
OPENWEBGLOBE – AN OPEN SOURCE SDK FOR CREATING
LARGE-SCALE VIRTUAL GLOBES ON A WEBGL BASIS

B. Loesch , M. Christen, S. Nebiker

 Institute of Geomatics Engineering, FHNW University of Applied Sciences and Arts Northwestern Switzerland,

Muttenz, Switzerland – (benjamin.loesch, martin.christen, stephan.nebiker)@fhnw.ch

Commission IV, WG IV/4

KEY WORDS: Visualization, Algorithms, Virtual Reality, Web based, Point Cloud, Three-dimensional, Triangulation

ABSTRACT:

This paper introduces the OpenWebGlobe project (www.openwebglobe.org) and the OpenWebGlobe SDK (Software Development
Kit) – an open source virtual globe environment using WebGL. Unlike other (web-based) 3d geovisualisation technologies and
toolkits, the OpenWebGlobe SDK not only supports the content authoring and web visualization aspects, but also the data
processing functionality for generating multi-terabyte terrain, image, map and 3d point cloud data sets in high-performance and
cloud-based parallel computing environments. The OpenWebGlobe architecture is described and the paper outlines the processing
and the viewer functionality provided by the OpenWebGlobe SDK. It then discusses the generation and updating of a global 3d base
map using OpenStreetMap data and finally presents two show cases employing the technology a) for implementing an interactive
national 3d geoportal incorporating high resolution national geodata sets and b) for implementing a 3d geoinformation service
supporting the real-time incorporation of 3d point cloud data.

1. INTRODUCTION

In recent years virtual globes have become an important tool for
interactively visualizing and investigating geo-referenced
content. Virtual globes are capable of streaming terabytes of
imagery, elevation data and other geospatial contents over the
Internet. Emerging Internet technologies, such as HTML5 and
WebGL, offer new possibilities to develop virtual globes
running in web-browsers without a need for browser extensions
or plugins.

WebGL is a cross-platform, royalty-free web standard for a
low-level 3d graphics API based on OpenGL ES 2.0 (WebGL,
2011). It is exposed through the HTML5 Canvas element as
Document Object Model interface. WebGL is a shader-based
API using the OpenGL Shading Language (GLSL), with
constructs that are semantically similar to those of the
underlying OpenGL ES 2.0 API. In March 2011 version 1.0 of
the WebGL specification was released. Today WebGL runs in
desktop and mobile web-browsers like Mozilla Firefox, Google
Chrome, Safari, and Opera. In the Internet Explorer WebGL
can currently only be used through plugins.

Many different JavaScript 3d engines such as three.js (Three.js,
2012) or SceneJS (SceneJS, 2012) were created to ease the
implementation of different 3d web applications or games using
WebGL. It is no surprise that also in the field of virtual globes
WebGL is a hot topic and used for several virtual globe web
applications. Projects like WebGL Earth (WebGL Earth, 2012)
the ReadyMap SDK (Pelican Mapping, 2012) and our
OpenWebGlobe SDK were initiated to provide a base for the
implementation of new 3d virtual globe applications using
WebGL. Also Google is currently working on a WebGL
version of Google Maps (Google Maps, 2012).

Apart from the discussion about the advantages or
disadvantages of a plugin free virtual globe (VG) browser
application, today's VGs also have a number of shortcomings

such as a lack of extensibility in terms of large , complex user-
generated or third-party geospatial contents (e.g. own high-
resolution DTMs or large to very large customized map or
orthoimage data sets). Other potentially more serious
shortcomings are the lacking extensibility in terms of
functionality and the lacking ease of integration into third party
applications and into operational environments which might not
be compatible with data and IP right policies of large
commercial VG operators. The strive for new applications of
VGs together with the above mentioned limitations of the main
commercial VGs have been the motivation for developing our
own VG technology at the FHNW.

In this paper we discuss the evolution of and research activities
in Internet- and web-based interactive 3d technologies. We then
present the OpenWebGlobe project and architecture. The paper
first focuses on the OpenWebGlobe viewer component, which
is fully based on HTML5 and WebGL, as well as some of its
key features. This is followed by a short discussion of the
OpenWebGlobe processing functionality. In the later sections
of this paper we present two applications which were built
using the OpenWebGlobe SDK. First a pilot national 3d
geoportal of Switzerland using high resolution imagery and
elevation data is described. Second an application in which
OpenWebGlobe is used for visualizing continuously generated
point cloud data for rapid mapping and inspection of unknown
buildings or industry-sites.

2. RELATED WORK

Different mechanisms for an interactive visualization of 3d
contents in the web are available and frequently used. Early
formats and standards such as the Virtual Reality Modeling
Language (VRML) (Bell, 1995) were defined in the mid 90ies
and permitted the authoring and delivery of 3d contents over the
web but required applications or browser plugins. VRML was

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

195

developed with the main goal to be platform independent,
extendable, and to work well over low-bandwidth internet
connections. Important geospatial features such as accurate
coordinate system support and a certain level of scalability were
added by GeoVRML in the late 90ies (Reddy et al., 2000).
(Geo)VRML and its successor X3D are text based and do not
provide the capability to access graphics hardware and to create
custom graphics engines. In parallel to the VRML efforts,
numerous approaches for interactively streaming large 3d
virtual environments were being developed. However, they all
required the installation of a proprietary application or a
specific browser plugin. Among the earliest technologies for
generating and interactively exploiting very large 3d landscape
models over the Internet using browser plugins were DILAS /
G-VISTA (Nebiker, 2003) and LandExplorer (Döllner et al.,
2003).

Another mechanism for 3d scene description and integration of
complex, explorable 3d scenes into webpages is XML3D (Sons
et al., 2010). XML3D is a HTML5 extension and allows the
integration of these scene descriptions directly into the HTML5
object model. Modern browsers support XML3D natively and
often WebGL is used for rendering within a website. For web-
design purposes, CSS3 3D (Jackson et al., 2009) offers some
functionality for 3d visualization of CSS elements (e.g.
perspective transformations, translations etc.) CSS 3D is an
extension of the CSS3 standard and is supported by many
modern browsers.

The creation and recent release of WebGL has spurred a
number of projects and activities with the goal of exploiting 3d
contents directly within the web browser. WebGL is a low level
API, this means that WebGL provides functionality to access
graphics hardware such as creating textures, create shader
programs on the GPU, and vertex buffers. Therefore new high-
level engines can be created using the WebGL standard by
adding functionality such as loading 3d models, providing
vector math functionality, ray-picking, texture atlases, or scene
graphs. One very popular WebGL engine is three.js which is a
lightweight 3d engine with low level of complexity (Three.js,
2012). Other noteable WebGL based high-level 3d engines are
SpiderGL (Di Benedetto, 2010), SceneJS (SceneJS, 2012),
Copperlicht (Ambiera, 2012) and Processing.js (Processing,
2012).

For visualization of large-scale geospatial 3d contents various
virtual globes running directly in the web browser have been
developed. They can be categorized in three types: First, there
are plugin-based globes requiring the previous installation of a
browser plugin. For every browser and operating system a
separate plugin must be developed to achieve cross
browser/cross platform support. Examples of such globes are
Google Earth Plugin (Google Earth Plugin, 2012), Nokia Maps
3D (Nokia, 2012) and Bing Maps 3D, which was discontinued
in November 2010 (Bing Maps 3D, 2010). The second type
uses Java Applets, such as OSM-3D (Schilling and Zipf, 2011)
or NASA World Wind (World Wind, 2007). The third type of
web browser based globes use WebGL for rendering. Examples
of such globes are Nokia Maps for WebGL (Beta) (Nokia
WebGL, 2012), WebGLEarth (WebGLEarth, 2012), ReadyMap
(Pelican Mapping, 2012) based on the osgjs engine (Osgjs,
2012), and OpenWebGlobe (OpenWebGlobe, 2012).

3. THE OPENWEBGLOBE PROJECT

The OpenWebGlobe project (www.openwebglobe.org) was
initiated by the Institute of Geomatics Engineering of the
FHNW University of Applied Sciences and Arts Northwestern
Switzerland (IVGI). It started in April 2011 as an open source
project following nearly a decade of 3d geobrowser
development at the institute. Together with developers from
industry and from other universities, the functionality of the
SDK is being extended continuously.

The development is based on the earlier i3D virtual globe
technology, which was also developed at the IVGI and which
was used for several research and industry projects (Christen &
Nebiker, 2010). Unlike the i3D technology, the OpenWebGlobe
SDK is fully open source and released under MIT license. All
source code is freely available at github
(http://github.com/OpenWebGlobe) and can be viewed, adapted
or extended even for commercial use.

The OpenWebGlobe SDK consists of two main parts: first, the
OpenWebGlobe Viewer part (as described in section 3.2), it
consists of a JavaScript library which allows the integration of
the OpenWebGlobe into custom web-applications. Second, the
OpenWebGlobe Processing Tools (introduced in Section 3.3), a
bundle of tools for bulk data processing, e.g. tiling or
resampling of large geospatial data sets. This pre-processing is
required by the viewer part to enable scalable fragment-based,
streamed download and visualization of data.

Further information about the project, tutorials, a function
reference and a support forum are available at
http://www.openwebglobe.org.

Figure 1. Screenshot of the project homepage

www.openwebglobe.org

3.1 Geospatial Foundations of OpenWebGlobe

Great emphasis was placed on providing a sound geospatial
reference. This is crucial, especially if OpenWebGlobe is used
as a basis for accurate virtual or mixed reality applications.

An ellipsoidal geodetic reference model is employed, in order
to minimize geometric transformation errors and to enable
position accuracies within the virtual globe at the sub-meter
level (Christen & Nebiker, 2011b). The default spatial reference
system and reference ellipsoid in OpenWebGlobe is WGS84.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

196

However, it is possible to change to a different reference
system, e.g. for extraterrestrial visualizations.

In OpenWebGlobe, for compatibility reasons, the spherical
Mercator projection is used to map image and elevation data.
This projection is mainly used to minimize distortions in
processed images and elevation data (Snyder, 1987).

The maximum latitude is chosen so that the resulting map fits
into a square. For the spherical Mercator projection this
maximum latitude is approximately 85.05 degrees. The square
is used because the tiles are laid out in a quadtree. The quad-
tree data structure has been used by many popular web mapping
services like Google Maps, Bing Maps and OpenStreetMap. For
OpenWebGlobe the same tile structure can be used and
therefore be compatible with other tools for image data
processing.

3.2 The OpenWebGlobe Viewer

The OpenWebGlobe Viewer architecture is based on a
scenegraph like model and it uses an object oriented approach.
Among the basic objects (see Figure 2) is the context object
(ogContext) which is the combination of a render window and a
graphics engine. It corresponds to the WebGL context but in an
abstract form. The scene object (ogScene) describes the type of
virtual globe visualization. A virtual globe is usually
represented as a 3d ellipsoid (WGS84), but it is also planned to
create flat earth representations – especially for local scenes –
or to create a 2d visualization which is usually a 2d map-type
application. In the scene there is a camera object (ogCamera)
which controls what is visible. There can be several cameras in
a scene, but only one is active at a given time. The camera has a
navigation controller which allows navigation through the scene
– for example with the mouse and keyboard as input. There is a
default navigation controller available, but a custom navigation
can also be implemented.

Figure 2. Basic Objects of the OpenWebGlobe SDK

The world object (ogWorld) contains the globe in the format
specified in the scene before (ellipsoid, flat, 2d). The world
consists of different layers which can be added or removed
during runtime. The most important layers are the image layer
(ogImageLayer) consisting of previously tiled orthophotos or
maps and the elevation layer (ogElevationLayer) consisting of

previously processed (tiled triangulated geometry) elevation
data (DEM). Both layers allow streaming of nearly unlimited
data. In addition, combinations of different image layers are
possible as shown in Figure 3. Here a high resolution image
layer from Switzerland is combined with tiled data from the
OpenStreetMap traffic layer.

Figure 3. Example for combination of different image layers;
image layer (25cm/pixel) and osm traffic layer combined and

displayed with an elevation layer (25m grid).

Furthermore the POI layer (ogPOILayer) contains points of
interest (POI), the geometry layer contains 3d objects and the
voxel layer preprocessed (tiled) 3d point cloud data. All layers
are streamable over the internet or from a local webserver.

As shown in Figure 4, there is also a number of more advanced
objects for 3d geometry, POI description, and binary or multi-
language text data described in the next sections.

Figure 4. Advanced Objects of the OpenWebGlobe SDK

3.2.1 Points of Interest (POIs)

For labeling some interesting points like mountain peaks, hotels
or gas stations POI objects (ogPOI) are typically used. The
graphical representation of a POI object within the globe
consists of a symbol and a label. POIs are arranged in a layer
object (ogPOILayer). Predefined functions for hiding, dragging
or picking POI objects are implemented. The POI size, font or

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

197

color can be designed individually by changing different style
attributes. Labels can be defined in any language and special
characters according to UTF8 are supported. A sample scene of
swiss mountain peaks labeled with POIs is shown in figure 5a.

3.2.2 3d Models

Cities, Buildings and other geometries can be loaded into the
globe as a Geometry Object (ogGeometry). The definition of a
geometry object has to be stored in a JSON File (JavaScript
Object Notation) according to a defined file description. These
JSON Files can then be loaded asynchronously into the globe.
OpenWebGlobe currently supports colored and textured 3d
models. Converter scripts from wavefront obj or collada format
are available. Figure 5b shows some textured 3d models within
the globe.

3.2.3 Billboards

Since the release of HTML5 a so called canvas element is
available. It is possible to draw or write into such a canvas
element by simple JavaScript functions. These painted canvas
elements can then be loaded into the globe and displayed as
billboards by using the ogBillboard object. This allows to
display complex, dyamic graphics like graphs or charts within
the globe.

3.2.4 Point Clouds

As an alternative representation for building or city models,
point clouds (Nebiker et al., 2010) can be visualized within the
OpenWebGlobe. The point cloud data has to be stored in a
proprietary JSON format or simply as ASCII xyz-file. Large
pointclouds have to be thinned out to decrease the amount of
data. For this purpose a function is available in the
OpenWebGlobe processing tools. An example of point cloud
visualization is shown in Figure 5c. Point cloud data is
statically loaded from files into the scene but it is foreseen to
implement a view dependent point cloud streaming mechanism
(Laine & Karras, 2010).

Figure 5 a (top left), b (top right), c (bottom). Custom
geospatial contents visualized in OpenWebGlobe.

A minimal OpenWebGlobe application is shown in figure 6.
The function “ogCreateContextFromCanvas” sets up the
WebGL context. The second function “ogCreateGlobe” directly

creates a WGS84 scene containing a camera and a world object.
This is a convenience function: there are also functions
available to create scene objects, camera objects and world
objects manually. With “ogAddImageLayer” an image layer
can be added and with “ogAddElevationLayer”, an elevation
layer is added to the scene.

<script type="text/javascript"src="openwebglobe.js">
</script>
<script type="text/javascript">

function main()
{
 var ctx = ogCreateContextFromCanvas("canvas",true);
 var globe = ogCreateGlobe(ctx);
 var imgOpenStreetMap =
 {
 url : ["http://a.tile.openstreetmap.org",
 "http://b.tile.openstreetmap.org",
 "http://c.tile.openstreetmap.org"],
 service : "osm"
 };
 ogAddImageLayer(globe, imgOpenStreetMap);
}

</script>
<body onload="main()">
<div style="text-align: center">
<canvas id="canvas"></canvas></div></body>

Listing 1. A minimal OpenWebGlobe application in HTML5 /
JavaScript

Figure 6. The resulting interactive virtual globe with osm map
tiles coded in listing 1

3.3 Data Pre-processing for OpenWebGlobe

The OpenWebGlobe data processing algorithms (Christen &
Nebiker, 2011a) have been developed with focusing on
scalability to very large data volumes – for all supported data
types, including imagery, map and terrain data – and have been
optimized for parallelism. We adapted the algorithms to support
as many cores as possible and came up with a set of
OpenWebGlobe processing commands. All commands run on
normal computers (regular laptops and work stations) and on
HPC systems, including cloud computing services. We use the
Message Passing Interface (MPI) to communicate and distribute
the workload on HPC cluster and OpenMP for multiprocessing.

Our development and test platform runs on the Microsoft
Windows HPC Server 2008 R2. However, our code is cross
platform and runs on Linux, too. Commercial clouds, for
example Amazon Elastic Compute Cloud (Amazon EC2) are
also supported by the OpenWebGlobe data processing code.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

198

One important aspect is compatibility to other geospatial data
services. Therefore, we chose to use the OpenStreetMap tile
layout for the tile storage. This makes it very easy to also use
our processed data in 2d applications like OpenLayers.

A general data processing workflow has been created to
simplify data processing from small to very large datasets. The
OpenWebGlobe processing toolkit consists of a number of
command line tools. A typical processing workflow is shown
below:

1. The first step in data processing is determining the extent
of your dataset. You can use the tool called
"ogCalcExtent" to calculate the extent of your data in
WGS84 and tile coordinates.

2. Once the extent of the data is known, a new layer must be
created. This is done using the "ogCreateLayer" tool.

3. After creation of the layer, data can be added. This is done
using the "ogAddData" tool.

4. When elevation data is being added the "ogTriangulate"
tool is used in this step to create geometry from the
previously added data. A large scale delaunay triangulation
is used as shown by (Christen & Nebiker, 2011a).

5. When adding data is finished, levels of detail can be
calculated. This can be done using the "ogResample" tool.

Recently new tools have been developed. They are used for
rasterizing vector data to image tiles using Mapnik, for creating
hillshading and normal maps, as well as OpenStreetMap data
with transparent background for overlays (Wüest, 2012). An
introduction and a step by step tutorial for data processing with
the OpenWebGlobe processing tools can be found in (Christen,
2012)

4. SELECTED APPLICATIONS

Among the 3d web applications created with the
OpenWebGlobe SDK two are especially notable. The first one

is a 3d viewer of Switzerland displaying high resolution
imagery (25cm/pixel) and elevation data (25m grid). The raw

data size was around 1.2TB. All data were directly
preprocessed in the cloud. 26 million tiles were generated and

stored on an amazon S3 instance in a pyramidical folder
structure with 19 LOD steps. This platform was created for the

Federal Office of Topography (Swisstopo) and used as a
demonstrator project for the OpenWebGlobe technology. Also
some textured and untextured 3d models of swiss towns and
selected buildings were integrated. Additionally a special

image layer shows the country borders. The application also
provides a localisation search service which allows searching

and flying to a given town in Switzerland. A Screenshot of this
application is shown in figure 7. The platform is accessible

online under swiss3d.openwebglobe.org.

Figure 7. Screenshot of the 3d Viewer Switzerland

swiss3d.openwebglobe.org

Another application for rapid 3d mapping and geolocalization
was created in summer 2011 as part of a research project
(Ladetto et al., 2011). The application offers possibilities to
integrate and compare different 3d point clouds captured from
laserscanning or stereo vision mobile mapping systems. Bulk 3d
point cloud data was preprocessed prior to its integration into
OpenWebGlobe. Data from a stereo vision SLAM device such
as point cloud fragments, position and orientation data is
continuously loaded and displayed by the application. Figure 8
shows a Screenshot of the application with a point cloud of the
building exterior in an overview. Different predefined or
dynamic view positions allow the user to investigate the
building in more detail or to dynamically follow and observe
moving objects or targets. Viewing modes like the 'follow
mode' in which the user sees the virtual globe in the view of an
individual or the 'third person mode' which allows observing a
scene from a predefined distance and automatically follows any
moving target are other useful features.

Figure 8. Screenshot of the rapid 3d mapping application

5. CONCLUSIONS AND OUTLOOK

In this paper we presented an open source framework for the
creation of large scale virtual 3d globes with highly detailed
contents and for their interactive visualization directly within a
broad spectrum of web browsers. While commercial virtual
globes are largely unrivalled in terms of global coverage and

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

199

tight integration with other web contents and web search
capabilities, they suffer from a number of weaknesses, mainly
the limited or lacking possibilities of integrating own high-
quality and up-to-date geospatial base data and of extending the
(core) functionality of the virtual globe. As it is shown in this
paper, the OpenWebGlobe processing framework and the
viewer SDK which is entirely based on HTML5 and WebGL
offer a highly performant, extensible and rapidly evolving
alternative to commercial virtual globes. Ongoing and future
work includes aspects such as the integration of new content
types (e.g. massive point cloud streaming, 3d model streaming),
the implementation of new navigation modes or the
development of web-based geospatial games.

6. REFERENCES

Ambiera, 2012. Copperlicht WebGL Engine.
http://www.ambiera.com/copperlicht (02.04.2012)

Bell, G., Parisi, A., Pesce, M., 1995. The Virtual Reality
Modeling Language.
http://www.web3d.org/x3d/specifications/vrml/VRML1.0/index
.html (02.04.2012)

Bing Maps 3D, 2010.
http://msdn.microsoft.com/en-us/library/bb259695.aspx
(02.04.2012)

Christen, M., Nebiker, S. , 2010. Neue Entwicklungen im
Bereich Virtueller Globen am Beispiel der i3D-Technologie.
Dreiländertagung der OVG, DGPF und SGPF. Wien

Christen, M., Nebiker, S., 2011a. Large Scale Constraint
Delaunay Triangulation. Lecture Notes in Geoinformation and
Cartography. Springer, Heidelberg, pp. 57-72.

Christen, M., Nebiker, S.,2011b. OpenWebGlobe SDK, an
Open Source High Performance Virtual Globe SDK for Open
Maps. Proceedings of the 1st European State of the Map, Wien.

Christen, M.,2012. Processing Geodata using the
OpenWebGlobe Tools.
https://github.com/downloads/OpenWebGlobe/DataProcessing/
dataprocessing.pdf (02.04.2012)

Di Benedetto, M., Ponchio, F., Ganovelli, F., Scopigno, R.,
2010. SpiderGL: A JavaScript 3D Graphics Library for Next-
Generation WWW, 15th Conference on 3D Web technology.

Döllner, J., Baumann, K., Kersting, O., 2003. LandExplorer -
Ein System für interaktive 3D-Karten. Kartographische
Schriften, pp. 7:67-76.

Google Earth Plugin, 2012.
http://www.google.com/earth/explore/products/plugin.html
(02.04.2012)

Google Maps, 2012.
http://maps.google.com (03.04.2012)

Jackson, D., Hyatt, D., Marrin, C., 2009. CSS 3D Transforms
Module Level 3.
http://www.w3.org/TR/css3-3d-transforms/ (03.04.2012)

Ladetto et al., 2012, European Journal of Navigation, Volume
10, Number 1, April 2012, pages 4 – 15.

Laine, S., Karras T., 2010. Efficent sparse voxel octrees.
Proceedings of te 2010 ACM SIGGRAPH symposium on
Interactive 3D Graphics and Games, pp. 55-63

Nebiker, S., 2003. Support for visualization and animation in a
scalable 3D GIS environment – Motivation, Concepts and
Implementation.

Nebiker, S., Bleisch, S., Christen, M., 2010. Rich point clouds
in virtual globes – A new paradigm in city modeling?
Computers, Environment and Urban Systems. pp. 34(6):508-
517.
http://dx.doi.org/10.1016/j.compenvurbsys.2010.05.002.
(02.04.2012)

Nokia WebGL, 2012. Nokia maps (WebGL)
http://maps3d.svc.nokia.com/webgl/index.html (02.04.2012)

Nokia, 2012.
http://maps.nokia.com/3D (02.04.2012)

OpenStreetMap, 2012: OpenStreetMap Project Wiki
 http://wiki.openstreetmap.org/wiki/Main_Page (02.04.2012)

OpenWebGlobe, 2012. OpenWebGlobe SDK
http://www.openwebglobe.org (02.04.2012)

Osgjs, 2012. OpenSceneGraph for JavaScript (WebGL).
http://osgjs.org (02.04.2012)

Pelican Mapping, 2012. ReadyMap SDK
http://readymap.com (03.04.2012)

Processing, 2012. Processing.js WebGL Engine.
http://www.processingjs.org (02.04.2012)

Reddy, M., Iverson, L., Leclerc YG, 2000. Under the hood of
GeoVRML 1.0. Proceedings of the fifth symposium on Virtual
reality modeling language (Web3D-VRML). New York, NY,
USA. ACM; 2000:23-28.

SceneJS, 2012. SceneJS - 3D Scene Graph Engine for WebGL
http://scenejs.org (03.04.2012)

Schilling, A., Zipf, A., 2011. From planet.osm to OSM.Planet -
OSM-3D is becoming global. SOTM-EU 2011. State of the Map
EU. Scientific Track. Wien.

Snyder, J. P. ,1987. Map Projections: A Working Manual. U.S.
Geological Survey Profesional Paper 1395. U.S. Geological
Survey.
http://pubs.er.usgs.gov/usgspubs/pp/pp1395.

Sons, K., Klein, F., Rubinstein, D., Byelozyorov, S., Slusallek,
P., 2010. XML3D: interactive 3D graphics for the web,
Proceedings of the 15th International Conference on Web 3D
Technology, Los Angeles, California, pp.175-184.

Three.js, 2012. Three.js JavaScript graphics engine.
https://github.com/mrdoob/three.js (03.04.2012).

WebGL Earth, 2012.
http://www.webglearth.org (03.04.2012)

WebGL, 2011. WebGL Specification, Version 1.0, 10 February
2011.
https://www.khronos.org/registry/webgl/specs/1.0
(20.01.2012).

World Wind, 2007.
http://worldwind.arc.nasa.gov/index.html (02.04.2012)

Wüest, R., 2012. Paralleles Pre-processing und optimiertes
Rendering globaler Openstreetmap-Daten in OpenWebGlobe,
2012. Master Thesis, University of Applied Sciences and Arts
Northwestern Switzerland.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

200

