
 

1. INTRODUCTION 

Due to the rapid developments in mobile computing, wireless 

communications and positioning technologies, using 

smartphones as a PNS is getting popular. This evolution has 

facilitated the development of applications that use the position 

of the user, often known as LBS. Using various sensors on 

smartphones provides a vast amount of information; however, 

finding a ubiquitous and accurate pedestrian navigation solution 

is a very challenging topic in ubiquitous positioning (Lee & 

Gerla, 2010; Mokbel & Levandoski, 2009). Position estimation 

in outdoor environments is mainly based on the global 

positioning systems (GPS) or assisted GPS (AGPS); however, it 

is a challenging task in indoor or urban canyon, especially when 

GPS signals are unavailable or degraded due to the multipath 

effect. In such cases, usually other navigation sensors and 

solutions are applied for pedestrians. The first alternative is 

wireless radio sensors, such as Bluetooth, RFID (Radio 

Frequency IDentification) or WLAN (Wireless Local Area 

Network). These systems have limited availability and need a 

pre-installed infrastructure that restricts their applicability. The 

second navigation system is the IMU (Inertial Measurement 

Unit) sensors that provide a relative position based on the 

distance travelled and device’s orientation. The distance and 

orientation information can be measured with a gyroscope and 

an accelerometer sensor. The main drawback of the IMU is that 

they are based on the relative position estimation techniques and 

use the previous states of the system; therefore, after a short  

period  of  time  low  cost  MEMS (Micro Electro-Mechanical 

Systems)  sensors measurements typically result  in  large  

cumulative drift errors unless  the error are bounded  by 

measurements  from  other  systems (Aggarwal et al., 2010). 

Another solution is the vision-based navigation using video 

camera sensors. These systems are based on two main 

strategies: estimation of absolute position information using a 

priori formed databases which highly depends on the 

availability of image database for that area (Zhang and Kosecka, 

2006) and estimating relative position information using the 

motion of the camera calculated from consecutive images which 

suffers from cumulative drift errors (Ruotsalainen et al., 2011;  

Hide et al., 2011). Since there is not a single comprehensive 

sensor for indoor navigation, it is necessary to integrate the 

measurements from different sensors to improve the position 

information. 

 

Modern smartphones contain a number of Low cost MEMS 

sensors (e.g. magnetometer, accelerometer, and gyroscope) that 

can be used for integrated ubiquitous navigation even if GPS 

signals are unavailable. Vision sensors are ideal for PNS since 

they are available in good resolution on almost all smartphones. 

Therefore, in this research a vision sensor is used to capture the 

user’s motion parameters using consecutive image frames and 

to provide navigation aid when measurements from other 

systems such as GPS are not available. This system doesn’t 

need any special infrastructure and makes use of camera as an 

ideal aiding system. Since mobile users carry the device with 

different orientation and placement, in almost everywhere 

(indoor and outdoor environments) while doing various 

activities (such as walking, running and driving), using specific 

customized and context-aware algorithms are necessary for 

different users’ modes. Therefore, a mobile navigation 

application must be aware of user and device context to use 

appropriate algorithm for each case. For example, when the 

context information shows that device is in “texting” or 

“talking” mode, the observation from camera can be integrated 

with GPS sensor to improve and validate the pedestrian dead-

reckoning algorithm. The main issue in context-aware PNSs is 

detecting relevant context information using embedded mobile 

sensors in an implicit way. The contribution of this paper is to 

develop a visually-aided personal navigation solution using the 

smartphone embedded sensors which takes into account various 

user context. 
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ABSTRACT: 

 

The ubiquity of mobile devices (such as smartphones and tablet-PCs) has encouraged the use of location-based services (LBS) that 

are relevant to the current location and context of a mobile user. The main challenge of LBS is to find a pervasive and accurate 

personal navigation system (PNS) in different situations of a mobile user. In this paper, we propose a method of personal navigation 

for pedestrians that allows a user to freely move in outdoor environments. This system aims at detection of the context information 

which is useful for improving personal navigation. The context information for a PNS consists of user activity modes (e.g. walking, 

stationary, driving, and etc.) and the mobile device orientation and placement with respect to the user. After detecting the context 

information, a low-cost integrated positioning algorithm has been employed to estimate pedestrian navigation parameters. The 

method is based on the integration of the relative user’s motion (changes of velocity and heading angle) estimation based on the 

video image matching and absolute position information provided by GPS. A Kalman filter (KF) has been used to improve the 

navigation solution when the user is walking and the phone is in his/her hand. The Experimental results demonstrate the capabilities 

of this method for outdoor personal navigation systems. 
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2. VISION-AIDED PEDESTRIAN NAVIGATION  

Recently, by the increase in the resolution of digital cameras 

and computing power of mobile devices, visual sensors have 

gained a great attention in the positioning research community. 

Therefore, they have been used for motion detection, obstacle 

avoidance, and relative and absolute localization. Vision-based 

navigation has been used for decades in navigation of robots 

(Corke et al. 2007); however, using it in pedestrian navigation 

has become a research topic only in the last few years 

(Ruotsalainen et al., 2011; Hide et al., 2011; Steinhoff et al., 

2007). The focus of the vision-aided navigation research has 

been mainly in systems using a priori formed databases. When a 

match between images in the database and the ones taken by a 

pedestrian is found, the absolute position can be obtained. This 

procedure needs a priori preparations and highly depends on the 

availability of image database for that area. On the other hand, 

another group of algorithms with a wide range of applications 

deploy real-time motion estimation of a single camera moving 

freely through an environment. This estimation can be helpful in 

detecting displacement and orientation of the device and 

estimating the user’s turns (Hide et al., 2011). This information 

can be incorporated in the position and heading estimation of 

pedestrian navigation. However, there are various problems 

when processing the video frames from a hand-held device’s 

camera. First of all, the measurements are relative, therefore to 

estimate the absolute quantities, initialization of the parameters 

are required. Moreover, the scale of the observation cannot be 

obtained using only vision, and another sensor or a known 

dimension reference has to be used in order to retrieve the scale 

of the observation. Also the orientation of the mobile device 

affects the heading and velocity information. In this paper, we 

describe a low-cost context-aware personal navigation system 

that is capable of localizing a pedestrian using fusion of GPS 

and camera to robustly estimate frame-to-frame motion in real 

time (also known as visual odometry).  

 

2.1 Computer Vision Algorithm 

Motion estimation from video is a well-studied problem in 

computer vision. Approaches for motion estimation are based 

on either dense optical flow or sparse feature tracks (Steinhoff 

et al., 2007). In this paper a computer vision algorithm is 

developed to find the motion vector using the matched features 

between successive frames. The detected motion vectors are 

employed to estimate the forward motion velocity and the 

azimuth rotation angle between the two frames. To detect the 

motion vectors, interest points are detected from the frames 

using Speeded Up Robust Features (SURF) algorithm (Bay et 

al., 2008). The detected interest points of two successive frames 

are matched based on the Euclidean distance between the 

descriptors of these points. The vectors starting form an interest 

point in frame and ending at the corresponding matched point in 

the next frames are considered as candidate motion vectors.  

 

  
(a) (b) 

Figure 1. The matched features, condidate motion vectors (red), and 

acceptable motion vectors using RANSAC in two different cases: a) 
forward motion and b) change of the the heading.  

 

As shown in figure 1, some matches could be incorrect due to 

the existence of repeated similar points in the frames. Therefore, 

the candidate motion vectors should be filtered out to remove 

the inconsistent vectors based on discrepancy in length or 

orientation of the vector (figure 1). The RANdom SAmpling 

Consensus algorithm (Fischler et al., 1981) is used to find the 

vector angle and vector length with the maximum number of 

compatible vectors.The accepted motion vectors are then 

averaged to get the average motion vector. The accuracy of their 

average motion vector is highly dependent on the number of the 

compatible vectors and variance of the angles and lengths of 

these vectors. Figure 2 shows the number of acceptable motion 

vectors from the first 20 motion vectors detected as the best 

matches in the successive frames. Under the assumption of 

having context information of the hand-held device alignment 

(texting mode and landscape/portrait forward alignment), the 

vertical component of the average motion vector is a measure of 

the forward motion speed between the two frames. The 

horizontal component of the average motion vector is a measure 

of the azimuth change between the two frames. To calibrate the 

scale approximation between the motion vector and both the 

forward velocity and the azimuth change, a reference track is 

navigated using the motion vector only. The transformation 

parameters between the motion vector and forward speed and 

azimuth change are computed so that the navigation solution 

matches the reference solution. Using the computed 

transformation parameters, the forward motion velocity and the 

azimuth change can be approximated between any two 

successive frames with the help of the average motion vector. 

The estimation of the velocity from camera can also be 

improved by the user mode such as walking, stairs, running 

context information. However, the relative measurements from 

the computer vision algorithm tend to accumulate error over 

time, resulting in long-term drifts. To limit this drift, it is 

necessary to augment such local pose systems with global 

estimations such as GPS.  

 

Figure 2. The numbe of the acceptable motion vectors from 20 best 
matched features on consecutive frames. 

 

 

3. CONTEXT INFORMATION IN PNS 

In order to achieve a context-aware “vision-aided pedestrian 

navigation” system, two important questions must be answered: 

what type of context is important for such a system and how can 

we extract it using the sensors on a hand-held device? The 

following section discusses these issues and investigates 

different methods for context extracting from a mobile device’s 

sensors. 

 

Context may refer to any piece of information that can be used 

to characterize the situation of an entity (person, place, or 

object) that is relevant to the interaction between a user and an 

application (Dey, 2001). While location information is by far 

the most frequently used attribute of context, attempts to use 
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other context information such as “user activity” have increased 

over the last few years (Baldauf et al., 2007). The primary 

contexts relevant to the navigation services in a mobile device 

can be divided into three categories: Environment, user, and 

device. As listed in table 1, Environment contexts include time 

and location of the user which are two fundamental dimensions 

of ubiquitous computation and have been discussed in various 

studies (Choujaa & Dulay, 2008). In contrast, detecting user’s 

activity is still an open topic in context-aware systems. User 

activity context refers to a sequence of motion patterns usually 

executed by a single person and at least lasting for a short 

duration of time, on the order of tens of seconds. In navigation 

services, another important issue is that “where the device is 

located with respect to the user”. In PNS, usually a mobile 

device can be carried out by the user in an arbitrary placement 

and orientation (e.g. in the pocket, in hand, on belt, in backpack, 

on vehicle’s seat, etc.).  

 

Table 1. Contextual information coping with the proposed 

navigation systems 

Context type Context Values/samples 

Environment 

Time 
Time of the day/night, 

Weekend/weekday, … 

Location 
Outdoor, Indoor, close by point 

of interests, … 

User Activity 

Static, Walking, Running, Stair 

up-down, Elevator, Driving, 

Cycling, … 

Device 

Orientation 
Horizontal/Vertical, Face-

up/down, Landscape/Portrait 

placement 

Dangling with hand swing, 

Texting (with one/two hand), In 

a pocket (pants, jacket), In hand 

bag, In backpack, On belt, 

Talking (close to ear/speaker) 

Sensor Availability and Accuracy 

Network Availability 

Battery Power level 

 
The contexts that are useful for vision-aided system include: 

device orientation (e.g. face-up/down, vertical or portrait 

modes), device location (Texting with 1 hand or 2 hand mode) 

and activity of the user (e.g. walking mode). By texting we refer 

to the position of the user while texting and therefore it includes 

all similar positions such as surfing, playing, reading and etc. 

Texting mode requires the user to hold the device in front of 

himself using one or both hands. Since information gathered by 

a single sensor can be very limited and may not be fully reliable 

and accurate, in this research a new approach has been proposed 

based on the multi-sensor fusion to improve the accuracy and 

robustness of context aware system (Saeedi et al., 2011).  

 

3.1 Context Recognition Module 

Most of the current approaches for context recognition are data-

driven (Yang, et al., 2010; Pei, et al., 2010). In this research we 

aim at integrating the data-driven paradigm with the knowledge-

oriented paradigm to solve context detection problems 

considering expert’s rules and other information sources. 

Activity recognition module follows a hierarchical approach 

(Avci, 2010) for fusing accelerometer and gyroscope sensors in 

feature level. As it is shown in figure 3, the raw data captured 

by sensors is pre-processed for calibration and noise reduction. 

Then, signal processing and statistical algorithm are used to 

derive an appropriate set of features from the measurements. 

The potential number of features that can be used is numerous; 

however, the used features need to be carefully selected to 

perform real-time and robust context recognition. After feature 

extraction, pattern recognition techniques can be used to 

classify the feature space. There is a wide variety of 

classification techniques and often selecting the best one 

depends on the application (Saeedi et al., 2011).  

 

 
Figure 3. Feature recognition module (Saeedi et al., 2011) 

 

Figure 4 presents an example of accelerometer sensors’ output 

in different placement scenarios after sensor calibration and 

low-pass filtering. Some modes are easy to identify, such as the 

dangling mode in which accelerometer has significantly large 

magnitude due to the arm swing. However, other modes are 

quite similar to each other and require pattern recognition 

algorithms for classification.  

 

 
Figure 4. Tri-axial accelerometers output in different placement 

mode 

 

In this research the following features (table 2) has been used in 

time and frequency domains for context detection based on 

inertial data. 

 

Table 2. The useful time and frequency domain features for 

context detection 

Feature Space Description 
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it has good results in detecting 
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useful for detecting device 
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F
re

q
u

en
cy

-D
o

m
ai

n
 

F
ea

tu
re

s 

Frequency 

Range Power 

computes the power of the discrete 

Fourier Transform for a given 

frequency band 

Spectral 

Energy 

distinguish inactive activities from 

dynamic activities 

Spectral 

Entropy 

a measure of the distribution of the 

frequency components in the 

frequency band 

 

In order to increase robustness of activity recognition and 

reduce computations, a k-NN based feature selection method is 

applied and a set of twelve features has been selected with the 
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same accuracy for classification approach. These selected 

features have been used as inputs for the classification and 

recognition methods. We evaluated and compared several 

classifiers provided by WEKA, namely Baysian Network, the 

Support Vector Machine (LibSVM), k-Nearest Neighbor 

(kNN), and Artificial Neural Network (ANN) (Saeedi et al., 

2011). The SVM has the best performance in this case and have 

been shown in figure 6. 

 

Uncertainty is an integral part of the extracted context 

information and it is mostly caused by the imperfectness and 

incompleteness of sensed data and classification models. For 

example, it is difficult to detect if the phone is in the pocket or 

on the belt based on low-level sensing information such as 

accelerometer signals. Therefore, in our work we used Fuzzy 

Inference Engine (FIS) to transform the data into higher-level 

descriptions of context information. The hybrid method is 

capable of handling the uncertainty of the activities recognized 

using signal processing, removing the conflicts and preserving 

consistency of detected contexts, and filling the gaps. The list of 

linguistic variables and their corresponding membership 

functions is mentioned in table 3). 

 

Table 3. Definition of fuzzy input variables 

Walking pattern 

correlation 

Proper  >.7 

Medium >.4 & <.7 

Poor <.4 

Connectivity 

between activities 

high  <.7  

Medium >.4 and <.7 

low >.4 

GPS DOP 

Good 1-4 

Moderate 5-10 

fair 10-20 

Poor >20 

GPS velocity Driving >10 (m) 

Pedestrian <10 (m) 

 

In the next step fuzzy rules between the input and the output 

membership functions has been defined. These rules are 

determined using an experienced human. Based on the defined 

membership functions and the rules, fuzzy reasoning for the 

conjugate point determination is carried out in a Mamdani type 

(Zadeh, 1965) fuzzy reasoning structure. In the following four 

sample rules for detecting context information are presented: 

If walking correlation of dangling is proper and connectivity of 

dangling is high then context is dangling 

If GPS velocity is driving and GPS-DOP is good or moderate 

then environment is outdoor 

  

In designing rule repository, the designer can define specific 

constraints to incorporate common-sense knowledge. This will 

reduce the amount of required training data and makes the rule 

mining computationally efficient. An example of such a 

constraint is that a person cannot drive while in an indoor 

environment. Therefore our rule repository is composed of a 

number of predicates generated by the user and designer along 

with the mined association rules. These rules are stored in a 

knowledge-base (KB) that facilitates the modification, updating 

or removing the rules. In the rule based engine, different types 

of rules have different levels of confidence and reliability.  

 

 

4. NAVIGATION SENSOR INTEGRATION 

The core of the vision-aided pedestrian navigation system 

consists of GPS location and velocity information for retrieving 

absolute positioning while the position aid (velocity and 

heading change rate) information is provided from frame to 

frame camera images. These measurements are integrated using 

a KF filter (Aggarwal et al., 2010) that is presented briefly in 

the following section. The design of the integrated pedestrian 

navigation algorithm is shown in figure 5. The contexts that are 

useful for vision-aided system include: device orientation (e.g. 

face-up/down, vertical or portrait modes), device location 

(texting mode) and activity of the user (e.g. walking mode). 

Also, the context information about sensor’s availability and 

accuracy can be used to select the device dynamic and 

observation model in the KF.  

 

 
Figure 5. The multi-sensor pedestrian navigation diagram using 

context-aware vision-aided observation 

 

In this paper the dynamic system is based on whether the user is 

in texting mode while walking in an outdoor environment. In 

order to model the characteristics of the two-dimensional 

motion of a walking user we have used Dead Reckoning (DR) 

algorithms. DR is the determination of a new position from the 

knowledge of a previously known position, using the current 

distance and heading information. In a 2D-navigation, the 

current coordinates (  ,   ) with respect to a previously known 

position (    ,     ) can be computed as follows: 

 

                                   (1) 

                                 (2) 

 

where          denote the distance travelled by the user since 

time      and      is the user’s heading since time     .  

 

4.1 Kalman Filter 

The absolute position observations from GPS and heading 

measurements obtained from camera have been integrated using 

a KF. This filter uses the dynamic model to make a prediction 

of the state in the next time step. Then, it uses an observation 

model to compare the predicted and observed states. The 

dynamic equation of a KF is (Aggarwal et al., 2010): 

 

                                   (3) 

 

where,    is the state vector,      represents the transition 

matrix that relates the state of a previous time to the current 

time, and    is the process noise which is assumed to be drawn 

from a zero mean multivariate normal 

distribution with covariance    (          ) ). In this case, 

the dynamic equations for vision aided GPS is: 

 

                                 (4) 

                                (5) 
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      ̇                                 (7) 
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where  ,   represent the absolute position in the East and North 

coordinate, both in meters, V (m/s) is the speed,   (radian) the 

heading defined with the origin North and clockwise positive, 

and  ̇ (radian/s) the heading change rate. The variable Δt 

presents the time between two epochs. The state vector in our 

system is: 

           ̇               
      (9) 

 

To avoid linearization, the state transition matrix is defined here 

simplified as:  

   

[
 
 
 
 
                
                
 
 
 

 
 
 

   
   
   

 
 
 

                 
 
 ]

 
 
 
 

       (10) 

 

   is approximated as a constant matrix at every time epoch  . 

Observation Model general form is presented in equation (11) 

and is defined according to the information provided by the 

GPS and visual sensor. 

                 (11) 

 

where   , is the observation vector,    is the observation model 

which relates the state space into the observed space and    is 

the observation noise which is assumed to be zero mean 

Gaussian white noise with covariance    (         )). 

The number of measurements fed to the filter is varied on an 

epoch-to-epoch basis based on the availability of the sensors 

and its data rate. The non-availability situation of the visual 

aiding is based on the matching accuracy and was discussed in 

the computer vision section of this paper. The accuracy of the 

GPS sensor is also available on the android smartphones. The 

full-scale measurement vector (    is as follows: 

 

                 ̇              (12) 

 

The KF works in two phases: the prediction and the update. In 

the first phase, the filter propagates the states and state’s 

accuracies using the dynamic matrix       and  ̂   
  (estimated 

in the previous epoch), based on this equation:   ̂ 
     ̂   

 . 

Then the covariance matrix    can be estimated using         
 . 

The usual equation to calculate   
  is       

        
   

  
    . In the update phase the state is corrected by a robust 

blending of prediction solution with the update measurements 

based on the following equation: 

 

 ̂ 
   ̂ 

   ̅       ̂ 
                      (13) 

 

where  ̅ is the Kalman gain obtained by: 

 ̅    
   

      
   

     
  . The update of the covariance 

takes place with the equation:    
    

   ̅     
 .  

 

 

5. EXPERIMENTS AND RESULTS 

The potential of the proposed method are evaluated through 

comprehensive experimental tests conducted on a wide variety 

of datasets using a Samsung Galaxy Note smartphone. Multiple 

sensors are integrated on the circuit board including MEMS tri-

axial accelerometers (STMicroelectronics k3dh), three 

orthogonal gyros (K3G), a back camera (Samsung S5K5BAF-

2MP that can record video frames in HD format, and a GPS 

receiver module. To gather data from the phone, an application 

called TPI android logger (developed by MMSS research group 

at the University of Calgary) is used. These applications can be 

used in real time and collect data with a timestamp.  

For the context recognition, extensive pedestrian field tests have 

been performed. First, training datasets for accelerometer and 

gyro signals were collected for 10 minutes: three users were 

asked to perform walking around a tennis court repeatedly with 

different activities and device orientations such as on belt, in 

pocket, carting in the backpack, in-hand dangling, texting and 

talking modes. After the activity recognition step, the classified 

results were compared with the known placement 

configurations as shown in figure 6 to evaluate the accuracy of 

the context recognition. 

 
Figure 6: Recognition rates for different activities using 

Feature-level fusion algorithm (SVM) 

 

Figure 6 shows the recognition rate for each activity using 

SVM. By investigating each activity’s recognition rate, it can be 

inferred that the user activities such as: texting, driving, 

walking, running, taking stairs and elevator modes have an 

accuracy of 95%. In contrast, the classification models cannot 

distinguish between the device placements such as in pocket 

and on belt. This is expected because the way the users put their 

navigators in pocket and bags are quite ambiguous. In the case 

of vision-aided pedestrian navigation, we only need the texting-

mode and this mode can be detected from accelerometer sensor 

with the accuracy of almost 82%. In this mode, the orientation 

of the device (i.e. landscape or portrait mode) can be detected 

with an accuracy of almost 93%.  

 

Finally, a dataset with two combined user context was collected 

for testing the total context-aware and navigation solution. The 

user walked along the side-line of a tennis court in a close loop. 

During the loop, the user changed the placement twice before 

and after making turns which represents a very challenging 

situation for vision navigation. Using the classification 

algorithm, the system recognized the mode change and adapts 

the most suitable vision-based heading estimation 

automatically. Then, to accomplish vision-aided solution, the 

frame rate of four images per second was used. The resolution 

of the images was down-sampled to 320x240 pixels. The frame 

rate of 4 Hz was chosen because the experiments show that it 

provides sufficient information to capture meaningful motion 

vectors in different scenarios. A comparison of integrated 

navigation solutions is shown in Figure 7. The tennis court is 

located between two buildings and therefore, the smartphone’s 

GPS navigation solution has been degraded. As it can be seen 

from the figure, without using the context-aware vision-aided 

navigation, the GPS solution in comparison with the vision 

sensor is not accurate enough and unable to discern turns. 
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Figure 7: Field test using phone in two modes while user 

walking around a tennis court: the reference solution (green), 

GPS position (red), Vision aided GPS navigation (blue) 

 

 

6. CONCLUTION 

This paper concentrates on detecting the most important context 

information in personal navigation for users carrying 

smartphones. The field test shows that texting mode (which is 

the proper mode for vision sensor) can be detected from 

accelerometer sensor with the accuracy of 82%. In this mode, 

the orientation of the device (i.e. landscape or portrait mode) 

can be detected with an accuracy of 93%. Once context 

detection is performed, proper computer vision algorithm can be 

applied accordingly to find the motion vectors from successive 

frames to extract user’s motion.  

Moreover, a vision-aided pedestrian navigation algorithm is 

proposed to improve GPS solution. To model the characteristics 

of the two-dimensional motion of a walking user, Dead 

Reckoning algorithm is used as a dynamic model in Kalman 

Filter. The measurements fed to the filter are the GPS positions, 

velocity and vision-based velocity and the changes in heading 

angles when available. Pedestrian field tests were performed to 

verify the algorithms. The results are promising for combined 

modes and showed great potential for accurate, reliable and 

seamless navigation and positioning. 
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