
A HYBRID PULL-PUSH SYSTEM FOR

NEAR REAL-TIME NOTIFICATIONS ON SENSOR WEB

C.Y. Huang, S. Liang *

Dept. of Geomatic Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 Canada

- (huangcy, steve.liang)@ucalgary.ca

Commission IV, WG IV/2

KEY WORDS: GIS, Sensor, Query, Real-time, Spatial, Temporal, Web based, Application

ABSTRACT:

World-wide sensor web generates tremendous amount of sensor data stream allowing people to observe events that were previously

unobservable. Sensor web has been wildly applied in many monitoring systems; some of them are extremely time-sensitive, e.g.,

disaster management systems. However, with the growing amount of sensor data, the traditional request/response communication

model becomes inefficient as it is based on point-to-point pulling interactions between users and data providers. In order to address

this issue, publish/subscribe communication model has been proposed and applied in many applications, e.g., web blogging. The

publish/subscribe model utilizes an intermediary broker on matching predefined queries with the data pushed to the broker.

However, we argue that the publish/subscribe model is hard to be directly applied to sensor web due to the fact that most sensor web

services are based on pulling interaction model only. For instance, more and more sensor data providers are publishing their sensor

data with the Open Geospatial Consortium (OGC) Sensor Observation Service (SOS) standards, and the OGC SOS services are

based on the request/response model. Therefore, in order to address this issue, we propose a hybrid pull-push system to retrieve

sensor web data in a timely manner. The preliminary experimental results indicate that the proposed system is able to fetch near real

time sensor streams from pull-based sensor web services.

* Corresponding author.

1. INTRODUCTION

1.1 Background

The World-Wide Sensor Web (Liang et al., 2005) is generating

tremendous volumes of real-time sensor data streams ranging

from video camera networks monitoring real-time traffic to

matchbox-sized wireless sensor networks embedded in the

environment to monitor habitats. As these data streams enable

scientists to observe phenomena that are previously

unobservable, the World-Wide Sensor Web is increasingly

attracting interests for a wide range of applications, including:

habitats monitoring systems (Mainwaring et al. 2002),

environment observation systems (Hart and Martinez 2006),

structure health monitoring systems (Hsieh 2002), health

applications (Xu, 2002), fire emergency response systems

(Kassab et al., 2010), etc. Among these applications, many of

them are time-sensitive and require prompt notifications.

However, with the vast amount of sensor data in sensor web, the

traditional request/response communication model becomes

inefficient as it is based on point-to-point pulling interaction

between users and data providers. In order to address this issue,

publish/subscribe communication model (Birman and Joseph,

1987) provides an intermediary broker for users to register

queries and for providers to push new data to. The broker sends

notifications to users as new data meet their query criteria.

While the publish/subscribe model has been widely applied in

other disciplines, e.g., web blogging, this model is relatively

new in the sensor web field. We argue that a major reason of

this slow adoption is that the most current sensor web services

are currently based on pulling model only. Even though sensor

data streams are pushed to the data repository of web services,

users need to pull the sensor data from the sensor web services

proactively. For example, Open Geospatial Consortium (OGC)

Sensor Observation Service (SOS) (OGC 2007), as one of the

most popular open sensor web standards, defines a standard

protocol for users to retrieve sensor metadata and observations

through Internet. In general, this issue impedes users from

getting real-time notifications about events happening on sensor

web.

In order to address this issue and achieve the goal of timely

notification, this paper proposes a hybrid pull-push system for

near real-time sensor data notification. This system contains

three major components, namely (1) query aggregator, (2)

adaptive feeder, and (3) sensor data cache. Users can first

register queries (i.e., subscriptions) to the system. Before

sending requests to sensor web services to pull sensor data, the

query aggregator aggregates queries in order to avoid redundant

requests. Then based on the aggregated requests, the adaptive

feeder pulls sensor data from sensor web services in a timely

manner. Finally, after receiving responses from services, the

input adaptor preserves sensor data in the sensor data cache

according to users’ query criteria.

In this paper, we use OGC SOS as the sensor data sources. SOS

version 1.0 has been published in 2007 and SOS version 2.0 has

been approved in March 2012. SOS is suitable for our

experiment because SOS is already adopted by many sensor

data providers and current SOS implementations have the

aforementioned challenges.

To sum up, the major objective in this paper is to build a system

allowing users to subscribe sensor data by setting spatio-

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

421

temporal criteria and then receive near real-time notifications

containing the data matches the criteria. The remainder of this

section introduces works related to this paper. Then in section

2, we present the proposed system including the system

architecture and details of each component. Section 3 shows

and discusses the preliminary experimental results. Finally,

section 4 offers conclusions and future work.

1.2 Related Works

Publish/Subscribe is a communication model decoupling

publishers and subscribers. Subscribers first register their event

of interest, and asynchronously get notifications of events

generated by publishers. Unlike the point-to-point synchronous

communication model, the asynchronous publish/subscribe

model is more suitable for large-scale distributed applications.

For example, publish/subscribe model has been widely applied

in web blogging with RSS1 (RDF Site Summary) and Atom2

technologies. Eugster et al. (2003) wrote a well-cited summary

paper about publish/subscribe systems.

Besides the publish/subscribe system, there are other types of

applications aim on processing streaming data or events, such as

complex event processing (CEP), data stream management

system (DSMS) (similar to event stream processing (ESP)), and

simple event processing. The original designs of these

applications were different. However, as the evolving of these

applications, their functionalities become similar.

Based on their original designs, we can differentiate these

applications by the degree of query complexity they handle. In

general, publish/subscribe systems handled the simplest queries

and simple event processing added filtering functionality on the

basic publish/subscribe. While publish/subscribe and simple

event processing focused on individual events, DSMS and CEP

processed multiple data streams.

There have been many publish/subscribe systems and stream

processing systems. For example, Birman et al. (1987), Powell

(1996), Skeen (1998), TIBCO (1999), Siena (Carzaniga et al.

2001), JEDI (Cugola et al. 2001), and Hermes (Pietzuch 2004)

are the existing works on publish/subscribe system. NiagaraCQ

(Chen et al. 2000), TelegraphCQ (Madden and Franklin 2002;

Chandrasekaran et al. 2003), COUGAR (Bonnet et al. 2001),

PLACE (Mokbel et al. 2005), Tapestry (Terry et al. 1992),

Cayuga (Brenna et al. 2007), StreamBase (2011), Oracle CEP

(2009), Esper (2012), IBM System S (Gedik et al. 2008), and

Microsoft StreamInsight (2012) are the researches related to

data stream processing system.

At the current stage, publish/subscribe systems and DSMS are

similar in terms of their high level architectures and

functionalities. They both allow users to register queries, and

allow data providers to push data to the system through an input

adaptor. Then they both have a continuous query engine to

match the new coming data with the predefined queries. Finally,

they both have an output adaptor to disseminate notifications to

users.

However, as mentioned before, one of the major reasons that

publish/subscribe system is difficult to be applied for sensor

webs is that most of current sensor web services only support

1 RSS 2.0 Specification (http://www.rssboard.org/rss-

specification)
2 Atom wiki (http://www.intertwingly.net/wiki/pie/FrontPage)

pull-based communication model. In other words, there is no

suitable sensor data source for a traditional publish/subscribe

system as they require data to be pushed from data sources.

Therefore, in order to address this issue, this paper proposes a

solution that modifies the input adaptor module in a

publish/subscribe system. Instead of only accept pushed data,

the input adaptor generates requests that pull data from data

sources, and then it pushes the new data to the next module in

the publish/subscribe system. Hence, we this proposed solution

as a hybrid pull-push system.

2. PROPOSED SOLUTION

This paper focuses on the input adaptor module in a

publish/subscribe system to retrieve sensor data from pull-based

sensor web services in a timely manner. Other modules of a

publish/subscribe system, e.g., continuous query engine, are out

of the scope of this paper.

2.1 System Architecture

The proposed input adaptor has three major components,

namely (1) query aggregator, (2) adaptive feeder, and (3) sensor

data cache. With the queries users submit, the query aggregator

first aggregates queries in order to avoid redundant requests.

Then the adaptive feeder tries to get new data with the

aggregated queries in a timely manner. Finally, the sensor data

cache is where the system keeps the sensor data according to the

query criteria. The workflow and architecture is shown in

Figure 1.

In this paper, we use OGC SOS as the sensor data source as it is

one of the most popular open standards to share sensor data

online. In addition, OGC SOS also only supports pull-based

interaction model, which matches the major issue we mentioned

earlier.

Figure 1. System architecture and workflow

In the following two subsections, we present the details of the

query aggregator and the adaptive feeder.

2.2 Query Aggregator

Before presenting the functionality of the query aggregator, we

need to discuss what a query is in the sensor web context. Since

sensors measure a specific physical phenomenon (e.g., wind

speed) at a certain geographical location and time point, each

sensor reading contains at least the following five elements,

namely, a physical phenomenon identifier, a measurement

value, a unit of measurement, a geographical location, and a

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

422

time point. Moreover, since sensor readings are pushed to a

sensor web service for users to retrieve, some additional

parameters are required to locate the sensor readings, such as

service location on the Internet (i.e., service URL) and the

observation offering ID in the OGC context.

Therefore, when users want to register a query for sensor data in

OGC SOS, they need to specify the service location, an

observation offering ID, a observed property URI (which is the

identifier for the physical phenomenon), a geographical

coverage (i.e., a bounding box), and a temporal coverage (i.e., a

time period). In addition, since the objective of this proposed

system is to retrieve “new” data in a timely manner, the

temporal coverage could move forward as time goes by, which

is called the sliding window. Besides the sliding window, there

are two other types of temporal window, namely, fixed window

(the temporal coverage will not change) and landmark window

(the start time point is fixed while the end time point is

moving). Therefore, in our system, users need to specify the

type of temporal window they want to use.

After defining what a query is in the senor web context, we now

present the functionality of the query aggregator. Since most

sensor web services are based on pulling interaction model, the

input adaptor needs to proactively requests data from services.

However, since queries from users could have different but

overlapped geographical and temporal coverage, if we pull data

from sensor web services based on each query, the overlapped

spatio-temporal coverage will be transmitted redundantly. These

redundant transmissions could cause huge and unnecessary

burden on both service-side and client-side as the amount of

sensor data growing rapidly. Therefore, we propose the query

aggregator to aggregate and filter out unnecessary requests to

pull data from sensor web service efficiently. We consider this

query aggregator as one of the major contributions of this paper.

In the query aggregator, we utilize the LOading Spatio-

Temporal Indexing Tree (LOST-Tree) (Huang et al. 2011) as

data loading management component to aggregate user queries

and avoid redundant data transmission. LOST-Tree uses two

key ideas to aggregate requests and specify the loaded portions.

First, LOST-Tree applies predefined hierarchical spatial and

temporal frameworks, so that both the spatial and temporal

extents of requests can be indexed for loading management.

Since the frameworks are predefined, LOST-Tree can simply

compare spatial and temporal indices between requests to filter

out redundant transmission. Also, because the frameworks are

hierarchical, LOST-Tree can aggregate several indices to attain

a smaller tree size, which consequently results in a smaller

memory footprint and query latency. In this paper, we use

quadtree as the spatial framework and Gregorian calendar as the

temporal framework. Second, LOST-Tree uses only the spatio-

temporal extent of requests to specify the loaded portions. Since

LOST-Tree only manages the spatio-temporal extent of

requests, LOST-Tree does not grow with the sensor data

volume, which also allows LOST-Tree to attain a small memory

footprint and query latency.

2.3 Adaptive Feeder

After the query aggregator aggregates and filters out

unnecessary requests, the aggregated requests are forwarded to

the adaptive feeder. The major problem to retrieve sensor data

from a pull-based data source is that we do not know when a

new data will be available in the service. A naïve solution is to

frequently and periodically send requests to the SOS servers.

However, this approach could generate many unnecessary

requests with empty-hit response (i.e., no data contains in the

response).

Therefore, in order to address this issue, the adaptive feeder

attempts to predict when new data will be available in SOS

servers. By detecting the sensor sampling frequency (i.e., the

frequency that a sensor measure a phenomenon), the adaptive

feeder modifies the requesting frequency accordingly. Although

the sampling time (the time that the data was measured) and

valid time (the time that the data is available online) are

different, a client can only speculate the valid time from the

sampling time, as the valid time is not available for the client.

In our current adaptive feeder design, the best scenario is that

the new sensor reading becomes available right after it is

measured (i.e., small difference between sampling time and

valid time). The adaptive feeder will be able to retrieve the data

in a timely manner as the prediction is close to reality.

However, sensor readings sometimes need to be buffered or

calibrated before being inserted into web service. In this case,

even though the valid time could be very different from the

prediction, the adaptive feeder can still retrieve data no later

than the sampling frequency as soon as the data becomes

available online.

3. EXPERIMENTAL RESULTS

In this section, we present the preliminary experimental results

of the proposed system. We tested the proposed solution on two

existing sensor web services (here we name them as service A

and service B). While both services have the same sampling

frequency (around 15 minutes), these two services have

different data update behaviour. Service A makes the sensor

data available as soon as it receives data from sensors, which

could be our best scenario. Service B first buffers or calibrates

sensor data before making them available online, in which the

sampling time is far from the valid time.

It is worth to note that in addition to the aforementioned

prediction time, we also add a buffer time (i.e., 30 seconds) to

accommodate the possible delay when services make data

available online. In this case, our results would be 30 seconds

worse than the best scenario. This buffer time will be adjusted

to a shorter setting after we get more testing results.

We record the difference between the time point that we get the

new data and the time point that the latest reading was

measured. This time difference evaluates how “real time” the

proposed system can achieve. Table 1 shows the preliminary

experimental results including the average and standard

deviation of time difference, the number of unnecessary

requests (i.e., request that does not retrieve any new data), and

the total number of feedings performed in this experiment.

As we can see in the column of service A (i.e., the best

scenario), we can retrieve new data in the time slightly larger

than 30 seconds, which is the buffer time. In addition, all 21

feedings are able to retrieve new data, which means there is no

unnecessary request in the case of service A.

On the other hand, as we can see in the column of service B,

since service B does not make data available online as soon as it

is measured, the adaptive feeder will send requests every

detected sampling frequency, which consequently causes many

unnecessary requests. As we can see from Table 1, there is a 90

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

423

minutes delay before service B makes sensor data available

online. In this case, the updating behaviour of service B may

not be suitable to be data sources as near real-time applications.

 Service A Service B

Average time difference

(millisecond)
30,679 5,433,863

Number of unnecessary

requests
0 24

Total number of feedings 21 26

Table 1. Experimental results

4. CONSLUSIONS AND FUTURE WORK

We have presented a hybrid push-pull system to retrieve sensor

data in a near real-time manner. The proposed system first uses

the query aggregator to aggregate user queries and filter out

unnecessary requests. Then the adaptive feeder component

detects the updating frequency of OGC sensor web services and

retrieves sensor data with the aggregated requests in a timely

manner. As shown in the experimental results, our proposed

system can retrieve sensor data in a timely manner if the service

makes data available online as soon as it is measured. On the

other hand, if the service buffers or calibrates sensor data before

making them available online, the proposed system will

periodically request data with the detected sampling frequency

with the trade-off of redundant requests.

As we can see from the experimental results, the performance of

the proposed system is highly related to the updating behaviour

of sensor web service. Therefore, one of our future works is to

simulate sensor web services with different data updating

behaviours. The other future direction is the integration of

sensor data from different sensor web service. The current

sensor web services are heterogeneous in terms of protocol,

syntactic, and semantic. Users need to first find the services that

host the data they are interested in. However, with the growing

number of sensor web services, this discovery process becomes

a challenging task. Therefore, how to integrate sensor data to

provide a coherent view of sensor web is also one of our future

works.

REFERENCES

Birman, K. and Joseph, T., 1987. Exploiting virtual synchrony

in distributed systems, In: the 11th ACM Symposium on

Operating Systems Principles, Vol. 21, Part 5, pp. 123-138.

Bonnet, P., Gehrke, J., and Seshadri, P., 2001. Towards Sensor

Database Systems, In: International Conference on Mobile

Data Management, pp. 3-14.

Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J.,

Panda, B., Riedewald, M., Thatte, M., and White, W., 2007.

Cayuga: A High-Performance Event Processing Engine, In: the

2007 ACM SIGMOD, New York, USA, pp. 1100-1102.

Carzaniga, A., Rosenblum, D., Wolf, A., 2001. Design and

Evaluation of a Wide-Area Event Notification Service, ACM

Transactions on Computer Systems, Vol. 19, Part 3, pp. 332-

383.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J.,

Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S.R.,

Reiss, F., and Shah, M.A., 2003. TelegraphCQ: Continuous

Dataflow Processing, In: ACM SIGMOD, New York, USA.

Chen, J., DeWitt, D.J., Tian, F., and Wang, Y., 2000.

NiagraCQ: A Scalable Continuous Query System for Internet

Databases, In: the 2000 ACM SIGMOD, pp. 379-390.

Cugola, G., Nitto, E.D., and Fugetta, A., 2001. The JEDI Event-

based Infrastructure and Its Application to the Development of

the OPSS WFMS, IEEE Transaction on Software Engineering,

Vol. 27, Part 9, pp. 827-850.

Esper, 2012. http://esper.codehaus.org/ (05 January 2012).

Gedik, B., Andrade, H., Wu, K.L., Yu, P.S., and Doo, M., 2008.

SPADE: The System S Declarative Stream Processing Engine,

In: the 2008 ACM SIGMOD, New York, USA, pp. 1123-1134.

Hart, J.K. and Martinez, K., 2006. Environmental Sensor

Networks: A revolution in the earth system science? Earth

Science Reviews, Vol. 78, pp. 177-191.

Hsieh, T.T., 2004. Using Sensor Networks for Highway and

Traffic Applications. IEEE Potentials, Vol. 23, Part 2, pp. 13-

16.

Kassab, A., Liang, S., and Gao, Y., 2010. Real-Time

Notification and Improved Situational Awareness in Fire

Emergencies using Geospatial-based Publish/Subscribe,

International Journal of Applied Earth Observation and

Geoinformation, Vol. 12, Part 6, pp. 431-438.

Liang, S.H.L., Croitoru, A., and Tao, C.V., 2005. A Distributed

Geospatial Infrastructure for Sensor Web. Computers and

Geosciences, Vol. 31, Part 2, pp. 221-231.

Madden, S. and Franklin, M.J., 2002. Fjording the Stream: An

Architecture for Queries over Streaming Sensor Data, In: the

2002 International Conference on Data Engineering, pp. 555.

Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., and

Anderson, J., 2002. Wireless Sensor Networks for Habitat

Monitoring. In: the 2002 ACM International Workshop on

Wireless Sensor Networks and Applications. Atlanta, USA.

Microsoft, 2012. “Microsoft StreamInsight 2.0”

http://msdn.microsoft.com/en-

us/library/hh750619(v=SQL.10).aspx (12 January 2012).

Mokbel, M.F., Xiong, X., and Aref, W.G., 2005. Continuous

Query Processing of Spatio-Temporal Data Streams in PLACE,

GeoInformatica, Vol. 9, Part 4, pp. 343-365.

Open Geospatial Consortium, 2007. “Sensor Observation

Service” http://www.opengeospatial.org/standards/sos (05

January 2012).

Oracle, 2009. “Oracle Complex Event Processing: Lightweight

Modular Application Event Stream Processing in the Real

World

http://www.oracle.com/technetwork/middleware/complex-

event-processing/overview/oracle-37.pdf (05 January 2012).

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

424

Pietzuch, P.R., 2004. Hermes: A Scalable Event-based

Middleware. Queens’ College, University of Cambridge,

Cambridge, UK.

Powell, D., 1996. Group Communication. Communications of

the ACM, Vol. 39, Part. 4, pp. 50-97.

Skeen, D., 1998. “Vitria’s Publish-Subscribe Architecture:

Publish-Subscribe Overview” http://www.vitria.com (05

January 2012).

StreamBase, 2011. “StreamSQL Guide”

http://www.streambase.com/developers/docs/latest/streamsql/in

dex.html (05 January 2012).

Terry, D., Goldberg, D., Nichols, D., and Oki, B., 1992.

Continuous Queries over Append-Only Databases, In: the 1992

ACM SIGMOD, pp. 321-330.

TIBCO, 1999. “TIB/Rendezvous” TIBCO, Palo Alto, CA.

http://www.tibco.com/multimedia/ds-rendezvous_tcm8-826.pdf

(05 January 2012).

Xu, N., 2002. “A Survey of Sensor Network Applications”,

IEEE Communications Magazine,

http://enl.usc.edu/~ningxu/papers/survey.pdf.

ACKNOWLEDGEMENTS

The authors would like to thank CANARIE, Cybera, Alberta

Innovates Technology Futures, and Microsoft Research for their

supports on this project.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

425

