
INCORPORATING LOAD BALANCING SPATIAL ANALYSIS INTO XML-BASED

WEBGIS

Haosheng Huang

Institute of Geoinformation and Cartography, Vienna University of Technology, 1040 Vienna, Austria –

haosheng.huang@tuwien.ac.at

KEY WORDS: WebGIS, XML, GML, SVG, Spatial Analysis, Load Balancing, Performance

ABSTRACT:

This article aims to introduce load balancing spatial analysis into XML-based WebGIS. In contrast to other approaches that

implement spatial queries and analyses solely on server or browser sides, load balancing spatial analysis carries out spatial analysis

on either the server or the browser sides depending on the execution costs (i.e., network transmission costs and computational costs).

In this article, key elements of load balancing middlewares are investigated, and relevant solution is proposed. The comparison with

server-side solution, browse-side solution, and our former solution shows that the proposed solution can optimize the execution of

spatial analysis, greatly ease the network transmission load between the server and the browser sides, and therefore lead to a better

performance. The proposed solution enables users to access high-performance spatial analysis simply via a web browser.

1. INTRODUCTION

Technological advances in the Internet/Web have triggered a

move toward Web-based geographic information systems

(WebGIS), which aim at providing GIS functionality and

services (such as web mapping and spatial analysis) to users

through a common web browser, such as Internet Explorer and

Firefox. Due to its openness, eXtensible Markup Language

(XML) /Geography Markup Language (GML) / Scalable Vector

Graphics (SVG) -based solutions have been shown to be

promising for building WebGIS (Peng and Zhang, 2004; Chang

and Park, 2006, Huang et al., 2011a). Recently, as more and

more web browsers start to provide “native” SVG supports,

XML-based WebGIS have become increasingly popular.

The ability to support spatial analysis is viewed as one of the

key characteristics which distinguish GIS from other

information systems. Initial development often adopts a server-

side solution to provide spatial analysis in WebGIS, that is,

executing all the spatial analytical tasks on the server side, and

sending the results to the browser side for visualization (Lin and

Huang, 2001; SuperMap 2010). These server-side solutions,

sometimes, become impractical, as the server cannot handle a

large volume of concurrent requests. Additionally, spatial

analysis is a complex task; users often have to try different

querying solutions before they are satisfied with the results. As

spatial queries often result in a large amount of data (such as

intermediate results which users may not need), there will be a

high transmission load between the server and the browser sides

(Huang et al. 2011a). Recently, in recognition of the limitations

and with the advancements in web technologies, browser-side

solutions are proposed, in which spatial analysis tasks are

executed directly on browser sides (Peng, 1997; Huang et al.,

2011a). These browser-side solutions avoid the “bottleneck”

problems, and are very promising and appealing due to the

rapid performance advancements of normal personal computers

(PCs). However, browser-side solutions might also become

impractical, as some spatial operations may result in far less

output than input (e.g., estimating the length of a river) and

hence need to be implemented on server sides.

It is important to note that these server-side and browser-side

solutions are two extreme cases of realizing spatial analysis in

WebGIS. Careful study shows that certain operations will give

better overall performance if they are executed on the server

rather than on the browser, and vice versa. In recognition of the

limitations, the concept of load balancing spatial analysis is

proposed (Vatsavai et al., 2006; Huang et al., 2011b), in which

spatial operations are executed on either the server or the

browser sides, depending on execution costs (i.e., network

transmission costs and computational costs). The core element

of load balancing spatial analysis is a load balancing

middleware which distributes a spatial operation to either server

or browser sides. However, little work has been done on

designing and implementing this middleware.

This goal of this article is to design and implement load

balancing middlewares to enable high-performance spatial

analysis in XML-based WebGIS. We extend our former work in

Huang et al. (2011b), in which a very coarse granularity (by

layer) for organizing and transmitting spatial data was

employed. In this article, the concept of load balancing spatial

analysis is comprehensively studied. More importantly, a finer

granularity (by spatial objects) of organizing and transmitting

spatial data is proposed, and some more flexible and precise

decision rules for distributing spatial operations to server or

browser sides are identified. With these, high-performance

spatial analysis can be provided to users via a web browser.

The rest of this article is structured as follows. In Section 2, we

briefly describe SVG (browser sides)/GML (server sides)-based

spatial information representation and spatial analysis. Section 3

discusses the load balancing middlewares. Some case studies

are implemented to evaluate the proposed solution in Section 4.

Also, comparisons with server-side solution, browser-side

solution and our former solution are provided and discussed in

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

415

Section 4. Finally, Section 5 draws conclusions and presents

future work.

2. SPATIAL ANALYSIS IN XML-BASED WEBGIS

XML/GML/SVG-based solutions have been shown to be a

promising approach for building WebGIS. In these solutions,

GML is used as a coding, storing and transmitting standard of

spatial data on server sides, while SVG is considered as a

rendering tool for displaying spatial data on browser sides.

The workflow of spatial analysis includes four steps (Wu,

2002): 1) define the goal and evaluation criteria; 2) represent

the needed spatial dataset; 3) carry out spatial querying and

analysis with GIS tools; 4) appraise and explain results. Steps 1

and 4 require domain knowledge and are mainly carried out by

domain experts. For Steps 2 and 3, GIS tools are needed to

support/assist human-computer interaction. In order to provide

spatial analysis in XML-based WebGIS, methods to support

and assist Steps 2 and 3 are proposed in Huang et al. (2011a).

Specifically, for Step 2, SVG/GML-based spatial information

representation models which can be used to represent the

needed spatial datasets in SVG (browser sides)/ GML (server

sides) are designed. Furthermore, for Step 3, some spatial

operators and a spatial extended Structured Query Language

(SESQL) are implemented to support spatial query and analysis

directly on spatial datasets represented in SVG/GML.

2.1 SVG/GML-Based Spatial Information Representation

SVG is developed primarily as a rendering tool for 2D graphics.

However, spatial information has a particular way in

representing and organizing spatial features and their

relationships (such as hierarchical structure of map - layer -

spatial object, spatial attributes vs. non-spatial attributes). To

represent the needed spatial dataset in SVG, a model

considering the characteristics of spatial information is

proposed in Huang et al. (2011a). In the model, we use <svg>

element to represent Map (the dataset), and use viewBox

attribute to represent its bounded range. Layer is represented as

<g> element. Point, Curve, Surface are represented as

<circle>, <path>, and <path>, respectively. <g> element is

also used to represent the Multipoint, Multicurve, Multisurface

and Multigeometry. Both spatial and non-spatial attributes of

spatial objects are represented as corresponding SVG elements‟

attributes. In the model, if B is PART-OF A, B is represented as

a child element of A. For example, Layer is PART-OF Map, so

<g> element which represents Layer is a child element of

<svg> element which represents Map.

Similarly, a GML-based spatial information presentation model

is designed (Huang et al., 2011a). With these models, the

needed spatial dataset can be effectively represented in both

server (GML) and browser (SVG) sides. An algorithm is also

proposed to losslessly covert GML-based dataset to SVG-based

dataset, and vice versa.

2.2 Spatial Operators and Spatial Extended SQL

In order to support spatial query and analysis directly on spatial

datasets represented in SVG/GML, Huang et al. (2011a) design

some spatial operators to access spatial attributes, calculate

topological relationships, and perform geometrical operations.

Five types of operators are introduced: attribute access

operators (GeometryType, Centroid, Length, Area, and

Envelope), spatial topological operators (Disjoint, Touch,

Crosses, Within, Overlap, and Contain), spatial order operators

(East, East_South, South, West_South, West, West_North,

North, and East_North), spatial metric operators (Max_Dist,

Min_Dist, and Mean_Dist), and geometrical operators

(Intersection, Union, Difference, and Buffer).

In Huang et al. (2011a), these five types of spatial operators are

then integrated into a spatial extended SQL (SESQL), which

can be used on both server and browser sides for spatial query

and analysis on GML and SVG. For example, a query of “list

cities which are crossed by river ‘R1’” can be implemented as

the SESQL sentence “select city.id from city, river where

river.id=’R1’ and crosses (river.d, city.d)=true”. The only

difference in applying SESQL for spatial analysis on SVG and

GML is the implementation of the SESQL compiler.

3. LOAD BALANCING SPATIAL ANALYSIS

With the above models and methods, spatial analysis can be

easily provided in XML-based WebGIS. This section focuses

on designing the load balancing middlewares to distribute a

spatial query to either server or browser sides based on its cost.

For each spatial query, load balancing middlewares compare the

costs of server-side execution (Cserver) and browser-side

execution (Cbrowser). If Cserver is less than Cbrowser, execute the

query on the server, and send the result data to the browser.

Otherwise, send the input data to the browser, and carry out the

query on the browser. The cost of a spatial query includes

computational costs (execution of the query) and network

transmission costs (input/output data of the query). As a normal

PC‟s processor performance has been drastically improved, the

difference in computational costs between server and browser

sides becomes less significant for most of the spatial queries.

Therefore, the difference between Cserver and Cbrowser mainly

depends on the network transmission cost. Our discussions

below will focus on comparing the network transmission cost.

In our former work Huang et al. (2011b), a simple solution,

which employs a very coarse granularity (by layers) for

organizing and transmitting spatial data, was proposed to the

load balancing middlewares. This article will improve the

former work on the following aspects: using a finer granularity

(by spatial objects), and identifying more flexible and precise

decision rules for distributing spatial operations.

3.1 Load Balancing Middlewares

In order to compare network transmission costs and distribute

spatial operations, a browser-side middleware and a server-side

middleware are designed. Figure 1 shows the architecture.

SESQL Compiler for GML

GML2SVG translator

Decision-maker

GML dataset

GML dataset

...
SVG dataset

Cache structure

Decision-maker

Server-side middleware Browser-side middleware

Server side Browser side

HTML interface

SESQL Compiler for SVG

Internet

SVG2GML translator

Figure 1. Architecture of the load balancing middlewares

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

416

3.1.1 Browser-side Middleware: The browser-side

middleware includes an SESQL compiler for SVG, an

SVG2GML translator, a cache structure, and a decision-maker.

The SESQL compiler carries out syntax, sentence, and semantic

analysis for users‟ SESQL sentences. The SVG2GML translator

is employed to translate SVG data into GML data.

The cache structure records which spatial data are available on

the browser side. Careful studies of different spatial analysis

tasks show that spatial objects are a basic unit of many spatial

operations. Therefore, a very fine granularity for organizing and

transmitting the spatial data is employed: spatial objects as a

unit of organizing and transmitting spatial data. The following

is the data structure of the cache structure.

Class cache_layer

{

String slayerID; //the ID of the layer

ArrayList<string> ObjectIDs; //the IDs of spatial objects

 //which are available on the browser side

Bool bExecuted; //true if the layer is created by the browser

 //side’s execution, bExecuted= true also means that the

 //layer can only be found on the browser side

Bool bAllTransmitted; //true if all the objects in this layer

 //are available on the browser side

}

ArrayList<cache_layer>Cache; //record the transmitted data

In the above structure, if bExecuted=true, the value of

bAllTransmitted will be set as true. This is mainly due to the

fact: an “executed” layer always contains all the spatial objects

which should be in this layer. The value of bAllTransmitted is

an important indicator for the decision-maker when a whole

layer is involved in a spatial query (i.e., an SESQL sentence).

The decision-maker figures out the needed spatial data (spatial

objects) from the FROM and WHERE clauses of the SESQL

sentence by invoking the SESQL compiler, and checks whether

all the needed spatial data are available on the browser side (by

examining the cache structure). If necessary, the decision-maker

sends the request to the server-side middleware.

3.1.2 Server-side Middleware: The server-side middleware

includes an SESQL compiler for GML, a GML2SVG translator,

and a decision-maker. The GML2SVG translator is employed to

translate GML data into SVG data. The decision-maker is

responsible for receiving the requests from the browser-side

middleware, and employing some decision rules to distribute a

spatial query to either the server or the browser sides based on

the network transmission cost of that query.

3.2 Decision Rules for Distributing Spatial Queries

The general principle of load balancing spatial analysis is to

execute a spatial query on the server side if the cost of server-

side execution (Cserver) is less than the cost of browser-side

execution (Cbrowser), and vice versa. This principle is applied

when designing the decision rules for both browser-side‟s and

server-side‟s decision-makers.

3.2.1 Decision Rules in Browser-side’s Decision-maker:

Every time users submit a spatial query (as an SESQL sentence)

through their browser (e.g., Internet Explorer), browser-side‟s

decision-maker will figure out the needed input data (spatial

objects) from the FROM and WHERE clauses in the SESQL

sentence, and check whether the needed spatial data are

available on the browser side. If yes, this query will be executed

by the SESQL compiler on the browser side. Otherwise, the

SESQL sentence, the names (IDs) of the needed input data

(only those which are not available on the browser side), and

the data size Inputbrowser and names (IDs) of the other input data

whose bExecuted is true (the data can only be found on the

browser side) will be sent to server-side‟s decision-maker.

3.2.2 Decision Rules in Server-side’s Decision-maker:

Server-side‟s decision-maker receives requests from browser

sides, and employs some decision rules for distributing spatial

queries. In order to identify these rules, we analyse the spatial

operators designed for GML/SVG in Section 2, mainly focusing

on comparing the input and output data sizes. When two or

more tables (i.e., layers) are involved in an SESQL sentence,

the styles of its SQL JOIN should be also considered when

comparing the input and output data sizes. For example, an

SESQL sentence like “select intersection (cities.d, rivers.d)

from cities, rivers” will return a table with many rows.

In terms of distribution of input data, two possible cases exist:

1) all the needed input data are available on the server side; 2)

the needed input data are located on both browser and server

sides. Figures 2 and 3 show the decision trees for them.

Only one layer

involved

Containing

„Buffer‟

Too many

join rows

Y N

Executing on:

Browser side

Y N

Containing

„intersection‟/

„union‟/„difference‟

Y N

Y N

Executing on:

Browser side

Executing on:

Server side

Executing on:

Server side

Executing on:

Server side

Figure 2. Decision tree for the case when all the needed input

data are available on the server side

Inputbrowser

≥ Inputserver

Inputbrowser

≥ Inputserver

Y N

Y N Y N

Y N

Containing

„Buffer‟
Too many

join rows

Containing

„intersection‟/

„union‟/„difference‟

Y N

Y N

Only one layer

involved

Executing on:

Browser side
Executing on:

Browser side

Executing on:

Browser side

Executing on:

Browser side

Executing on:

Server side

Executing on:

Server side

Executing on:

Server side

Figure 3. Decision tree for the case when the needed input data

are located on both browser and server sides

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

417

In both cases, if more than one layer is involved in the current

SESQL sentence, we further estimate the number of result rows.

If it is bigger than the total number of input rows, we consider

the current SESQL query generating “too many join rows”. In

Figure 3, the Inputbrowser is the data size of the needed input data

which can only be found on the browser side, while Inputserver is

the data size of the rest input data. The rest input data can be

found on the server side.

With the above rules, decisions on where to execute a SESQL

sentence can be made. After execution, the cache structure on

the browser-side middleware will be updated accordingly.

4. IMPLEMENTATION, CASE STUDIES AND

DISCUSSIONS

4.1 Implementation

For the server-side middleware, spatial operators, SESQL

compiler, GML2SVG, and decision-maker are implemented as

Java Servlets. Specifically, JTS Topology Suite is employed to

implement the spatial operators. As SESQL is based on the

original SQL, we adapt the C++ codes provided in Levine et al.

(1992), and implement our own SESQL compiler by combining

the spatial operators. For the browser-side middleware, SESQL

compiler, SVG2GML, decision-maker, and cache structure are

implemented using JavaScript. We implement spatial operators

with JTS Topology Suite, and develop them as Java Applet.

Google Gears API * provides an SQLite compiler with

JavaScript-based API. We therefore implement a JavaScript-

based SESQL compiler with the Gears API. For spatial

operators embedded in the SESQL sentences, JavaScript

invokes the developed Java applet to execute the corresponding

spatial operations. JavaScript DOM API is also used to

assess/update SVG documents on the browser side. In order to

facilitate the interaction between the server-side and the

browser-side middlewares, we use AJAX (Asynchronous

JavaScript and XML) technology.

It is important to note that the load balancing middlewares are

completely transparent to the end users. Users can access spatial

analysis functions simply with an SVG-enabled web browser,

such as Internet Explorer, Firefox, and Google Chrome.

4.2 Case Studies and Discussions

We design three case studies to evaluate the proposed solution

as proof of concept. These case studies use geospatial data of

Guangdong Province (China), and implement several spatial

analysis tasks. In the case studies, comparisons among the

proposed solution, server-side solution, browser-side solution

and our former solution (Huang et al., 2011b) are also made.

4.2.1 Case Study 1: Suppose there is some toxic

contamination throughout river “R1”. The contamination affects

the areas that are within 20 km. This task is to list all affected

administrative districts and calculate their affected area size.

In order to investigate this issue, we have to create a buffer for

river “R1”, and find out which administrative districts are

overlapped with this buffer, and then calculate the size of

overlapped area for each district. We carry out this task based

on the workflow described in Section 2. First, we identify the

* Google has stopped its support for Gears API. However,

similar functions can be found on HTML 5‟s LocalStorage.

needed data and the evaluation criteria by carefully analysing

this case study. And then based on the suggested model in

Section 2, we use GML to represent the needed spatial data

(river layer) on the server side. We also represent the district

boundary layer in SVG and deliver it to the browser side as the

initial User Interface (UI). We then submit SESQL sentences on

the browser side to carry out the spatial queries by the following

steps: 1) Calculate a 20 km buffer of river “R1” (using Buffer

operator); 2) Find out all the districts which are overlapped by

this buffer (using Overlap operator); 3) Find out all the affected

areas in each district (using Intersection operator); 4) Calculate

the size of affected area in each district (using Area operator).

The SESQL sentences are listed in the Appendix.

Figure 4 depicts the results. It lists the names of affected

districts, and their affected sizes in the listbox at the right-

bottom corner. These districts are also highlighted in the map.

Figure 4. Listing all the administrative districts affected by river

“R1”, and calculating their affected area size

To illustrate the advantages of the proposed solution, we

compare it with different solutions: server-side solution,

browse-side solution, and layer-based load balancing solution

(i.e., our former solution in Huang et al. (2011b)). We mainly

compare the data amount of the network transmission

(excluding the request/response sentences) between the server

and the browser sides. Table 1 depicts the results. The

difference between layer-based solution and the proposed

solution is mainly due to their employed granularities (layers

versus spatial objects). To sum up, the proposed solution has a

smaller network transmission load between server and browser

sides, and therefore leads to a better performance.

 Server-

side

solution

Client-

side

solution

Layer-

based

solution

The

proposed

solution

Step1:

Buffer

1,925 36,559 36,559 (on

browser)

5,082 (on

browser)

Step2:

Overlap

5,267 0 0 (on

browser)

0 (on

browser)

Step3:

Intersection

3,095 0 0 (on

browser)

0 (on

browser)

Step4: Area 106 0 0 (on

browser)

0 (on

browser)

Total 10,393 36,559 36,559 5,082

Table 1. Comparisons of the first case study (data amount is

measured by Byte)

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

418

4.2.2 Case Study 2: Case study 2 tries to compute the length

of railways in each of the administrative districts they pass

through. Similar to case study 1, we use GML to represent the

needed spatial data (railway layer) on the server side. We also

represent the district boundary layer in SVG and deliver it to the

browser side as the initial UI. The task is carried out by the

following steps: 1) compute the railway segments in each

district (using Intersection operator); 2) calculate the length of

each railway segment (using Length operator); 3) sum up all the

railway segments for each district; 4) filter out districts which

have no railways. The SESQL sentences are listed in the

Appendix. Figure 5 depicts the results. It lists the names of all

relevant districts, and their lengths of railways in the listbox

shown at the right-bottom corner. These districts are also

highlighted in the map view.

Figure 5. Listing the length of railways in each of the

administrative districts they pass through

We also compare the amount of transmitted data when using

different solutions for accomplishing this task. Table 2 depicts

the results, and shows that our proposed solution has a smaller

network transmission load between server and browser sides.

 Server-

side

solution

Client-

side

solution

Layer-

based

solution

The proposed

solution

Step1:

Buffer

28,493 7,211 28,493 (on

server)

7,211 (on

browser)

Step2:

Length

9,925 0 0 (on

browser)

0 (on

browser)

Step3:

SUM

648 0 0 (on

browser)

0 (on

browser)

Step4:

Filter

582 0 0 (on

browser)

0 (on

browser)

Total 39,648 7,211 28,493 7,211

Table 2. Comparisons of the second case study (data amount is

measured by Byte)

4.2.3 Case Study 3: Case study 3 focuses on how land uses

of each administrative district along railway “Guang-Mei-Shan”

change between 1987 and 1996. Similarly, we use GML to

represent the needed spatial data (railway and district-centre

layers) on the server side. We also represent the district

boundary layer in SVG and deliver it to the browser side as the

initial UI.

The task is carried out by the following steps: 1) calculate a 20

km buffer of railway “Guang-Mei-Shan” (using Buffer

operator); 2) identify the districts whose centres are located in

this buffer (using Within operator); 3) Use the statistics function

to generate the bar graphs of changes of land uses for every

identified district. The SESQL sentences are listed in the

Appendix. Figure 6 depicts the results. It lists the names of all

relevant districts in the right-bottom listbox. Each district and

its land use statistics are also highlighted in the map view.

Figure 6. How the land uses along railway “Guang-Mei-Shan”

change between 1987 and 1996

Table 3 compares the amount of transmitted data when using

different solutions for accomplishing this task.

 Server-

side

solution

Client-

side

solution

Layer-

based

solution

The proposed

solution

Step1:

Buffer

7,892 7,211 7,211 (on

server)

1817 (on

browser)

Step2:

Within

92 1,728 1,728 (on

browser)

1,728(on

browser)

Step3:

Stat.

723 3,946 723 (on

server)

723 (on

server)

Total 8,707 12,885 9,662 4,268

Table 3. Comparisons of the third case study (data amount is

measured by Byte)

4.3 Discussions

The implementation of the above three case studies shows that

the proposed solution is feasible and operable to enable load

balancing spatial analysis in XML-based WebGIS. The

comparison with server-side solution and browser-side solution

also shows that load balancing solution can optimize the

execution of spatial analysis, and therefore greatly ease the

network transmission load between server and browser sides.

With the proposed solution, high-performance spatial analysis

can be easily provided in XML-based WebGIS. The comparison

with our former solution (i.e., layer-based solution) shows that

using spatial objects as a unit of organizing and transmitting

spatial data can provide a better performance than using layers

as a unit. It also reveals the importance of developing a more

precise decision rule. To sum up, the proposed load balancing

spatial analysis can enable users with high-performance spatial

analysis in the Web environment.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

419

However, it is important to note that the load balancing

middlewares in the current solution check/scan SESQL

sentences one by one. In order to provide a better performance,

neighbouring SESQL sentences might be checked and

considered together. In the meantime, we are aware that the

decision rules identified are still quite simple and static, and

needed to be improved further. Currently, we are trying to use

machine learning methods to mine the application logs to

improve the current rules.

5. CONCLUSIONS AND FUTURE WORK

Spatial analysis plays a key role in GIS. In order to meet the

increasing demand of spatial information applications in the

Web, spatial analysis should be provided into WebGIS. This

article aims to incorporate load balancing spatial analysis into

XML-based WebGIS. Compared to other approaches that

implement spatial queries and analyses solely on the server or

browser sides, load balancing spatial analysis carries out spatial

analysis either on the server or the browser sides depending on

the network communication cost and the computational cost.

This article mainly focuses on designing the load balancing

middlewares. Comparison with other solutions shows that the

proposed load balancing solution can optimize the execution of

spatial analysis, and therefore lead to a better performance.

The contributions of this article are: 1) proposing a finer

granularity (by spatial objects) of transmitting spatial data in

load balancing middlewares; 2) identifying more flexible and

precise decision rules for distributing spatial operations to

server or browser sides; 3) enabling high-performance spatial

analysis in XML-based WebGIS.

Our next step is to evaluate the proposed solution with more

complex case studies. We are also interested in using machine

learning methods to identify decision rules from application

logs. Query optimization in SQL research might also provide

some hints on improving the load balancing middlewares.

Furthermore, the proposed solution is not only suitable for

XML-based WebGIS. Therefore, application of the proposed

solution in other WebGIS will be investigated.

REFERENCE

Chang, Y., Park, H., 2006. XML Web Service-based

development model for Internet GIS applications. IJGIS, 20(4),

pp. 371- 399.

Huang, H., Li, Y., Gartner, G., Wang, Y., 2011a. An SVG-

based method to support spatial analysis in XML/GML/SVG-

based WebGIS. IJGIS, 25(10), pp. 1561-1574.

Huang, H., Li, Y., Gartner, G., 2011b. A load balancing method

to support spatial analysis in XML/GML/SVG-based WebGIS.

In: Advances in Web-based GIS, Mapping Services, and

Applications, Li, S. Dragicevic, S., Veenendaal, B. (Eds.), CRC

Press, pp. 153-168.

Levine, J. Mason, T., Brown, D. 1992. Lex & Yacc (2nd).

O'Reilly & Associates.

Lin, H., Huang, B. 2001. SQL/SDA: A query language for

supporting spatial data analysis and its web-based

implementation. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 13(4), pp. 671-682.

Peng, Z., 1997. An assessment of the development of internet

gis. In: Proceedings of the ESRI User Conference.

Peng, Z., Zhang, C., 2004. The roles of geography markup

language (GML), scalable vector graphics (SVG), and Web

feature service (WFS) specifications in the development of

Internet geographic information systems (GIS). Journal of

Geographical Systems, 6(2), pp. 95-116.

SuperMap, 2010. SuperMap IS.NET 2008. http://www

.supermap.com.cn/gb/products/fwskf.htm (Mar. 2010).

Vatsavai, R., Shekhar, S., Burk, T., Lime, S., 2006. UMN-

MapServer: A High-Performance, Interoperable, and Open

Source Web Mapping and Geo-Spatial Analysis System. In:

GIScience 2006, Raubal, M. (Eds.), Springer, pp. 400-417.

Wu, X. 2002. Principles and methods of GIS (in Chinese),

Publishing House of Electronics Industry, Beijing.

APPENDIX. SESQL SENTENCES IN CASE STUDIES

Case Study 1

1) Calculate a 20 km buffer of river “R1”:

create view bf as select id, buffer(d, 20000) as buf from river

where ID=”R1”

2) Find out all the districts which overlay with this buffer :

create view citylist as select boundary.id as id, boundary.d as d

from boundary, bf where (overlap(boundary.d, bf.buf) = true)

3) Find out all the affected areas in each district:

Create view affectedarea as select citylist.id as id, intersection

(citylist.d, bf.buf) as d from citylist, bf

4) Calculate the size of affected area in each district:

Select id, area(d) as area from affectedarea

Case Study 2

1) Compute the railway segments in each district:

Create view seg_r as select boundary.id as id, intersection

(boundary.d, railway.d) as int from boundary, railway

2) Calculate the length of each railway segment:

create view seg_r_len as select id, length(int) as len from seg_r

3) Sum up all the railway segments for each district:

create view seg_r_total as select id, sum(len) as total_len from

seg_r_len group by id

4) Filter out districts which have no railways:

Select id, total_len from seg_r_total where total_len>0

Case Study 3

1) Calculate a 20 km buffer of railway “Guang-Mei-Shan”:

create view buf as select id, buffer(d, 20000) as buf from

railway where (id='Guang-Mei-Shan')

2) Identify the districts whose centres are located in this buffer:

Select city.id from city, buf where (within(city.d,buf.buf)=true)

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

420

