1.3. Unknown objects, unknown positions 

This is the most complex case, in which only generic 

knowledge about the scene exists. In such cases, the KB 

recommends the detected geometries to their object types 

through examining the semantics defined against them.       

2.2. The Iterative Approach of Classification 

This approach is used to derive concrete detection from a 

generic base. We call it the “Iterative Semantic Classification 

Method” or ISCM. Semantic Figure 1 illustrates the iteration 

method. Details on it will be presented in further sections. 

 

 

 

 

(a) (b) 

Figure . ISCM (a) Basic knowledge framework (b) Knowledge 

population 

The initial knowledge is mainly a schema that represents the 

scene and the processing knowledge. It is hence not a concrete 

knowledge source (fig.1a). It has to be enriched with real 

objects in the course of the iterative process. The knowledge is 

refined after every step of processing, through the population of 

the results into the knowledge schema. It thus transforms the 

knowledge schema into a concrete and comprehensive 

knowledge base (fig. 1b).  

2.2.1. Knowledge Domains 

Building on the works of Pu (2010) and Maillot & Thonnat 

(2008), knowledge of algorithmic processing is related to that 

of objects in the scene in order to support their detection. In this 

manner, the mapping of algorithmic knowledge to the scene and 

objects can infer processing, and determines which algorithms 

are best suited for any particular characteristic of the objects. 

This process makes the methodology scene independent.    

The knowledge domains of Algorithms and Scene are mapped 

through rules, which are related to geometry, topology etc. 

These mappings infer best suitable algorithms or algorithmic 

sequence for detecting geometries. Once detected, they are 

related to their corresponding objects inside the KB. The 

preexisting scene knowledge is then used for verification.  

Beside these two, other supporting knowledge domains provide 

significant supports. They are seamlessly integrated within the 

knowledge schema through their semantic interpretation and 

relationship to the main knowledge domains.  

The solution is based on knowledge technologies of the 

Semantic Web (Berners-Lee, 1998) framework. The WiDOP 

platform uses knowledge technologies like Web Ontology 

Language (Bechhofer, et al., 2004), (Patel-Schneider, Hayes, & 

Horrocks, 2004) or the Semantic Web Rule Language (SWRL) 

(Horrocks, et al., 2004). The knowledge equations used here are 

based on Description Logics (DL) which is core in the rapid 

development of the knowledge technologies. The next section 

discusses the ontology schema of the WiDOP platform 

(expressed in OWL) to demonstrate its robustness to adapt into 

any structural domain.       

2.2.2. Ontology Schema 

The top level knowledge is illustrated in figure 2. The top level 

classes of algorithmic and scene knowledge are represented 

through the top level classes Algorithms and DomainConcept 

respectively. The class Algorithms constitutes the algorithmic 

knowledge through a taxonomical hierarchy, and semantic rules 

through restrictions. Similarly, the class DomainConcept 

presents the scene knowledge through a hierarchical structure 

reflecting the objects in the scene and semantic rules.  

The basic ontology schema provides an overview of the scene 

and processing knowledge, defining what knowledge exists in 

different domains and how they are interrelated. They are 

defined by rules which facilitate selecting the algorithms and 

define the strategy to detect the objects in the scene. 

 

Figure . General overview of ontology schema 
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Knowledge 
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The top level classes represent knowledge in their specific 

areas. We can see there are other top level classes beyond 

Algorithms and DomainConcept in figure 2. There are other 

knowledge domains having influences on these two main 

domain classes. Actually, WiDOP uses two such top level 

knowledge classes, however it is possible to extend if required.  

The interrelation between the knowledge domains completes 

the knowledge set. This provides the foundation for enabling 

various knowledge sources to interact and to use it for different 

purposes, like deciding upon a processing strategy (sequence of 

algorithms) or upon the nature of elements being found during 

processing. These inter-relations in knowledge terms are object 

properties and shown through the arcs in figure 2. They are 

basically catalysts for knowledge generation, as they act in the 

knowledge framework and appear in property restrictions or 

domain rules realized by a rule language like SWRL. Such rules 

are important, as they allow for the integration of external 

processing components, called built-ins, which are necessary to 

do conventional numerical processing. This happens when 

invoking algorithms or topological operations (Ben Hmida, 

Cruz, Nicolle, & Boochs, 2011).  

Figure 3 illustrates the taxonomical hierarchical structure of the 

class Algorithms. The algorithms are currently classified into 

three major sub-classes. This could be extended if there are 

requirements. Most of the algorithms used here belong to one of 

those three classes. 

 

Figure . Taxonomical hierarchical semantics of class 

Algorithms 

 

Figure . Taxonomical hierarchical semantics of class 

DomainConcept (scene Deutsche Bahn) 

Other classes in the top level ontology schema (figure 2) 

function as supporting classes.  

The objects from the scene are categorized to their respective 

classes under DomainConcept (figure 4). This structure is 

designed for the objects found in the Deutsche Bahn (“DB”) 

scene. It can easily be replaced by other domains provided that 

the top level structure is respected. 

They represent knowledge domains defining the characteristics 

of the main classes.  Two top level classes are currently defined, 

although this is extensible. Class Geometry (fig. 5a.) is defined 

to represent geometric characteristics. Class Data (5b) 

represents data characteristics. Both these classes are used 

within rules which map algorithms to scene knowledge.  

 

(a)     (b) 

Figure . (a) Class hierarchy of geometry (b) data 

2.2.3. The Iteration 

ISCM detects and refines the detection process through new 

gained knowledge at every step of the iteration. In most cases 

the degree of knowledge is limited initially (barring case 2.1.1).  

The knowledge schema provides a basis for formulating the 

processing strategy, and provides a platform to define inference 

rules. These rules are based on the expert interpretation of the 

scene and the algorithmic behavior. The knowledge schema 

presents the prominent rule defining the scene, with which the 

ASM uses to begin the algorithmic processing.  This prominent 

rule is inferred against the semantic rules of algorithms to 

evoke the most suitable algorithm or algorithmic sequence.     

 

Figure 6. Detailed Iterative Semantic Classification Method 

 

Again using the DB example, first the knowledge schema 

determines that the objects are vertical in nature, and algorithms 

suitable for vertical geometry detection are selected. After the 

algorithmic results are populated into the KB, the detected 

geometries are qualified to their respective objects. As such, the 

prominent rule evokes the first set of algorithms best suited to 

detect the simple and dominant objects, then the more complex 

objects are detected through their relationship to the simple 

ones through further iterations. 

 

Qualification follows the population. The detected geometries 

are inferred against the geometric semantics of the objects to 

initiate the first set of approximations. The current version of 

WiDOP provides this approximation through semantic 

annotation. Labeling mechanisms for 3D point clouds have 

been researched by Anguelov et al. (2005) and Munoz, 

Vandapel, & Hebert (2009), who use an associative Markov 

network to label. Shapovalov, Velizhev, & Barinova, (2010), 

Golovinskiy, Kim, & Funkhouser (2009), and Shapovalov, 
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Velizhev, & Barinova (2010) instead label them through 

capturing geometric classes in context by designing node 

features. However, these works do not incorporate semantics. 

Koppula, Anand, Joachims, & Saxena (2011) present a more 

semantic approach, whereby a graphical model that captures 

features and their contextual relationships is presented. WiDOP 

presents semantic rules to semantically annotate the objects 

(Ben Hmida, Cruz, Nicolle, & Boochs, 2011). These rules are 

executed through the extended SWRL, and use semantic 

annotation to match the detected geometries with their probable 

objects. The following example (equation 1) will detect all the 

vertical geometries and annotate them as Mast if they are higher 

than 6m. 

3DProcessing_swrlb:VerticalElementDetection(?vtr, ?dir)  ^ Height(?x, 

?ht) ^ swrlb:greaterThan(?ht, 6) � Mast(?vrt) (1) 

The domain ontology schema now hosts the first impressions of 

the semantically annotated geometries. At this point the 

annotations are still rough, and can be one of three types: 

unambiguous, ambiguous or unknown.  

Unambiguous: Geometries annotated to a single object. 

Ambiguous: The same geometry can be qualified as two or 

more objects. 

Unknown: Geometries unclassifiable at this level of iteration.   

The first iteration is likely to have a large number of 

ambiguously annotated objects or even unknown objects. The 

second iteration is needed to improve the result, wherein the 

KB will now host more semantics. During the second iteration, 

ASM uses unique characteristics to remove the ambiguity. The 

mechanism under ASM investigates the rules which are unique 

to each object in such ambiguity. It then uses these unique rules 

to infer an algorithmic sequence for each of them. More precise 

geometries are thus detected during this iterative stage and are 

populated into the KB. The qualification through extended 

geometries then repeats (equation 2).  

BasicSignal(?y) ^ BoundingBox_3D(?x)  ^ hasHeight(?x, ?h) ^ 

swrlb:greatThan(?h, 1) ^ swrlb:lessThan(?h, 3) ^ 

3D_swrlb_Topo:distance(?x, ?y, 100, 10) � SecondarySignal(?x)     (2) 

The iteration continues until all the ambiguity is removed and 

objects are finally recognized and stable. In case of unknown or 

ambiguous annotations, new knowledge about the scene or the 

processing activities is fed into the KB. The first case (section 

2.1) resembles the unambiguous annotations. The first level of 

iteration is therefore unnecessary for this scenario. As objects 

and their positions are known, the platform executes the 

iteration from the second step and verifies. 

3. IMPLEMENTATION 

Figure 7 and 8 illustrate a typical site in the DB railroad system 

and its 3D scan. The complexity in detecting objects in the 

point cloud is not only due to the complex nature of the objects 

but also due to the scan nature. The area is scanned using a 

moving train; the objects are scanned only in one direction, 

presenting challenges through occlusions. 

 

Figure 7. A typical site of Deutsche Bahn system (source: 

Christophe Leimkühler, Metronom Software) 

 

Figure 8. The 3D scan data of the site 

It must be emphasized here that we do not use the algorithmic 

knowledge to estimate what objects should appear in the scene, 

but rather the opposite. The characteristics of objects in the 

scene evoke the appropriate algorithms for that object. In this 

sense, the objects in the class DomainConcept are in the center 

of the top level ontology schema (fig. 2). It hosts the semantics 

of the objects first through hierarchical taxonomy (fig. 4) and 

then through semantic rules for each specialized class under the 

hierarchy. If we examine carefully, DomainConcept is a bridge 

through which other knowledge domains can be explored. For 

instance, the geometric characteristics of an object under 

DomainConcept are related to the knowledge domain of 

Geomerty through the relationship defining it (fig. 2). This can 

also be extended to other knowledge domains, as we did with 

data through class Data. The top level ontology in figure 2 

provides a glimpse of such bridging and is not restricted to it. 

3.1. Illustration 

This section illustrates how underlying ASM within WiDOP 

infers rules to derive an algorithmic sequence. We basically will 

illustrate the principles discussed in section 2 through a case of 

Deutsche Bahn (DB) with the underlying ASM in focus.   

The property restriction rules play a major role in determining 

the best algorithm. ASM determines this through inferring the 

rules defined in DomainConcept (termed as DC in the DL 

equations) to that defined in the class Algorithms. The platform 

starts with the dominant rule of the scene.  We presume the 

dominancy through the number of occurrences of the rules, 

with the higher the number, the more dominant the rule. An 

example of this could the scene of a lecture room where most of 

the objects have planar surfaces. In such cases the horizontal 

plane detection algorithm will be preferred as a starting 

algorithm. 

This rule when inferred against specialized algorithms in class 

Algorithms yield that algorithm HeightApproximation 

(presented by HAA in the equation 4) is best suited for this case. 
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It is because the algorithm constitutes the rule stating it is 

designed for data having height as shown in equation 3.  

HAA  ≡ ∃ isDesignedFor.Data3D ⊓ Data3D.hasHeight.{>0}    (3) 

The execution of the algorithm detects prominent geometries of 

dominant and simple objects in the scene. Qualification follows 

detections. This is carried out through extended SWRL. 

Examples can be seen in equation 1 and 2.  

As stated, three possible qualifications are possible: 

unambiguous, ambiguous and unknown. For simplicity we 

carry forward this discussion with the first case where the 

objects are qualified distinctly. The WiDOP platform utilizes 

the semantic rules (defined through property restrictions) to 

infer the algorithm or algorithmic sequence for verification. We 

illustrate this with the two prominent objects in the DB scene: 

Mast (poles carrying cables for powering trains) and Signal. 

Figure 9 presents point cloud subsets for them. 

The classes of types DomainConcept is related to that of 

Geometry through specialized properties of hasGeometry (see 

fig 2).  

DC ⊑  ∃ hasGeometry.Geometry (4) 

 
 

 (a) (b) 

Figure 9. Point cloud sets (a) Signal (b) Mast 

The specializations of class Geometry are possible geometry 

types (fig. 5a).  For instance Line3D is a type of _3D which is a 

specialization of the class Geometry.  

   Geometry ⊑ _3D ⊑ Line_3D (5) 

Putting together equation 4 and 5, we can conclude that Mast 

has Line_3D. Furthermore, we can also say Mast has  Line_3D 

with dense, linearly arranged points (we term them as thick 

lines for simplicity)  as shown in equation 6, and Signal has 

Line_3D with a low density of points (called thin lines for 

simplicity), as shown in equation 7. Here thick and thin are 

characteristics of the line. These characteristics (termed 

hasChar in DL equations) are helpful in determining the input 

parameters for the algorithms. It will be discussed later but for 

now we present how ASM uses these simple rules in 

algorithmic selection. 

Mast ≡ ∃ hasLine3D.Line3D ⊓ Line3D.hasChar.{Thick} (6)  

Signal ≡ ∃ hasLine3D.Line3D ⊓ Line3D.hasChar.{Thin} (7) 

The reasoning engine of the underlying ASM infers the rules 

against the rules within sub-classes of Algorithms. Algorithm 

LineDetectionin3DbyRANSAC is recommended, considering 

that it is designed for 3D lines. 

LineDetectionin3DbyRANSAC  ≡ ∃ isDesignedFor.Line3D  (8) 

The reasoning engine inside ASM implements the same 

principle to infer algorithms for other knowledge domains. We 

have implemented it against the data knowledge under class 

Data. Presuming that the standard deviation of a dataset 

establishes a noise value for that dataset, ASM then infers the 

algorithms best suited for datasets containing noise. It shows 

the use of universal knowledge through combining different 

knowledge domains (related to the scene, to classes of objects, 

to instruments and so on), allowing the ASM to interact with 

them. This interaction helps in providing answers for detecting 

objects in extreme situations. However, it is necessary to define 

appropriate rules to determine the usage of these knowledge 

domains. Likewise, the underlying knowledge schema (fig. 2) 

provides freedom in choosing its data source. We use a 3D 

point cloud from the DB scene for our case, however it is also 

possible to use images or other data formats.  

3.2. Simulation Knowledge 

Algorithms behave differently in different situations, for 

instance reflecting differences in geometry or data. Even two 

characteristics of the same geometry might need to be 

addressed in the detection algorithm. As shown in Equation 6 

and 7, the ASM chooses LineDetection3DbyRANSAC for 

detecting the geometries, but using the same parameters for 

both cases might not yield best results. In principle, it should 

use different parameters for different point densities of the 

linear structure to capture most of the points within the linear 

structure (fig. 10). We thus need a higher radius value for thick 

lines and a lower radius value for the thin.  

 

 Figure 10. Cylinder radius for detection 

This is exactly the intention behind obtaining and modeling the 

simulation knowledge into the KB. Each observation of the 

execution of an individual algorithm is induced in the KB. 

These simulations are based on the results as they are tested 

against different data, geometries, and other characteristics. The 

clear benefit is that in above given situations for Mast and 

Signal, the ASM of the WiDOP platform selects a different 

radius threshold for the LineDetectionin3DbyRANSAC 

algorithm. Furthermore, the ASM can evaluate the rules defined 

by the scene to select different algorithms for different cases. 

Instead of LineDetectionin3DbyRANSAC, ASM recommends 

2DHoughTransformation for example, if the detection process 

uses images or any 2D data as source data. 

3.3. The Result 

Our approach was tested with a 500 m long 3D point cloud of 

the Nuremberg main station (Nürnberg Hbf). The KB consists 
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of the objects found in the scene along with the algorithms that 

could possibly be used to detect them. 

Table 1 presents the detection and qualification of objects in the 

scene through ISCM within the WiDOP platform. There were 

105 geometries detected and among them 34 were semantically 

annotated. 71 detected geometries are not annotated because the 

KB did not contain enough rules to classify them. Although 

currently the results are based on unsophisticated data and rule 

sets, we believe that those objects would be correctly annotated 

after further enrichment of the KB. Mismatches visible from 

Table 1 show the necessity of improvements by addition of 

modification of rules within the KB. However, results already 

show the general functioning of such a flexible approach. 

Objects Annotated Reality 

Masts 13 12 

Signal 18 20 

SwitchGear 3 5 

Table 1. The first set of results 

The result seen in table 1 through the knowledge driven method 

is satisfactory considering the complexity of the scene. Rule 

modifications would improve results, and further development 

in this regard is ongoing.    

4. CONCLUSIONS 

The knowledge driven approach for selecting algorithms 

suitable to detect objects has been presented. Building on 

previous research, technologies within the Semantic Web have 

been advanced, and SWRL in particular has been extended in 

the qualification process. Keeping the essence of the knowledge 

based approach in processing, this solution uses a methodology 

that fuses knowledge from different knowledge domains for 

suitable algorithmic selection, which leads to a flexible 

processing chain for detecting objects. Furthermore, the 

integration of simulation knowledge, representing behavioral 

knowledge of algorithms in different situations and patterns, 

adds more flexibility. 
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