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ABSTRACT: 

 

Massive spatial data requires considerable computing power for real-time processing. With the help of the development of multicore 

technology and computer component cost reduction in recent years, high performance clusters become the only economically viable 

solution for this requirement. Massive spatial data processing demands heavy I/O operations however, and should be characterized 

as a data-intensive application. Data-intensive application parallelization strategies are imcompatible with currently available 

procssing frameworks, which are basically designed for traditional compute-intensive applications. In this paper we introduce a 

Split-and-Merge paradigm for spatial data processing and also propose a robust parallel framework in a cluster environment to 

support this paradigm. The Split-and-Merge paradigm efficiently exploits data parallelism for massive data processing. The 

proposed framework is based on the open-source TORQUE project and hosted on a multicore-enabled Linux cluster. One common 

LiDAR point cloud algorithm, Delaunay triangulation, was implemented on the proposed framework to evaluate its efficiency and 

scalability. Experimental results demonstrate that the system provides efficient performance speedup. 
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1. INTRODUCTION 

1.1 Introduction 

Spatial datasets in many fields, such as laser scanning, continue 

to increase with the improvements of data acquisition 

technologies. The size of LiDAR point clouds has increased 

from gigabytes to terabytes, even to petabytes, requiring a 

significant number of computing resources to process them in a 

short time. This is definitely beyond the capability for a single 

desktop personal computer (PC).  

 

A practical solution to meet this resource requirement is to 

design parallel algorithms and run them on a distributed 

platform. Parallelism can be exploited by decomposing the 

domain into smaller subsets that can be executed concurrently. 

Multicore-enabled Central Processing Units (CPU) are 

becoming ubiquitous from the single desktop PC to clusters 

(Borkar and Chien, 2011); while the costs to build a powerful 

computing cluster are getting lower and lower. It is natural and 

necessary that spatial analysts employ high performance clusters 

(HPC) to efficiently process massive LiDAR point clouds.  

 

Nowadays data processing algorithms were designed without 

any consideration in concurrency. For applied scientists, 

adapting these serial programs into a distributed platform is 

challenging and error-prone. They usually do not have much 

knowledge and experience in parallelization for the distributed 

context. Furthermore, processing massive LiDAR point cloud is 

inherently different from classical compute-intensive 

applications. Such applications devote most of their processing 

time to Input/Ouput (I/O) and manipulation of input data. This 

type of application should be characterized as a data-intensive 

application, as opposed to traditional compute-intensive 

application. Thus, the manipulation of input data must be taken 

into consideration during decomposition, scheduling, and load-

balance. 

 

Such a framework could be helpful and desirable, in which low-

level thread/process operation routines are hided and high-level 

functions/classes are supplied in an application programming 

interface (API) library. This paper proposes a general parallel 

framework on a HPC platform to facilitate this transition from a 

single-core PC to a HPC context. This framework defines a 

Split-and-Merge programming paradigm for users/programmers. 

With the help of this paradigm, our framework can 

automatically parallelize and schedule user’s tasks. Finally, we 

evaluate this robust framework with one typical massive LiDAR 

point cloud processing example, Delaunay triangulation. 

 

Section 2 presents related work on the research on parallel data 

processing framework. Section 3 introduces the Split-and-Merge 

paradigm for the parallel framework. Section 4 respectively 

describes the detailed implementation of our parallel framework. 

Section 5 presents the results and discussion of the experiments. 

Section 6 closes the paper with our conclusions. 

 

 

2. RELATED WORK 

Parallel data processing has been an active research field for 

many years. Presently, a large body of work on parallel 

frameworks for data-intensive applications can be found in the 

literature. 

 

Hawick et al. (2003) have used the grid computing techniques to 

build an operational infrastructure for data processing and data 

mining. Dean and Ghemawat (2008) proposed a programming 
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model, called MapReduce, for processing and generating large 

datasets. Users’ common processing algorithms are abstracted 

into two functions, Map and Reduce. Programs written in this 

model are automatically parallelized and executed by the 

runtime framework on a large cluster of commodity machines.  

 

Tehraniana et al. (2006) presented an architectural model and a 

system prototype for massive satellite data processing. Their 

prototype system shows that considerable performance 

improvement can be gained for the specific science algorithms 

in real-time. 

 

Jonker described a data and task parallel framework to smoothly 

program parallel applications for image processing (Jonker and 

Nicolescu, 2008). In their proposed framework they also 

introduced a special paradigm for parallel processing, called the 

distributed bucket processing (DBP) paradigm, which is able to 

dynamically distribute data sets over processors.  

 

Guan developed a general-purpose parallel raster processing 

programming library (pRPL) and applied it to speed up a 

commonly used cellular automaton model (Guan and Clarke, 

2010). 

 

Wang et al. (2011) presented a common parallel computing 

framework based on the message passing interface (MPI) 

protocol for modeling hydrological river-basin processes. This 

framework is computationally efficient, and independent of the 

type of physical models chosen.  

 

All the frameworks target distributed environments and aim to 

improve the resources usage efficiency. Google’s MapReduce, 

distributed bucket processing, and pRRL provide users with a 

higher-level abstract model and greatly reduce the 

implementation burden for programmers. However, Google’s 

MapReduce model is too simple and strict for spatial algorithms. 

For example, if some spatial algorithms are expressed in the 

MapReduce model, the Reduce steps must be executed 

hierarchically, thus conflicting with the original linear and out-

of-order execution pattern. As for distributed bucket processing 

and pRRL, these two frameworks are specifically designed for 

raster image processing, and does not support vector data 

processing. Thus, a general parallel framwork should own the 

efficiency of distributed bucket processing and pRRL, and also 

support both images and vector data.  

 

 

3. THE SPLIT-AND-MERGE PARADIGM 

3.1 Data locality 

Jonker and Nicolescu (2008) distinguished image processing 

into three levels: image oriented operations (point or local 

neighborhood), symbolic processing, and knowledge-based 

processing. In P. P. Jonker’s classification, the kernel of point 

operations focused on a single pixel or feature; while for local 

neighborhood operations the neighboring elements also 

participate in current element processing.  

 

A common characteristic between point operations and local 

neighborhood operations is data locality. Data locality means 

that the kernel of these algorithms requires no other elements or 

only the adjacent elements when processing one element. Data 

locality provides fine-grain data parallelism. It can be illustrated 

by k-nearest neighbor search in Fig.1. 

 

 
 

Figure 1. Data locality illustrated with k-nearest neighbor search 

 

This characteristic provides a basis for LiDAR point cloud 

processing in a Split-and-Merge paradigm. In this paradigm, the 

entire LiDAR point cloud is first decomposed into many 

discrete blocks; then these blocks are individually processed by 

user ’ s program S; and finally the intermediate results are 

merged into the actual output by user ’ s program M. 

 

3.2 The Split-and-Merge Paradigm 

In the split-and-merge paradigm, the whole process is abstracted 

into two types of tasks: Split task S and Merge task M. Split 

tasks are mainly controlled by two factors: data decomposition 

and neighbour definition. All the Merge tasks are connected into 

a tree. 

 

Regular decomposition usually divides the spatial domain into 

rows, columns, or blocks, illustrated in Fig.2. Currently the 

proposed Split-and-Merge paradigm only supports regular 

domain decomposition. The size of rows, columns, or blocks 

represents the granularity of parallel tasks. The grid index 

method is used to index decomposed blocks, which are named 

in this style, dataname_colnum_rownum. 

 

 
 

Figure 2. Three regular domain decomposition methods 

(rows, columns, blocks) 

 

For different algorithms when processing one element, the 

requirement for neighboring elements varies. The Split-and-

Merge paradigm provides an option for users to specify the 

neighborhood configuration for each algorithm. The first 

attribute of neighbor definition is the shape. Two shapes are 

supported in this paradigm, cross or square. The second attribute 

is the size of the neighbor, defined by the block number in one 

direction. The neighbor definition is illustrated in Fig.3. 
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Figure 3. Two types of neighbor definition 

(left: cross; right: square) 

 

After decomposing a LiDAR point cloud and concurrently 

processing each block, all the intermediate results are merged 
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into the final output. Due to the intrinsic diversity of processing 

algorithms, merge procedures vary. For some algorithms, 

additional edge operations must be carried out before the merge 

between two adjacent results; while for other ones, all the 

intermediate results can be merged in a batch mode without any 

additional edge operations.  

 

Therefore, the complete execution graph can be divided into two 

categories according to the decomposition and merge paradigms: 

two-level n-ary tree, and n-level binary tree patterns, illustrated 

by Fig.4. In the first type, all the intermediate results are merged 

in a whole; in the second type two adjacent intermediate results 

are merged hierarchically. 
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Figure 4. Two types of Split-and-Merge paradigms 

(left: two-level n-ary tree; right: n-level binary tree) 

 

For a specific LiDAR algorithm, the execution pattern is defined 

by its internal procedure. Users/programmers only focus on the 

actual implementation of two tasks: Split (program S) and 

Merge (program M). After the implementation of these two 

programs, the framework will automatically generate a 

collection of scripts to encapsulate these individual split and 

merge tasks. Illustrated by interpolating four point blocks into a 

DEM, the generated task scripts are listed in Fig.5 and Table 1. 

 

 
 

Figure 5. Four point blocks for interpolation 

 

idw_interpolate -i abc_0_0.las -o abc_04.dem 

idw_interpolate -i abc_1_0.las -o abc_05.dem 

idw_interpolate -i abc_0_1.las -o abc_06.dem 

idw_interpolate -i abc_0_2.las -o abc_07.dem 

dem_merge -i abc_04.dem/ abc_05. dem / abc_06. dem / 

abc_07. dem  -o abc_01.dem 

 

Table1. A list of automatically generated task scripts 

 

4. THE PARALLEL FRAMEWORK 

Our universal parallel framework is built on a standard SMP 

(Symmetric Multiprocessor) cluster. Each node is connected by 

the local area network. The open source TORQUE project 

(Staples, 2006) was customized to provide a basis for our 

parallel framework.  

 

Fig. 6 illustrates the structure of our parallel framework.The 

system consists of four components: pbs_server, pbs_sched, 

database, and pbs_mom. These four components collaborate 

closely to perform LiDAR point cloud processing. 

 

 
 

Figure 6. The TORQUE-based parallel framework 

 

The database is the newly designed module for TORQUE. It 

stores current information for later scheduling, e.g. the 

distribution of decomposed blocks, the status of job execution, 

and the state of I/O between nodes. The database is hosted in a 

MySQL instance. The detailed information about these tables is 

listed in Table 2, 3 and 4. 

 

Field Name Type Length 

block_name vchar 40 

node_name vchar 40 

node_type integer   

 

Table 2. The structure of tbl_block_distribution 

 

Field Name Type Length 

task_id vchar 40 

node_name vchar 40 

start_time datetime  

completion_time datetime   

 

Table 3. The structure of tbl_task_execution 

 

Field Name Type Length 

block_name vchar 40 

node_source vchar 40 

node_dest vchar 40 

start_time datetime   

completion_time datetime   

 

Table 4. The structure of tbl_io_information 
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The pbs_server is the central module in TORQUE. It can 

communicate with other modules and accept the user’s 

commands via network protocol. Besides its main functions, 

such as receiving/creating a batch job, modifying the job, and 

dispatching the job, a specially designed function was added to 

extract data dependencies of a batch job. The input data are an 

important criterion for later scheduling. 

 

The pbs_mom is the daemon which places the job into 

execution on the node where it resides. One pbs_mom runs on 

each computing node. The pbs_mom receives a copy of the job 

from pbs_server, creates a new session, places the job into 

execution, monitors the status of the running job and reports the 

status to pbs_server. The modification to the pbs_mom enables 

it to report the data status to the database after successfully 

executing a job, including input blocks and output results. 

 

The daemon, pbs_sched, implements the administrator’s policy 

to control which job can be ready, when this job is run and with 

which resources. The pbs_sched communicates with the 

pbs_server to determine the availability of jobs in the job queue 

and the state of various system resources. It also communicates 

with the database for block information to make a scheduling 

decision. 

 

 

5. EXPERIMENTS 

5.1 Experimental Environment and Datasets 

The experimental environment was a six-node Linux cluster 

running RedHat Enterprise Linux 5.5. Each node has two Quad-

Core Intel Xeon CPUs, 8GB DDR2-667 ECC SDRAM, and 

1TB hard disk (7200 rpm, 32- MB cache). In this cluster, one 

node is configured as the master node, while the other five are 

the workers. 

 

The LiDAR point cloud of Gilmer County, West Virginia is 

chosen for our experiments, illustrated in Fig.7. It contains 

0.883 billion points and occupies 16.4 GB of external space. 

The average point space is about 1.4m. 

 

 
 

Figure 7. The Gilmer county LiDAR dataset 

 

5.2 Experimental Algorithms 

One common LiDAR processing algorithms, Delaunay 

triangulation (DT), was chosen to demonstrate the proposed 

Split-and-Merge paradigm. The algorithm was executed on the 

proposed parallel framework to examine its efficiency and 

suitability. 

 

The Delaunay triangulation pipeline for our proposed 

framework is modified from a parallel approach, called 

ParaStream (Wu et al., 2011). ParaStream integrates traditional 

D&C methods with streaming computation, and can generate a 

Delaunay triangulation for billions of LiDAR points on 

multicore architectures within ten to twenty minutes.  

 

The implementation of Split step in the Split-and-Merge 

paradigm is to carry out Delaunay triangulation for each 

decomposed block, erase the finalized triangles from the current 

triangulation (InnerErase), and output the temporary results. The 

Merge step in the Split-and-Merge paradigm merges the 

triangulations of two adjacent blocks and also erases the 

finalized triangles (InterErase). All these discrete tasks need no 

neighbor definition. The entire Delaunay triangulation pipeline 

falls into the type of n-level binary tree. 

 

5.3 Results and Discussion 

All the Split and Merge tasks for the algorithm was written in 

C++ and compiled with linux gcc 4.3. In the experiments, the 

execution time, speedup, and efficiency were used as the 

metrics for evaluating the performance of the parallel 

framework.  

 

The first experiment evaluated the influence of different task 

granularity on parallel performance. The decomposition size of 

1000m was adopted. The detailed test results are listed in Table 

5 and shown in Fig. 8. 

 

Processors DT 

1 10380 

3 3840 

5 3300 

 

Table 5. Execution time (in seconds) with the DT algorithm 

 

 
 

Figure 8. Speedup of parallel DT in this framework 

 

All these experimental results demonstrate that significant 

speedup and high data-throughput are achieved with this 

framework. At the same time, with this parallel framework, our 
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proposed data-aware scheduling algorithm is much more 

efficient than the traditional FIFO method when a neighbor 

requirement is present in the user’s processing algorithm. 

 

 

6. CONCLUSION 

Parallel computing has been increasingly used to solve data-

intensive problems in geospatial science. Inspired by these 

problems, this paper proposed a universal parallel framework 

for processing massive LiDAR point clouds in a HPC 

environment. Within this framework, the user/programmer is 

supported with a predefined Split-and-Merge programming 

paradigm. In this paradigm, user/programmers can focus on the 

simple functional expression of their specific algorithm into two 

distinct programs, Split and Merge, and leave parallelization and 

scheduling to the runtime system. This framework automatically 

and intelligently handles key scheduling decisions for tasks and 

data. For considering data sharing between task inputs, a 

specific data-aware scheduling algorithm is proposed to 

decrease the data communication time. One common LiDAR 

algorithm, DT, was evaluated to prove the efficiency and 

suitability of our proposed framework. 
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