
A ROBUST PARALLEL FRAMEWORK FOR MASSIVE SPATIAL DATA PROCESSING

ON HIGH PERFORMANCE CLUSTERS

Xuefeng Guan a, *

a State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University,

129 Luoyu Road, Wuhan 430079, P. R. China –guanxuefeng@whu.edu.cn

Commission IV, WG IV/5

KEY WORDS: Data parallel processing, Split-and-Merge paradigm, Parallel framework, LiDAR

ABSTRACT:

Massive spatial data requires considerable computing power for real-time processing. With the help of the development of multicore

technology and computer component cost reduction in recent years, high performance clusters become the only economically viable

solution for this requirement. Massive spatial data processing demands heavy I/O operations however, and should be characterized

as a data-intensive application. Data-intensive application parallelization strategies are imcompatible with currently available

procssing frameworks, which are basically designed for traditional compute-intensive applications. In this paper we introduce a

Split-and-Merge paradigm for spatial data processing and also propose a robust parallel framework in a cluster environment to

support this paradigm. The Split-and-Merge paradigm efficiently exploits data parallelism for massive data processing. The

proposed framework is based on the open-source TORQUE project and hosted on a multicore-enabled Linux cluster. One common

LiDAR point cloud algorithm, Delaunay triangulation, was implemented on the proposed framework to evaluate its efficiency and

scalability. Experimental results demonstrate that the system provides efficient performance speedup.

* Corresponding author. Email: guanxuefeng@whu.edu.cn, Tel: +86 27 68778311, Fax: +86 27 68778969

1. INTRODUCTION

1.1 Introduction

Spatial datasets in many fields, such as laser scanning, continue

to increase with the improvements of data acquisition

technologies. The size of LiDAR point clouds has increased

from gigabytes to terabytes, even to petabytes, requiring a

significant number of computing resources to process them in a

short time. This is definitely beyond the capability for a single

desktop personal computer (PC).

A practical solution to meet this resource requirement is to

design parallel algorithms and run them on a distributed

platform. Parallelism can be exploited by decomposing the

domain into smaller subsets that can be executed concurrently.

Multicore-enabled Central Processing Units (CPU) are

becoming ubiquitous from the single desktop PC to clusters

(Borkar and Chien, 2011); while the costs to build a powerful

computing cluster are getting lower and lower. It is natural and

necessary that spatial analysts employ high performance clusters

(HPC) to efficiently process massive LiDAR point clouds.

Nowadays data processing algorithms were designed without

any consideration in concurrency. For applied scientists,

adapting these serial programs into a distributed platform is

challenging and error-prone. They usually do not have much

knowledge and experience in parallelization for the distributed

context. Furthermore, processing massive LiDAR point cloud is

inherently different from classical compute-intensive

applications. Such applications devote most of their processing

time to Input/Ouput (I/O) and manipulation of input data. This

type of application should be characterized as a data-intensive

application, as opposed to traditional compute-intensive

application. Thus, the manipulation of input data must be taken

into consideration during decomposition, scheduling, and load-

balance.

Such a framework could be helpful and desirable, in which low-

level thread/process operation routines are hided and high-level

functions/classes are supplied in an application programming

interface (API) library. This paper proposes a general parallel

framework on a HPC platform to facilitate this transition from a

single-core PC to a HPC context. This framework defines a

Split-and-Merge programming paradigm for users/programmers.

With the help of this paradigm, our framework can

automatically parallelize and schedule user’s tasks. Finally, we

evaluate this robust framework with one typical massive LiDAR

point cloud processing example, Delaunay triangulation.

Section 2 presents related work on the research on parallel data

processing framework. Section 3 introduces the Split-and-Merge

paradigm for the parallel framework. Section 4 respectively

describes the detailed implementation of our parallel framework.

Section 5 presents the results and discussion of the experiments.

Section 6 closes the paper with our conclusions.

2. RELATED WORK

Parallel data processing has been an active research field for

many years. Presently, a large body of work on parallel

frameworks for data-intensive applications can be found in the

literature.

Hawick et al. (2003) have used the grid computing techniques to

build an operational infrastructure for data processing and data

mining. Dean and Ghemawat (2008) proposed a programming

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

213

model, called MapReduce, for processing and generating large

datasets. Users’ common processing algorithms are abstracted

into two functions, Map and Reduce. Programs written in this

model are automatically parallelized and executed by the

runtime framework on a large cluster of commodity machines.

Tehraniana et al. (2006) presented an architectural model and a

system prototype for massive satellite data processing. Their

prototype system shows that considerable performance

improvement can be gained for the specific science algorithms

in real-time.

Jonker described a data and task parallel framework to smoothly

program parallel applications for image processing (Jonker and

Nicolescu, 2008). In their proposed framework they also

introduced a special paradigm for parallel processing, called the

distributed bucket processing (DBP) paradigm, which is able to

dynamically distribute data sets over processors.

Guan developed a general-purpose parallel raster processing

programming library (pRPL) and applied it to speed up a

commonly used cellular automaton model (Guan and Clarke,

2010).

Wang et al. (2011) presented a common parallel computing

framework based on the message passing interface (MPI)

protocol for modeling hydrological river-basin processes. This

framework is computationally efficient, and independent of the

type of physical models chosen.

All the frameworks target distributed environments and aim to

improve the resources usage efficiency. Google’s MapReduce,

distributed bucket processing, and pRRL provide users with a

higher-level abstract model and greatly reduce the

implementation burden for programmers. However, Google’s

MapReduce model is too simple and strict for spatial algorithms.

For example, if some spatial algorithms are expressed in the

MapReduce model, the Reduce steps must be executed

hierarchically, thus conflicting with the original linear and out-

of-order execution pattern. As for distributed bucket processing

and pRRL, these two frameworks are specifically designed for

raster image processing, and does not support vector data

processing. Thus, a general parallel framwork should own the

efficiency of distributed bucket processing and pRRL, and also

support both images and vector data.

3. THE SPLIT-AND-MERGE PARADIGM

3.1 Data locality

Jonker and Nicolescu (2008) distinguished image processing

into three levels: image oriented operations (point or local

neighborhood), symbolic processing, and knowledge-based

processing. In P. P. Jonker’s classification, the kernel of point

operations focused on a single pixel or feature; while for local

neighborhood operations the neighboring elements also

participate in current element processing.

A common characteristic between point operations and local

neighborhood operations is data locality. Data locality means

that the kernel of these algorithms requires no other elements or

only the adjacent elements when processing one element. Data

locality provides fine-grain data parallelism. It can be illustrated

by k-nearest neighbor search in Fig.1.

Figure 1. Data locality illustrated with k-nearest neighbor search

This characteristic provides a basis for LiDAR point cloud

processing in a Split-and-Merge paradigm. In this paradigm, the

entire LiDAR point cloud is first decomposed into many

discrete blocks; then these blocks are individually processed by

user ’ s program S; and finally the intermediate results are

merged into the actual output by user ’ s program M.

3.2 The Split-and-Merge Paradigm

In the split-and-merge paradigm, the whole process is abstracted

into two types of tasks: Split task S and Merge task M. Split

tasks are mainly controlled by two factors: data decomposition

and neighbour definition. All the Merge tasks are connected into

a tree.

Regular decomposition usually divides the spatial domain into

rows, columns, or blocks, illustrated in Fig.2. Currently the

proposed Split-and-Merge paradigm only supports regular

domain decomposition. The size of rows, columns, or blocks

represents the granularity of parallel tasks. The grid index

method is used to index decomposed blocks, which are named

in this style, dataname_colnum_rownum.

Figure 2. Three regular domain decomposition methods

(rows, columns, blocks)

For different algorithms when processing one element, the

requirement for neighboring elements varies. The Split-and-

Merge paradigm provides an option for users to specify the

neighborhood configuration for each algorithm. The first

attribute of neighbor definition is the shape. Two shapes are

supported in this paradigm, cross or square. The second attribute

is the size of the neighbor, defined by the block number in one

direction. The neighbor definition is illustrated in Fig.3.

1

1 0 1

1

1

1 0 1

1

1 1

1 1

Figure 3. Two types of neighbor definition

(left: cross; right: square)

After decomposing a LiDAR point cloud and concurrently

processing each block, all the intermediate results are merged

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

214

into the final output. Due to the intrinsic diversity of processing

algorithms, merge procedures vary. For some algorithms,

additional edge operations must be carried out before the merge

between two adjacent results; while for other ones, all the

intermediate results can be merged in a batch mode without any

additional edge operations.

Therefore, the complete execution graph can be divided into two

categories according to the decomposition and merge paradigms:

two-level n-ary tree, and n-level binary tree patterns, illustrated

by Fig.4. In the first type, all the intermediate results are merged

in a whole; in the second type two adjacent intermediate results

are merged hierarchically.

M

P P P P....

M

M M

M

P P

M

P P

M

P P

M

P P

Figure 4. Two types of Split-and-Merge paradigms

(left: two-level n-ary tree; right: n-level binary tree)

For a specific LiDAR algorithm, the execution pattern is defined

by its internal procedure. Users/programmers only focus on the

actual implementation of two tasks: Split (program S) and

Merge (program M). After the implementation of these two

programs, the framework will automatically generate a

collection of scripts to encapsulate these individual split and

merge tasks. Illustrated by interpolating four point blocks into a

DEM, the generated task scripts are listed in Fig.5 and Table 1.

Figure 5. Four point blocks for interpolation

idw_interpolate -i abc_0_0.las -o abc_04.dem

idw_interpolate -i abc_1_0.las -o abc_05.dem

idw_interpolate -i abc_0_1.las -o abc_06.dem

idw_interpolate -i abc_0_2.las -o abc_07.dem

dem_merge -i abc_04.dem/ abc_05. dem / abc_06. dem /

abc_07. dem -o abc_01.dem

Table1. A list of automatically generated task scripts

4. THE PARALLEL FRAMEWORK

Our universal parallel framework is built on a standard SMP

(Symmetric Multiprocessor) cluster. Each node is connected by

the local area network. The open source TORQUE project

(Staples, 2006) was customized to provide a basis for our

parallel framework.

Fig. 6 illustrates the structure of our parallel framework.The

system consists of four components: pbs_server, pbs_sched,

database, and pbs_mom. These four components collaborate

closely to perform LiDAR point cloud processing.

Figure 6. The TORQUE-based parallel framework

The database is the newly designed module for TORQUE. It

stores current information for later scheduling, e.g. the

distribution of decomposed blocks, the status of job execution,

and the state of I/O between nodes. The database is hosted in a

MySQL instance. The detailed information about these tables is

listed in Table 2, 3 and 4.

Field Name Type Length

block_name vchar 40

node_name vchar 40

node_type integer

Table 2. The structure of tbl_block_distribution

Field Name Type Length

task_id vchar 40

node_name vchar 40

start_time datetime

completion_time datetime

Table 3. The structure of tbl_task_execution

Field Name Type Length

block_name vchar 40

node_source vchar 40

node_dest vchar 40

start_time datetime

completion_time datetime

Table 4. The structure of tbl_io_information

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

215

The pbs_server is the central module in TORQUE. It can

communicate with other modules and accept the user’s

commands via network protocol. Besides its main functions,

such as receiving/creating a batch job, modifying the job, and

dispatching the job, a specially designed function was added to

extract data dependencies of a batch job. The input data are an

important criterion for later scheduling.

The pbs_mom is the daemon which places the job into

execution on the node where it resides. One pbs_mom runs on

each computing node. The pbs_mom receives a copy of the job

from pbs_server, creates a new session, places the job into

execution, monitors the status of the running job and reports the

status to pbs_server. The modification to the pbs_mom enables

it to report the data status to the database after successfully

executing a job, including input blocks and output results.

The daemon, pbs_sched, implements the administrator’s policy

to control which job can be ready, when this job is run and with

which resources. The pbs_sched communicates with the

pbs_server to determine the availability of jobs in the job queue

and the state of various system resources. It also communicates

with the database for block information to make a scheduling

decision.

5. EXPERIMENTS

5.1 Experimental Environment and Datasets

The experimental environment was a six-node Linux cluster

running RedHat Enterprise Linux 5.5. Each node has two Quad-

Core Intel Xeon CPUs, 8GB DDR2-667 ECC SDRAM, and

1TB hard disk (7200 rpm, 32- MB cache). In this cluster, one

node is configured as the master node, while the other five are

the workers.

The LiDAR point cloud of Gilmer County, West Virginia is

chosen for our experiments, illustrated in Fig.7. It contains

0.883 billion points and occupies 16.4 GB of external space.

The average point space is about 1.4m.

Figure 7. The Gilmer county LiDAR dataset

5.2 Experimental Algorithms

One common LiDAR processing algorithms, Delaunay

triangulation (DT), was chosen to demonstrate the proposed

Split-and-Merge paradigm. The algorithm was executed on the

proposed parallel framework to examine its efficiency and

suitability.

The Delaunay triangulation pipeline for our proposed

framework is modified from a parallel approach, called

ParaStream (Wu et al., 2011). ParaStream integrates traditional

D&C methods with streaming computation, and can generate a

Delaunay triangulation for billions of LiDAR points on

multicore architectures within ten to twenty minutes.

The implementation of Split step in the Split-and-Merge

paradigm is to carry out Delaunay triangulation for each

decomposed block, erase the finalized triangles from the current

triangulation (InnerErase), and output the temporary results. The

Merge step in the Split-and-Merge paradigm merges the

triangulations of two adjacent blocks and also erases the

finalized triangles (InterErase). All these discrete tasks need no

neighbor definition. The entire Delaunay triangulation pipeline

falls into the type of n-level binary tree.

5.3 Results and Discussion

All the Split and Merge tasks for the algorithm was written in

C++ and compiled with linux gcc 4.3. In the experiments, the

execution time, speedup, and efficiency were used as the

metrics for evaluating the performance of the parallel

framework.

The first experiment evaluated the influence of different task

granularity on parallel performance. The decomposition size of

1000m was adopted. The detailed test results are listed in Table

5 and shown in Fig. 8.

Processors DT

1 10380

3 3840

5 3300

Table 5. Execution time (in seconds) with the DT algorithm

Figure 8. Speedup of parallel DT in this framework

All these experimental results demonstrate that significant

speedup and high data-throughput are achieved with this

framework. At the same time, with this parallel framework, our

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

216

proposed data-aware scheduling algorithm is much more

efficient than the traditional FIFO method when a neighbor

requirement is present in the user’s processing algorithm.

6. CONCLUSION

Parallel computing has been increasingly used to solve data-

intensive problems in geospatial science. Inspired by these

problems, this paper proposed a universal parallel framework

for processing massive LiDAR point clouds in a HPC

environment. Within this framework, the user/programmer is

supported with a predefined Split-and-Merge programming

paradigm. In this paradigm, user/programmers can focus on the

simple functional expression of their specific algorithm into two

distinct programs, Split and Merge, and leave parallelization and

scheduling to the runtime system. This framework automatically

and intelligently handles key scheduling decisions for tasks and

data. For considering data sharing between task inputs, a

specific data-aware scheduling algorithm is proposed to

decrease the data communication time. One common LiDAR

algorithm, DT, was evaluated to prove the efficiency and

suitability of our proposed framework.

ACKNOWLEDGEMENTS

This work is supported by the Natural Science Foundation of

China (Grant: 40971211 and 40721001).

REFERENCES

Borkar, S. and Chien, A., 2011. The future of microprocessors.

Communications of the ACM, 54(5), pp.67-77.

Dean, J. and Ghemawat, S., 2008. Mapreduce: Simplified data

processing on large clusters. Communications of the ACM, 51(1),

pp. 107-113.

Guan, Q. and Clarke, K., 2010. A general-purpose parallel raster

processing programming library test application using a

geographic cellular automata model. International Journal of

Geographical Information Science, 24(5), pp.695-722.

Hawick, K., Coddington, P. and James, H., 2003. Distributed

Frameworks and Parallel Algorithms for Processing Large-Scale

Geographic Data. Parallel Computing, 29(10), pp.1297-1333.

Jonker, P., Olk, J., and Nicolescu, C., 2008. Distributed bucket

processing: A paradigm embedded in a framework for the

parallel processing of pixel sets. Parallel Computing, 34(12),

pp.735-746.

Staples, G., 2006. TORQUE resource manager. In: Proceedings

of the 2006 ACM/IEEE conference on Supercomputing. Tampa,

Florida.

Tehranian, S., Zhao, Y., Harvey, T., Swaroop, A. and Mckenzie,

K., 2006. A robust framework for real-time distributed

processing of satellite data. Journal of Parallel and Distributed

Computing, 66(3), pp.403-418.

Wang, H., Fu, X., et al., 2011. A common parallel computing

framework for modeling hydrological processes of river basins.

Parallel Computing, 37(6-7), pp. 302-315.

Wu, H., Guan, X. and Gong, J., 2011. ParaStream: A parallel

streaming Delaunay triangulation algorithm for LiDAR Points

on Multicore Architectures. Computers & Geosciences, 37(9),

pp.1355-1363.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

217

