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ABSTRACT: 
 
This paper presents a hierarchical recovery method to generate DTMs from airborne LiDAR point clouds based one an idea of 
layering. The developed method first registers the last return points, and then layering them. The layering is done by dividing the 
points into different height layers and assigning layer numbers to each point. The layer numbers are comparing references in later 
identification process. Then a series of rasterized pyramid levels which consisted of lowest points are generated. Since the outliers 
have been removed after the layering, the cells in top level are considered to be terrain points and used as reference to identify cells 
in the following level. After the identification of the second level, an interpolation will occur in the cells which identified as off-
terrain. And the interpolated level will be used as reference in its following level and the same process is repeated at each level. Once 
this process of the bottom level finished, the proposed method adjusts the results based on the first return feedback and followed by 
the final interpolation. As a result, this produces the final DTM. The developed method is data driven, and does not assume a prior 
knowledge about the scene complexity. The proposed method was tested with the ISPRS WG III/3 LiDAR datasets covering 
different terrain types and filtering difficulties. The results show that the proposed method can perform well in flat terrain or gentle 
slope area. 
 
 

1. INTRODUCTION 

Compared to conventional methods such as aerial 
photogrammetry and field surveys, the generation of Digital 
Terrain Models (DTM) from airborne LiDAR point clouds is 
fast and cost-effective over a large area, especially in vegetation 
covered areas since laser pulses can penetrate some of the 
canopy. However ， developing an automated and robust 
approach to terrain point identification and DTM generation is 
challenging. As a preliminary task of DTM generation using 
airborne LiDAR point cloud data, filtering terrain and off-
terrain is critical and fundamental to feature extraction and 
classification (Briese, 2010). The identified terrain points are 
the input of further interpolation process in many developed 
algorithms. The inappropriate identification will cause the 
deviation in the following interpolation, which leads to further 
error and low accuracy of DTM products (Guo et al., 2010). 
Besides, filtering is usually very challenging and time 
consuming because of the algorithms have to processing a large 
amount of data. Therefore, an efficient and effective filter 
algorithm is important for DTM generation. 
1 
However, the current filtering algorithms are facing difficulties 
in handling complex circumstances such as outliers (points lie 
far above or below the most points), complex objects, steep 
slopes, attached objects, uncertainty of the terrain definition 
(such as the ramp of a bridge), vegetation (such as shrub), 
discontinuities of the terrain, low objects like curb and railway 
tracks, as well as the combined complex scene (Sithole and 
Vosselman, 2004; Meng et al., 2010). Some of these problems 
are critical. The outliers, especially low outliers, can affect the 
reference point selection in the algorithms which adopt the 
lowest points as reference terrain points. The scenarios with 
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different sizes of the buildings will face a dilemma in choosing 
a filtering window size. Applying a small window size, the 
algorithm may identify a point on a big building point as terrain; 
and using a large window size, small terrain relief variations 
may be ignored. Low elevation objects are hard to remove 
because their heights are very close to terrain. A lot of research 
has been dedicated to DTM generation, especially to filtering, 
during the last decade (Meng et al., 2010). However the 
aforementioned difficulties have always been a barrier in 
developing a fast, robust, and reliable automatic filter and it is 
the major obstacle in DTM generation from airborne LiDAR 
data. 
 
The rest of the paper is organized as follows. Section 2 
describes the multi-scale terrain filtering method. Section 3 
discusses the results obtained using the ISPRS WG III/3 test 
LiDAR datasets. Finally, Section 4 concludes the study. 
 
 

2. METHOD 

The proposed multi-scale terrain filtering (MTF) method 
identify terrain points by iteratively recover terrain models from 
multi-scale pseudo-grid images in a coarse-to-fine way. As 
shown in Figure 1, the method has three steps: point cloud pre-
processing, multi-scale terrain filtering, and DTM refinement. 
 
In the point cloud pre-processing step, all laser scanning points 
must be pre-processed to retain last-return points of multiple 
returns (laser echoes), and then are layered with regard to the 
statistical height histogram of the whole data set. Two 
objectives of height histogram based layering are to assign the 
layer numbers to each point for the following MTF 
implementation, and to remove lower outliers and noises. 
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Figure 1. Flowchart of the MTF method 

 

 

 
Figure 2. The pseudo-code of the proposed method 

 
The second step is the multi-scale terrain filtering, which 
includes the rasterized pyramid level generation, iterative point 
identification and interpolation. Several rasterized pyramid 
levels are generated at first, and lowest points of every grid in 
every level are marked as representative points. The highest 
level is referred to an initial digital terrain model, from which 
the proposed MTF is employed as a reference. Then the 
identification and interpolation is iteratively processed in every 

level from the second highest level to the lowest level in the 
pyramid. The identification is based on comparing the layer 
numbers generated in layering and a slope-based threshold. This 
is followed by the interpolation at identified off-terrain points. 
The points from a processed level then become reference points 
in the identification of next level. Iteratively, DTMs are 
recovered and densified from coarse scales to fine scales. 
 
In the third step, the terrain results are adjusted based on the 
normalized Digital Surface Model (nDSM). The original 
LiDAR point cloud data are filtered based on the refined DTM. 
The separated terrain points are applied to generate the final 
DTM through the IDW interpolation. As a result, this produces 
the final and complete DTM. Figure 2 presents the pseudo-code 
of the proposed method. 
 
 

3. RESULTS AND DISCUSSION 

The dataset used in this study was released from the ISPRS WG 
III/3, have been made available through the web site (www. 
commission3.isprs.org/wg3/). A total of 15 sites were selected 
to test the performance of our multi-scale terrain filtering 
algorithm and compare the results with other methods evaluated 
by ISPRS (Sithole and Vosselman, 2004).  The LiDAR point 
cloud data were captured by an Optech ALTM scanner and the 
reference data were generated manually. Those data are located 
along seven study sites over the Vaihingen test field and the 
centre of Stuttgart City, Germany. The study cites have varied 
terrain characteristics and diverse feature content (e.g., open 
field, vegetation, building, road, railroad, river, bridge, 
powerline, water surface, etc.). Those sites are listed in Table 1. 
 
This dataset covers many different land features and filtering 
difficulties. However, it does not contain small woods and 
residence in urban area. And the reference data is only available 
for the 15 samples. The reference data for entire area is not 
available, which means will limit the algorithm testing for a 
large area. 
 
Sithole and Vosselman (2003b) reviewed and compared eight 
filtering algorithms, and their comparing method and data are 
frequently cited and applied in many researches of the laser 
scanning data filtering (Pfeifer and Mandlburger, 2008; Liu, 
2008; Briese, 2010; Meng et al., 2010). This paper adopts part 
of their assessment method and tests the performance of the 
MTF method. According to Sithole and Vosselman (2003), the 
cross-matrices are applied in this study to quantitatively analyze 
the Type I, Type II errors and their relationship. Type I errors 
are the errors which wrongly identified terrain points as off-
terrain points, and Type II errors are the errors which wrongly 
identified off-terrain points as terrain points. 
 
The proposed method was developed on C++ by Visual Studio 
2008. The morphological filter and adaptive TIN filter 
compared in this research are included in the ALDPAT Version 
1.0, which was developed by the International Hurricane 
Research Center, Florida International University in 2007. The 
final IDW interpolation and accuracy evaluation are processed 
on ArcGIS 10. The processor of the computer is equipped with 
Intel Core2 Duo CPU T5800 @ 2.00 GHz and 4 GB RAM. 
 
 
 
 
 
 

Input Lidar_Image; 
//Pre-processing 
points.SelectLastReturns(); 
points.HistogramGeneration(); 
points.Layering(); 
points.NoiseElimination(); 
//Points identification and interpolation 
level[n] = points.PyramidLevelsGeneration(); 
for(level j = n-1 to 0){ 

if(j=n){reference} 
for(points[i] in level j){ 

if(points[i].layernum==reference){ 
points[i]=terrain point;} 

else{ 
points[i]=off-terrain point;}} 

for(points[i] in level j){ 
if(points[i]==off-terrain point){ 

points[i].z=points[i].interpolation(); 
points[i].layernumRenew();}}} 

//DTM Refinement 
Rough_DTM = RasterGeneration(points[i]); 
Refined_DTM = nDSM_Adjustment( 

Lidar_Image.First_Returns, Rough_DTM); 
Terrain_Points = Filtering(Refined_DTM, 

Lidar_Image.Last_Return); 
FinalDTM = TerrainPoints.IDW_Interpolation(); 

Output DTM; 

Preprocessing 
-Non last return points removing 
-Point layering  
-Outlier and noise removal 

Multi-scale Terrain Filtering 
-Rasterized pyramid level generation 
-Point identification 
-Off-terrain point interpolation 

DTM Refining 
-nDSM feedback adjustment 
-Classification by refined DTM 
-IDW Interpolation 

Input: LiDAR Points 

Output: DTMs 
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Test 
Site 

Reference 
Sample 

Number 
of Points

Terrain 
Points 

Off-terrain 
Points 

Width 
(m) 

Length 
(m) 

Density 
(points/m²)

Terrain Features 

City 
Site 1 

Samp11 38010 21786 16224 133.89 302.73 0.94 A mixture of vegetation and 
buildings on steep hillside, data 
gap. Sampl2 52119 26691 25428 204.38 264.22 0.97 

City 
Site 2 

Samp21 12960 10085 2875 123.79 115.19 0.91 Large buildings, irregularly 
shaped buildings, road with 
bridge and small tunnel, data 
gap 

Samp22 32706 22504 10202 187.87 181.23 0.96 
Samp23 25095 13223 11872 146.18 205.9 0.83 
Samp24 7492 5434 2058 121.86 72.44 0.85 

City 
Site3 

Samp31 28862 15556 13306 174.17 161.94 1.02 
Densely packed buildings with 
vegetation, data gaps. 

City 
Site4 

Samp41 11231 5602 5629 167.19 104.71 0.64 Railway station with trains (low 
density of terrain points), data 
gaps. Samp42 42470 12443 30027 227.12 202.98 0.92 

Forest 
Site5 

Samp51 17845 13950 3895 232.41 429.87 0.18 Steep slopes with vegetation, 
quarry, vegetation on river 
bank, data gaps 

Samp52 22474 20112 2362 450.01 301.12 0.17 
Samp53 34378 32989 1389 430.42 472.93 0.17 
Samp54 8608 3983 4625 185.84 267.49 0.17 

Forest 
Site6 

Smap61 35060 33854 1206 504.23 443.97 0.16 
Large buildings, roads with 
embankments, data gaps. 

Forest 
Site7 

Samp71 15645 13875 1770 394.83 221.12 0.18 
Bridge, underpass, roads with 
embankments, data gaps. 

Table 1. Features of the ISPRS dataset (Sithole and Vosselman, 2003) 

 

Figure 3. Type I errors, Type II errors, Accuracy Rates and Kappa coefficients of the 15 sample sites from ISPRS tested by the 
proposed MTF method 

 
Quantitative Analysis 
 
The 15 sample sites from ISPRS WG III/3 are selected on city 
and forest areas, the ground features such as slope gradient, 
vegetation density are various. Therefore, Meng et al. (2010) 
divided the 15 ISPRS study sites into three groups. The sites in 
the first group (Samples 11, 24, 41, 54) have rough slope and 
dense vegetation; the sites in the second group (Samples 12, 21, 
22, 23, 31, 42) are relatively flat urban area; and the sites in the 
third group (Samples 51, 52, 53, 61, 71) contain rough terrain 
and discontinuous (e.g., river banks and mining fields). The 
following discussion will refer to these three groups. 
 
Figure 3 shows the quantitative assessment results of the 15 
sites, while Table 2 lists the parameters used to generate these 
results. The overall accuracy and Kappa coefficient for one site 
may be required from tests with different combination of 

parameters. For example, “samp11k” in Table 2 refers to the 
parameter combination for the Kappa coefficient value of 
Sample 11 showed in Figure 3, the numbers of Type I, Type II 
errors and accuracy for Sample 11 are generated by the 
parameters listed as “samp11”. 
 
As shown in Figure 3, the average, best, worst values of the 
accuracy rate are 85%, 96% and 70% respectively. The standard 
deviation of the accuracy rate and Kappa coefficient in fifteen 
sites are 8% and 25%, which means the overall accuracy is 
relatively stable while the Kappa coefficient varies depending 
on the study sites. However, the parameters in the proposed 
MTF method have to be tweaked to obtain the best results 
during the finite number of experiments, and the optimal result 
is not guaranteed in these experiments. In order to analysis the 
performance of the proposed MTF method on different 
situations, a series of comparisons are carried out as follows. 
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Sites 
Width 

(m) 
Del 

K 
(m) 

No. of 
Levels 

Tanθ 
Identification 

tolerance 
samp11  2.1 0.6 1.6 7 0.4 0.5 
samp11k  2.6 0.6 4.0 6 0.7 0.5 
samp12  0.9 0.6 2.0 7 0.7 0.5 
samp21  0.9 0.6 2.0 7 0.7 0.5 
samp22  0.9 0.6 2.0 7 0.7 0.5 
samp22k  1.5 0.6 1.6 7 1.2 0.5 
samp23  0.9 0.6 2.0 7 1.2 0.5 
samp24  0.9 0.6 2.0 7 1.2 0.5 
samp31  0.9 0.6 2.0 7 0.7 0.5 
samp41  0.9 0.6 2.0 7 1.8 0.5 
samp42  0.9 0.6 2.0 7 0.7 0.5 
samp51  0.9 0.6 2.0 7 0.7 0.5 
samp51k 2.0 0.6 2.4 7 0.7 0.1 
samp52  0.9 0.6 2.0 7 0.7 0.5 
samp52k 4.0 0.5 3.0 6 0.7 0.8 
samp53  0.9 0.6 2.0 7 0.7 0.5 
samp53k 3.2 1.5 2.4 7 3.0 0.5 
samp54  2.7 0.2 2.4 7 0.4 0.5 
samp61  0.9 0.6 2.0 7 0.7 0.5 
samp71  0.9 0.6 2.0 7 0.7 0.5 

Table 2. Parameters used in the proposed MTF method 
 

Since the 15 sample sites are divided into three groups, a 
comparison is shown in Figure 4. Group 2 sites shows the 
lowest errors and highest accuracy rate and kappa coefficient, 
which means that the MTF method can handle Group 1 sites 
better than the other two groups, this number is also good 
enough to compare with filters compared by ISPRS (Sithole and 
Vosselman, 2003). The performance of the MTF method on 
Group 2 is average. However, the performance on Group 3 
shows a very low Kappa coefficient because of the high Type II 
errors. Group 3 sites contain features like steep slope and high 
percentage of terrain points. Therefore, the MTF method 
probably has flaw on process this type of areas. 
 

 

Figure 4. Average values of Type I, Type II errors, Accuracy 
and Kappa sorted by three groups 

 
The ISPRS dataset is originally sorted as city sites and forest 
sites, the performance of the MTF method on city sites and 
forest site are shown in Figure 5. It is obvious that the 
performance on city site is better since it has lower Type I, II 
errors and higher accuracy and kappa. The steep slope and the 
dense vegetation coverage might be the reason why the MTF 
method has an unsatisfactory result on forest sites. The forest 
sites are basically overlapping with the Group 3 sites. The high 
Type II error is probably from the buildings on the slope which 
is a difficulty mentioned by Sithole and Vosselman (2003). It is 
also the key to improve the value of the Kappa coefficient. 

 

Figure 5. Average values of Type I, Type II errors, Accuracy 
and Kappa sorted by City Sites and Forest Sites 

 
The MTF is based on layering, which is a global analysis of the 
data height value. Therefore, the terrain points’ portion of all 
points can affect the result. Figure 6 demonstrates the MTF 
performance based on different terrain point percentage. It 
seems along with the growth of the percentage, the errors 
especially Type II error become higher, while the accuracy and 
kappa become lower. But it needs to be noticed that there is 
only one sample for the terrain point percentage smaller than 
40%, and the sample which have higher than 80% terrain points 
are all in the Group 3. Therefore, the uncertainty of this feature 
still requires further discussion. 
 

 

Figure 6. Average values of Type I, Type II errors, Accuracy 
and Kappa sorted by percentage of terrain point 

 
In order to know which feature of the data has more influence to 
the result, the average standard deviations of the previous three 
types of sortation are calculated as shown in Figure 7. The chart 
shows that they are all in the same range of each characteristic; 
however, the group sortation has the lowest average standard 
deviation among the three types of sortation. 
 

 

Figure 7. Average values of Standard Deviations of Type I, 
Type II errors, Accuracy and Kappa in three types of sortation
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Figure 8. Total Error rate of MTF method and three method tested by ISPRS (Shao and Chen, 2010) 
 

To compare with the algorithms analyzed by ISPRS WG III/3, 
the error rate and average of Kappa coefficients are shown in 
Figures 8 and 9, respectively. Unfortunately, the error rates are 
the worst of the four comparing method in nine of fifteen sites. 
However, it has better results than Roggero’s method in rest six 
sites. Similarly, the average of Kappa coefficients chart shows a 
61.2% of the proposed MTF method, which is the 6th of all 9 
methods, only higher than Elmqvist, Brovelli and Sithole’s 
methods. Therefore, a further improvement of the MTF method 
is required. 
 

 

Figure 9. Average of Kappa Coefficients in 15 sites of MTF 
method and eight method tested by ISPRS (Meng et al., 2009) 

 
 

4. CONCLUSIONS 

This paper has presented an automatic method called multi-
scale terrain filtering to generate DTM from last return points of 
high resolution airborne LiDAR point clouds. The developed 
method consists of three main steps. In the first step, outliers 
and noise points are eliminated. The method separates the point 
clouds into several layers based on the distribution of the 
elevation value of the points, and layer numbers are assigned to 
the points. In the second step, rasterized pyramid levels are 

generated from the lowest points in each cell. Then a series of 
iterative identifications and interpolations are processed to 
generate a rough DTM. The identification is comparing the 
layer numbers of the points with the reference points. The 
interpolation replaces the layer number and height value of off-
terrain cells by the average value of their neighbors. The last 
step is to refine the DTM. The terrain points are adjusted by 
comparing with the nDSM and then separated from the original 
data by the generated rough DTM. By using these identified 
terrain points, an IDW interpolation is processed to produce a 
final DTM. To verify the effectiveness of the developed method, 
ISPRS data sets with eight study sites and fifteen samples were 
used in this study. ISPRS also provided the results of eight 
existing algorithms for this data set. The result of the proposed 
multi-scale terrain filtering method indicates that it works as 
well as other filters in the flat terrain or terrain with gentle 
slopes. The proposed method can also overcome the difficulties 
like bridges, complex scenes, outliers and vegetation. However, 
the performance of the proposed method drops very much when 
handling the steep slope or discontinuities of the terrain. The 
total accuracy of the proposed method can be higher than 90% 
in some samples; however, it can be as low as around 65% in 
one study site. And the average Kappa coefficient in all fifteen 
study sites is 61.2%, which is low than average performance of 
all tested algorithms. 
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