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ABSTRACT: 

As a consequence of the wide-spread application of digital geo-data in geographic information systems (GIS), quality control has 

become increasingly important to enhance the usefulness of the data. For economic reasons a high degree of automation is required 

for the quality control process. This goal can be achieved by automatic image analysis techniques. An example of how this can be 

achieved in the context of quality assessment of cropland and grassland GIS objects is given in this paper. The quality assessment of 

these objects of a topographic dataset is carried out based on multi-temporal information. The multi-temporal approach combines the 

channels of all available images as a multilayer image and applies a pixel-based SVM-classification. In this way multispectral as well 

as multi-temporal information is processed in parallel. The features used for the classification consist of spectral, textural (Haralick 

features) and structural (features derived from a semi-variogram) features. After the SVM-classification, the pixel-based result is 

mapped to the GIS-objects. Finally, a simple ruled-based approach is used in order to verify the objects of a GIS database. The 

approach was tested using a multi-temporal data set consisting of one 5-channel RapidEye image (GSD 5m) and two 3-channel 

Disaster Monitoring Constellation (DMC) images (GSD 32m). All images were taken within one year. The results show that by 

using our approach, quality control of GIS- cropland and grassland objects is possible and the human operator saves time using our 

approach compared to a completely manual quality assessment.  
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1. INTRODUCTION 

Today, many public and private decisions rely on geospatial 

information. Geospatial data are stored and managed in 

geographic information systems (GIS). In order for a GIS to be 

generally accepted, the underlying data need to be consistent 

and up-to-date. As a consequence, quality control has become 

increasingly important. A high degree of automation is required 

in order to make quality control efficient enough for practical 

application. This goal can be achieved by automatic image 

analysis techniques. 
 

The basic methodology to represent the real world in a GIS is to 

define objects using a data model (e.g. a feature type catalogue 

also called GIS-object catalogue) which defines the objects to 

be contained, as well as their properties and structure. In the 

European Norm (DIN EN ISO 8402, 1995), quality is defined 

as the “Degree to which a set of inherent characteristics fulfils 

requirements”. In the context of GIS this means that, first, the 

data model must represent the real world with sufficient detail 

and without any contradictions (quality of the model). Second, 

the data must conform to the model specification (quality of the 

data). There are five important measures for the quality of geo-

data: logical consistency, completeness, positional accuracy, 

temporal accuracy and thematic accuracy (EN ISO 9000:2005, 

1995). Only the consistency can be checked without any 

comparison of the data to the real world. The other quality 

measures can be derived by comparing the GIS data to the real 

world as it is represented in satellite images. We call this step 

verification or quality assessment (Gerke and Heipke, 2008). 
 

After reviewing related work in section 2, we will present our 

method for the quality assessment of cropland and grassland of 

a GIS data set with respect to the thematic accuracy. The 

thematic accuracy is the percentage of correct objects in the 

GIS-database. In our approach we verify GIS cropland and 

grassland objects automatically comparing them with the real 

world in the form of remotely sensed images. Input data into the 

system are up-to-date multi-temporal satellite images taken in 

one year and a GIS which has to be verified. The system verifies 

the GIS-objects using automatic image analysis approaches 

introduced in section 3. The result of the automatic comparison 

of the GIS-objects and the images is the decision whether an 

object in the GIS data set is correct (accepted from the system; 

labelled green) or incorrect (rejected from the system; labelled 

red). The results of the automatic procedures are passed on to a 

human operator. All the accepted objects do not have to be 

reviewed, while for all rejected objects an interactive check by 

the human operator is necessary. The human operator saves 

time using our system for quality assessment because an 

interactive check of all GIS-object accepted by the system is not 

necessary anymore. We call this efficiency time efficiency. 

Because the final decision of rejected GIS-objects is done by 

the human operator, our approach is a semi-automatic one. 

However, given the fact that quality assessment is essentially 

carried out to remove errors in the GIS data base, classification 

errors from analysing the satellite images have to be avoided 

because these errors can lead to undetected errors remaining in 

the GIS database. The main goal of our approach is to achieve a 

certain thematic accuracy of the GIS database after the 

verification process. To evaluate our approach and to prove that 
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the approach is suitable for quality assessment, an evaluation is 

done in section 4. The paper concludes with a summary and an 

outlook in section five. 
 

2. RELATED WORK 

The focus of this paper is the verification of GIS-cropland and 

grassland objects. The publications dealing with the classes 

cropland and grassland using multi-temporal images are limited 

to the classification task. Therefore, in this section we will focus 

on approaches dealing with the classification of cropland, 

grassland and similar classes like vineyards using a multi-

temporal data set with low resolution images. The special focus 

will be on features and on the classification method. 
 

Using a multi-temporal data set with low resolution images, it is 

common to use only spectral features for the classification 

process (Gong et al., 2003; Itzerott and Kaden, 2007; Marçal 

und Cunha, 2007; Hall et al., 2008). Itzerott and Kaden (2007) 

use for the classification of different agricultural classes norm-

curves of these classes which were created from a prior multi-

temporal analysis based on the Normalised Difference 

Vegetation Index (NDVI). These NDVI-norm-curves show that 

grassland objects always have an NDVI significantly larger than 

zero, whereas cropland can have a very low NDVI depending 

on the season. The norm-curves are created using four Landsat 

images (GSD: 30m) taken within one year. For the classification 

of unknown GIS-objects of a given field boundary cadastre the 

mean NDVI of each object is calculated. Then a classification is 

carried out using the NDVI norm-curves within a Maximum-

Likelihood or box classification. Using the box classification an 

overall accuracy of 65.7% and using the Maximum-Likelihood 

classification an overall accuracy of 72.8% could be achieved. 

However, the NDVI of different crops can underlie strong 

regional and temporal variations. Hence, the adaption of the 

NDVI-norm-curves to other regions is a challenge. Training 

with a multi-temporal data set within a large area would be 

necessary. 
 

Simonneaux et al. (2008) apply a pixel-based approach using a 

decision tree algorithm for the classification of different kinds 

of crops. For each pixel a NDVI profile over time is calculated. 

To create these profiles, eight Landsat satellite images taken 

within one year were available. The overall accuracy of this 

approach is 83.7%; the kappa-index is 0.78. These good results 

could be achieved mainly through the high number of images. 
 

Marçal and Cunha (2007) use the NDVI and a field boundary 

cadastre for the detection of vineyards in a multi-temporal data 

set consisting of nine SPOT 5 images (GSD: 5 m) taken in 

2002, 2003 and 2005, and in addition four Chris Proba satellite 

images taken in 2006 (GSD: 17 m, 18 bands). Besides the 

average NDVI value also the minimum, maximum, standard 

deviation and the median NDVI per GIS-object was calculated. 

Marçal and Cunha (2007) summarise in their article that the 

features are useable for the classification but quantitative results 

are not presented. 
 

Lucas et al. (2007) proposes a rule based classification based on 

the software eCognition (Baatz and Schape, 2000). First, 

segments (fields) are determined by a segmentation of each 

GIS-object. Next, numerical decision rules based on fuzzy logic 

are developed to discriminate vegetation classes. The rules are 

primarily based on inferred differences in phenology, structure, 

wetness and productivity. The decision rules connect 

knowledge about ecology and the information content of single 

and multi-temperal remotely sensed data and their derived 

products (e.g., vegetation indices). The rule-based classification 

gives a good representation of the spectral and temporal 

characteristics of different agricultural classes but leads to quite 

complex rules. These complex rules are difficult to manage and 

the transfer to other regions.  
 

De Wit and Clevers (2004) apply a pixel-based Maximum-

Likelihood classification combined with an object-based 

decision tree classification. In the pixel- and object-based 

classification the NDVI was used as feature. The image data set 

used in (De Wit and Clevers, 2004) consist of in total 13 

Landsat, two IRS-LISS3 (GSD: 25 m) and two ERS2-SAR 

images taken within two years. The overall accuracy of this 

approach is high with 90.4%. However, for the object-based 

classification first the interactive creation of a field boundary by 

a human operator is necessary. Due to the time-consuming 

generation of the field boundary cadastre, further improvement 

for a practical use of this approach is necessary. 
 

If images of higher resolution are available, additional features 

like textural or structural features can be introduced into the 

classification process. Textural features describe the distribution 

of grey values; structural features describe structures within a 

GIS-object such as parallel lines within a local neighbourhood 

of a pixel or within a GIS-object. For instance, Müller et al. 

(2010) use spectral, textural and structural features in a 

classification based on weighting functions to differentiate 

between several kinds of crops. They use high resolution multi-

temporal aerial images (GSD: 17cm). First, the phenological 

behaviour of different crops is trained using a training data set 

and the determined features. Based on this training, GIS-objects 

with an unknown class can be classified by analysing their 

phenological behaviour. The results are promising with an 

overall correct classification rate of 91.3% but due to the small 

size of the test area no final conclusions about the practical 

usefulness can be made. 
 

Our method differs from the cited approaches by the used 

features, classification method and number of images needed for 

the classification/verification. For instance, we use structural 

features derived from a semi-variogram. For classification we 

use is the state-of-the-art algorithm of Support Vector Machines 

(SVM; Vapnik, 1998) which has not been used for the multi-

temporal classification of the agricultural classes cropland and 

grassland so far. In addition, to avoid the use of a field 

boundary cadastre, we apply a pixel-based classification. Our 

approach is flexible regarding to the number of images, and also 

can operate with only three images taken in one year.  
 

3. APPROACH 

The idea of the approach is to use the fact that the appearance of 

cropland changes significantly within a year (cropland can be 

covered with vegetation or is not covered with vegetation, it can 

contain structures when tilled or not when untilled, ...) whereas 

the difference in the appearance of grassland changes only 

slightly. As mentioned above, these multi-temporal 

characteristics are considered in a pixel-based classification 

approach. In order to process the classification three main steps 

are necessary. First, features are extracted within a local Nf x Nf 

neighbourhood. Second, these features are classified by a 

previously trained supervised learning method. Finally, the 

pixel-based results are transferred to the GIS-objects. The object 

boundary polygons are given by the GIS data set which has to 

be verified. 
 

3.1 Feature Extraction 

The feature extraction process takes into account several 

different aspects to ensure an optimal classification result. For 
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the classification spectral, textural and structural features are 

used.  
 

3.1.1. Feature extraction Information about vegetation is 

contained in the bands of multispectral images and in features 

derived from them (Ruiz et al., 2004; Hall et al., 2008; Itzerott 

and Kaden, 2007). Similar to the cited works, we use the 

median value of a local neighbourhood of each channel for the 

classification. Furthermore, the variance is used as an additional 

feature in the classification process. The dimension Nspec of the 

feature vector for the spectral features xspec per band is two. 
 

Textural features derived from of the grey level co-occurrence 

matrix (GLCM)) can give important hints to separate different 

agricultural classes (Haralick et al., 1973; Rengers und Prinz, 

2009). We use eight Haralick features energy, entropy, 

correlation, difference moment, inertia (contrast), cluster shade, 

cluster prominence, and Haralick correlation (Haralick et al., 

1973) in our classification approach. Using three directions, the 

dimension Ntex of the feature for the textural features xtex is 24 

per band. 
 

In addition, structural features can give an important hint for the 

classification of the agricultural classes cropland and grassland 

(Helmholz, 2010), whereas the usefulness of these features 

mainly depends on the resolution of the available images. While 

parallel straight lines caused by agricultural machines are 

visible in cropland GIS-objects in images with a higher 

resolution, these lines vanish in images with a lower resolution. 

However, because these structures can give an important hint in 

order to separate cropland and grassland and because our 

algorithm should have the possibility to be easily applied to 

other image data (such as high resolution images), we use 

structural features. The structural features are derived from a 

semi-variogram. Features derived from a semi-variogram have 

been successfully used for the classification of different 

agricultural areas in (Balaguer et al., 2010). In total 14 features 

(Balaguer et al., 2010) are used in the classification process. 

The dimension Nstruc of the feature vector of the structural 

features xstruc per band is 14. 
 

3.1.2. Feature vector The feature vector of a pixel xfeat per 

band is build by concatenation of the feature vectors with 
 

xT
feat = (xT

spec, x
T

tex, x
T

struc)    (1) 
 

the dimension Nfeat is  
 

Nfeat = Nspec + Ntex + Nstruc = 40   (2) 
 

To maintain flexibility with respect to various image acquisition 

systems and sensors, respectively, an arbitrary number of input 

channels Nch is supported. All input channels are sub-sampled 

equally by a factor leading to an image pyramid for every 

channel, whereas Nres is the number of pyramid levels. Each 

pyramid level is handled equally. The set is passed on to the 

feature extraction module, where spectral, textural and 

structural features are calculated for each pixel within an Nf x Nf 

neighbourhood as described before. Features extracted at the 

same pixel position build up one feature vector xfeat_total. 
 

The dimension dfeat_total of the feature vector xfeat_total is: 
 

dfeat_total = Nch · Nres · Nfeat     (3) 
 

For instance, using multispectral and multi-temporal 

information of one five band image and two three-band images 

simultaneously, the number of bands is Nch = 11. Assuming Nres 

= 2 resolution levels, we get 22 bands for which a feature vector 

with Nfeat = 40 has to be calculated. Thus, the dimension of the 

feature vector is dfeat_total = 880.  

 

3.2 Pixel-based Classification 

The classification is carried out using SVM. The SVM classifier 

is a supervised learning method used for classification and 

regression. Given a set of training examples, each marked as 

belonging to one of two classes, SVM training builds a model 

that predicts whether a new example falls into one class or the 

other. The two classes are separated by a hyperplane in feature 

space so that the distance of the nearest training sample from 

the hyperplane is maximised; hence, SVM belong to the class of 

max-margin classifiers (Vapnik, 1998). Since most classes are 

not linearly separable in feature space, a feature space mapping 

is applied: the original feature space is mapped into another 

space of higher dimension so that in the transformed feature 

space, the classes become linearly separable. Both training and 

classification basically require the computation of inner 

products of the form ΦΦΦΦ(xi)
T ⋅ ΦΦΦΦ(xj), where xi and xj are feature 

vectors of two samples in the original feature space and ΦΦΦΦ(xi) 

and ΦΦΦΦ(xj) are the transformed features. These inner products can 

be replaced by a Kernel function K(xi, xj), which means that the 

actual feature space mapping ΦΦΦΦ is never explicitly applied 

(Kernel Trick). In our application we use the Gaussian Kernel 

K(xi, xj) = exp(-γ⋅  || xi – xj||
2). The concept of SVM has been 

expanded to allow for outliers in the training data to avoid over-

fitting. This requires a parameter ν that corresponds to the 

fraction of training points considered to be outliers. 

Furthermore, classical SVM only can separate two classes, and 

SVM do not scale well to a multi-class problem. A common 

way to tackle this problem is the one-versus-one-strategy 

(Chang and Lin, 2001) where all combinations of classes C are 

tested against each other. In total C(C-1)/2 combinations are 

calculated. The pixel is assigned to the class with the most wins 

(winner-takes-it-all-strategy). 
 

For our approach, the SVM algorithm needs to learn the 

properties of the different classes. These are not only the classes 

cropland and grassland but classes which describe a typical site, 

e.g. settlement, industrial area and forest. The training is done 

using a set of image patches with known class labels. The image 

patches and the class labels are assigned to the training objects 

interactively by a human operator. Each feature is normalised so 

that its value is between 0 and 1. Then, all feature vectors are 

used to train the SVM classifier required for the one-versus-one 

strategy. The result of the classification process is a labeled 

map, which represents the class membership for each pixel.  
 

3.3 Transfer the pixel-based classification results to GIS-

objects 

After the pixel-based classification was utilised, the result for all 

pixels inside an object must be transferred to a GIS-object. This 

is done using the approach from Busch et al. (2004). Pixels that 

match the class of the GIS object are considered as correct, 

while pixels belonging to another class are considered to be 

incorrect. Two criteria are chosen for the assessment of the GIS 

objects. First, the ratio q of incorrect pixels in relation to all 

pixels that cover the object are calculated using 
 

q = incorrect / (correct + incorrect)   (4) 
 

If q is larger than the pre-defined threshold tq, the GIS object 

will be labelled as rejected/incorrect. The threshold tq depends 

on how many incorrect pixels are likely to appear in a cropland 

or grassland object.  
 

As incorrect pixels can be distributed more or less equally in the 

object due to noise or inhomogeneously textured regions, a 

second criteria considering the compactness of an error region 
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is necessary. A compact error is an area of connected pixels 

belonging to the same class (which differs from the class label 

in the GIS data set) with a width larger than a threshold tw and 

an area larger than a threshold tA. The width of an assumed 

compact error is determined applying a morphologic filter 

(erosion) and counting the steps till the assumed compact error 

disappears. A GIS object with a compact error is labelled as 

rejected/incorrect and has to be reviewed by a human operator. 
 

4. EVALUATION 

4.1 Data 

To evaluate our approach we have used the European CORINE 

Land Cover GIS database (CLC) and three multi-temporal 

images taken in one year covering a test site of 329 km2 in 

Halberstadt, Germany. For the evaluation, a reference dataset 

was available. The reference dataset was produced using visual 

interpretation of the images. 
 

4.1.1. Image Data Images are available from two different 

sensors, namely RapidEye and DMC (Disaster Monitoring 

Constellation, operated by DMC International Imaging 

(DMCii)). The images were acquired within a 4 month period 

during the summer months. The RapidEye image was acquired 

on August 20, 2009 and has a resolution of 5m. The five bands 

of this sensor are blue, green, red, red edge and near infrared. In 

addition two DMC images are used, acquired on April-24, 2009 

and on August-24, 2009. The DMC sensor has a resolution of 

32m and captures three bands (green, red and near infrared). 

The dimension of Nch is 11 (5 + 2x3). For textural information, 

the resolution was subsampled by a factor of two to cover 

relevant information. Hence, the resulting dimension of the 

feature vector for one pixel position is 440. The neighbourhood 

is Nf = 11 pixels for all scenes to cover a relevant area. All 

images are orthorectified. 
 

Before processing all images in one workflow the 32m DMC 

images are clipped to the same size and resampled to the same 

resolution as the RapidEye image. For the resampling we use a 

nearest neighbor interpolation, because radiometric information 

remains unaltered (Albertz, 2001).  
 

4.1.2. GIS database The European CLC data set is managed 

and coordinated by the European Environment Agency (EEA, 

2011), assisted by the European Topic Center for Land Use and 

Spatial Information (ETC-LUSI). In Germany the UBA 

(Umweltbundesamt – Federal Environmental Agency) is the 

national reference center. It acts as the contact point for the 

EEA and is responsible for the management and coordination of 

CLC. The data model was defined to be compliant with a scale 

of 1:100,000; the minimum mapping unit is 25 ha for new 

polygons and 5 ha for changes of existing polygons. The CLC 

data set has been produced with respect to reference years 1990, 

2000 and 2006 using mainly images of Landsat, SPOT and IRS 

satellites. Even though the minimum mapping unit is 25 ha, 

GIS-objects with an area smaller than 25 ha appear in the data 

set of our test site. GIS-objects smaller than 1 ha were not 

processed with our approach, because a reliable classification of 

small GIS-objects using DMC images with a resolution of 32 m 

is not possible. 
 

The main land cover class in our test site is cropland. Out of 

425 km2 with 3072 GIS cropland and grassland objects, 1316 

cropland GIS-objects covering 367 km2 with an average size of 

27.9 ha, and 1756 grassland GIS-objects covering 58 km2 with 

an average size of 3.3 ha can be found. 
 

4.2 Evaluation assessment 

Confusion matrices are a common tool for quality assessment. 

For the verification a special confusion matrix is used which 

compares the verification result (accepted/rejected GIS-objects) 

with a reference (correct/false GIS-objects). Such a confusion 

matrix is visualised in Figure 1.  
 

          System 

Reference 
Accepted Rejected 

Accepted True Positive (TP) False Negative (FN) 

Rejected 
False Positive (FP) 

(undetected errors) 

True Negative (TN) 

(detected errors) 

Figure 1: Confusion matrix of diagnostics. 
 

Based on this confusion matrix, measures for the evaluation can 

be derived, e.g. the thematic accuracy. The goal is to increase 

the thematic accuracy. The thematic accuracy before the 

verification process is TA a priori with 
 

TA a priori = (TP + FN)/(TP + FN + FP + TN) x 100%  (4) 
 

The aim is to achieve a thematic accuracy after the verification 

process TA a posteriori with  
 

TA a posteriori = TA a priori + TN/(TP + FN + FP + TN) x 

100%       (5) 
 

whereas TA a posteriori has to be at least 95%. At the same 

time the human operator should save time compared to a 

completely manual quality assessment of the GIS data set. A 

measure which represents this goal is the time efficiency with 
 

time efficiency =(TP + FP)/(TP + FN + FP + TN) x 100%  (6) 
 

which is equal to the percentage of GIS-objects which do not 

have to be reviewed by a human operator. The time efficiency 

should be at least 50%. The defined requirements are based 

on experiences gained from the practical application of 

quality assessment of GIS data sets (BKG, 2009). 
 

4.3 Parameter settings 

Only a small number of parameters have to be set to run our 

approach. Most of them can be trained automatically, others are 

defined by the characteristics of the used GIS and only a few of 

the parameters have to be set to empirical values. 
 

The fact that the goal of our approach is the verification of a 

GIS data set influences the strategy of the classification process. 

The parameters of our method have to be optimised in order to 

achieve a good verification, but not necessarily a good 

classification result. For instance, a classification error which 

leads to an undetected error remaining in the GIS data set is 

penalised higher than classification errors which lead “only” to 

a false negative. 
 

There are no parameters to be set for the calculation of the 

spectral features. Parameters for the feature extraction of the 

textural features are distance ∆ and direction α for the 

determination of the GLCM (Haralick et al., 1973). The 

parameters were set to the standard values ∆ = 1 and α = 0°, 

45°, 90°, 135°. By using fixed parameters for ∆ and α the 

textural features are only representative for these chosen 

parameters. By using four different directions for α the textural 

features are rotation invariant. Therefore, the dependency from 

the parameter α could be eliminated as far as possible. In 

contrast, the dependency from parameter ∆ could not been 

solved, so pattern which are not in the range of  ∆ are not be 

taken into account.  
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For the semi-variogram feature extraction, three major 

parameters had to be set. As proposed in (Balaguer et al., 2010), 

we use six directions to calculate an omnidirectional semi-

variogram. To obtain significant information about the 

occurring structures, a radius of 30 pixels with one pixel step 

size was chosen based on the RapidEye images (5m GSD). 
 

There are further parameters for SVM classification. We 

decided to use the one-versus-one-strategy for the multi-class-

SVM; the classes are cropland, grassland, settlement, industrial 

areas, deciduous and coniferous forest. In this paper we will 

focus only on the classes cropland and grassland. The parameter 

γ for the Gaussian Kernel as well as the parameter ν  to avoid 

the over-fitting are learnt automatically using a cross validation 

with grid search (Hsu et al., 2010). The used training data are 

visualised in Figure 2. 
 

 
Figure 2: GIS training objects (settlement (green), industrial 

areas (blue), cropland (turquoise), grassland (pink), deciduous 

forest(yellow), coniferous forest (brown)). 
 

To transfer the pixel-based classification results to GIS-objects 

there are three parameters. The threshold tq (see equation 4) 

depends on how many incorrect pixels are likely to appear in a 

cropland or grassland object. For instance, a cropland area can 

be surrounded by shrubs or trees, so it is likely that pixels are 

classified as forest. tq can be set easily by an experienced human 

operator. The parameters tA and tw are given by the definitions in 

the GIS object catalogue. tw depends on the minimum mapping 

areas of other classes than cropland/grassland and is set to 40 

m; tA is given directly by the GIS object catalogue by the 

minimum mapping areas of the classes others than 

cropland/grassland, e.g. ‘forest’, ‘settlement’ or ‘industry’. It is 

set to 1 ha. 
 

Basically, the only parameters which have to be set by the 

human operator are ∆ (textural feature) and tq (to transfer the 

pixel-based results to GIS-objects). In this publication we will 

focus on the setting of the parameter tq, as experience shows 

that this parameter has a high impact to the verification result. 

The parameter tq is tested using a series of variable values of tq 

starting from tq =10% to tq =100%. The results of this analysis 

are summarised regarding the TA a posteriori in Figure 3 and 

regarding the time efficiency in Figure 4. By setting tq to 10% 

not more than 10% of incorrect pixels (equation 1) are allowed 

within a GIS-object. Therefore, the TA a posteriori is really 

high (nearly all errors can be detected) but the time efficiency is 

low (nearly all GIS-objects have to be reviewed by a human 

operator). If tq is increased, the setting is less strict. For tq = 

100% the TA a posteriori decreased to the same level as the TA 

a priori (no errors could be detected; cropland 95.2%; grassland 

96.5%) but at the same time the time efficiency is 100% (no 

manual effort for the human operator). Our aim is to find a 

setting which is strict enough to find errors in the GIS data set 

but not too strict, so the human operator can save time using the 

approach. 
 

 
Figure 3: Dependency of the TA a posteriori (y-axis) from the 

parameter tq (x-axis); required are 95% (red line). 
 

 
Figure 4: Dependency of the time efficiency (y-axis) from the 

parameter tq (x-axis); required are 50% (red line). 
 

Because the required TA a posteriori of 95% could be achieved 

already before the verification process, the results regarding the 

time efficiency is used to determine the best value for tq. For the 

threshold tq = 60% the time efficiency achieves the required 

50% for both classes (cropland and grassland) for the first time. 

Therefore, the parameter tq is set to 60% for the detailed 

analysis in section 4.4. 
 

4.4 Results 

The evaluation results of our approach in form of confusion 

matrices are summarised in Figure 5 to Figure 7. In all cases the 

required thematic accuracy of 95% was already given (above 

95%). However, the thematic accuracy could be increased to 

98% to 99%, whereas the human operator has to review less 

than 50% of GIS-objects. 
 

         System 

Reference 
Accepted Rejected 

Accepted 65.5% (2012) 30.4% (935) 

Rejected 1.2% (36) 2.9% (89) 

Figure 5: Evaluation results of set union of the classes cropland 

and grassland (TA a priori = 95.9%, TA a posteriori = 98.8%, 

time efficiency = 66.7%). 
 

         System 

Reference 
Accepted Rejected 

Accepted 77.2% (1016) 18.0% (237) 

Rejected 1.6% (21) 3.2% (42) 

Figure 6: Evaluation results of the class cropland (TA a priori = 

95.2%, TA a posteriori = 98.4%, time efficiency = 78.8%). 
 

         System 

Reference 
Accepted Rejected 

Accepted 56.7% (996) 39.7% (698) 

Rejected 0.9% (15) 2.7% (47) 

Figure 7: Evaluation results of the class grassland (TA a priori = 

96.5%, TA a posteriori = 99.1%, time efficiency = 57.6%). 
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An example of a correctly rejected grassland GIS-object is 

given in Figure 8. While the GIS cropland object was covered 

with vegetation on the pictures on the right hand side, the 

picture in the second row on the left hand side does not show 

any vegetation. As grassland is covered by vegetation all year 

(Itzerott and Kaden, 2007), this GIS-object has to be grassland 

and not cropland as indicated in the GIS data set. This result 

can be confirmed by taken a look at the aerial image on the 

upper row on the left hand side. The aerial orthoimage is used 

to prove the result; it was not used within the verification 

process. The decision of our system to reject the GIS-object is 

correct. 
 

 
Figure 8: Correct rejected grassland GIS object: aerial orthophoto, 

April 2009 (top left), RapidEye CIR - 27.09.2009 (top right) - 

24.04.2009 (bottom left) - 24.08.2009 (bottom right). 
 

5. CONCLUSIONS AND OUTLOOK 

The method for the verification of cropland and grassland 

objects described in this paper achieved satisfactory for both 

classes even that the results from the class cropland are slightly 

better. In this publication we determined a suitable value for 

parameter tq. tq is important to transfer the classification result 

to a GIS-object and has a big influence on the verification 

results. An investigation regarding the other parameters which 

needs experiences from a human operator to be set still has to 

be done. 
 

Furthermore, a detailed analysis of the relevant features would 

be interesting, in order to reduce the feature vector to the most 

relevant features, and at the same time to reduce the necessary 

numbers of training areas. Maybe the best choice of features 

even could be determined during the training phase.  
 

In addition, the approach was tested on only one multi-temporal 

multi-spectral data set so far. It is interesting to see the 

performance on further data sets. Especially because two out of 

the three images were taken to approximately the same time 

(only a few days different), the appearance of the vegetation 

hardly changes. Tests showed that using only the RapidEye 

images the results were comparable to using all three images; 

comparable means that the time efficiency was slightly lower 

and the TA a posteriori slightly higher. 
 

In this paper we focused only on the classes cropland and 

grassland. The features should be useable to achieve also good 

results for further classes, e.g. the separation of different forest 

types (deciduous and coniferous forest).  
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