
IN-DATABASE RASTER ANALYTICS: MAP ALGEBRA AND PARALLEL
PROCESSING IN ORACLE SPATIAL GEORASTER

Qingyun (Jeffrey) Xie*, Zhihai Zhang, Siva Ravada

Oracle Corporation, One Oracle Drive, Nashua, NH 03062, USA -
(qingyun.xie, zhihai.zhang, siva.ravada)@oracle.com

KEYWORDS: raster, image, database, analytical, processing, query, management, software

ABSTRACT:

Over the past decade several products have been using enterprise database technology to store and manage geospatial imagery and
raster data inside RDBMS, which in turn provides the best manageability and security. With the data volume growing exponentially,
real-time or near real-time processing and analysis of such big data becomes more challenging. Oracle Spatial GeoRaster, different
from most other products, takes the enterprise database-centric approach for both data management and data processing. This paper
describes one of the central components of this database-centric approach: the processing engine built completely inside the
database. Part of this processing engine is raster algebra, which we call the In-database Raster Analytics. This paper discusses the
three key characteristics of this in-database analytics engine and the benefits. First, it moves the data processing closer to the data
instead of moving the data to the processing, which helps achieve greater performance by overcoming the bottleneck of computer
networks. Second, we designed and implemented a new raster algebra expression language. This language is based on PL/SQL and
is currently focused on the “local” function type of map algebra. This language includes general arithmetic, logical and relational
operators and any combination of them, which dramatically improves the analytical capability of the GeoRaster database. The third
feature is the implementation of parallel processing of such operations to further improve performance. This paper also presents
some sample use cases. The testing results demonstrate that this in-database approach for raster analytics can effectively help solve
the biggest performance challenges we are facing today with big raster and image data.

1. INTRODUCTION

There are some prominent characteristics of geospatial imagery
and raster data. First, they are special and complex data types in
comparison with structured and simple data types such as
numbers and strings. Second, they require specialized indexing,
querying, processing and analyzing algorithms. Thirdly, they
are generally huge in size, thus they are “big data” in nature.
These mean that we have to build special processing and
analysis engines for the geospatial image and raster database.
And scalability and performance of such systems are keys to
success.

For geospatial image and raster data archiving and
management, enterprise RDBMS technologies have been
widely used as the foundation. Over the past decade, several
products including GeoRaster, RasDaMan, and ArcSDE have
demonstrated this database technology (Baumann, 2001. ESRI,
2005. Oracle, 2004). The common feature of these products is
to store image and raster data inside RDBMS databases, which
in turn provide the best manageability and security. GeoRaster
is unique because it takes the database-centric approach (Xie,
2008a. Xie, 2011). This approach not only builds spatial indices
but also provides all data management and query operations
inside the database itself. It is truly scalable and provides
greater performance by removing the need of constantly
moving the datasets in and out of the database.

For geospatial image and raster data processing and analyzing,
many advanced and highly efficient desktop systems such as
ERDAS Imagine and PCI Geomatica and server-based engines
such as ArcGIS are readily available. When a large-scale
enterprise RDBMS based spatial database is built, such desktop
and server-based systems generally can connect to it and then
retrieve the imagery and raster data out of the database and

process them in the client or another server. However, moving
the data between the database and the processing engine is
costly given the speed and bandwidth limitations of the
computer networks.

With the data volume growing exponentially, real-time and
near real-time processing and analysis of such big data becomes
more important and urgent. So, building a fast processing and
analysis solution for the image and raster databases is critical.
Oracle Spatial GeoRaster takes the enterprise database-centric
approach for both data management and data processing. This
paper presents one of the central components of this database-
centric approach: the processing engine built completely inside
the database. Part of this processing engine is raster algebra,
which we call the In-database Raster Analytics. There are three
key features of this in-database raster analytics engine. First, it
moves the data processing closer to the data instead of moving
the data to the processing. Second, to implement this we
designed a new raster algebra language. The third feature is the
implementation of parallel processing of such raster operations
inside the database. This paper discusses these key
characteristics of this in-database analytics engine and the
advantages.

2. IN-DATABASE PROCESSING

In-database processing, also known as in-database analytics,
refers to the integration of data processing and analytical
functionalities into the databases or data warehouses. The basic
idea is to eliminate the overhead of moving large data sets from
the enterprise databases to separate processing and analytical
software applications.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

91

An in-database analytics approach is much faster, more
efficient, and more secure than traditional analytics approaches.
In-database analytics delivers immediate performance,
scalability and security improvements because data never
leaves the database until results are filtered and processed (Das,
2010).

In-database processing is performed and promoted as a feature
by many of the major database and data warehousing vendors,
including Oracle, IBM, Teradata, Netezza, Greenplum and
Aster Data Systems (Grimes, 2008. Berger, 2009). For
example, Oracle Data Mining and Oracle R Enterprise are in-
database data analysis engines. Coupled with the power of
SQL, they eliminate data movement and duplication, maintain
security and minimize latency time from raw data to valuable
information.

In-database processing has been successfully used in many
high-throughput and mission-critical applications, including
fraud detection, pricing and margin analysis. The success of
this approach and its applications inspired us to consider the
same strategy for image and raster processing and analytics
inside Oracle Spatial GeoRaster.

As we mentioned in the introduction, geospatial imagery and
raster data are big data. A typical geoimage database has tens or
hundreds of terabytes of data. Petabytes of data is not abnormal.
Data has “weight” and geospatial image and raster data sets are
particularly “heavy”. Given that the processing and analysis are
data intensive, data locality should always be an important
factor in our design and implementation strategy. So we
conclude that building an in-database analytics engine should
be a good strategy. It moves the data processing closer to the
data instead of moving the data to the processing, which helps
achieve greater performance by overcoming the bottleneck of
computer networks.

3. THE MAP ALGEBRA LANGUAGE

Image and raster data processing and analysis involve a large
set of operations, including image geometric corrections, image
enhancement and classifications, map algebraic operations,
terrain analysis, geostatistics, to name a few. Since map algebra
is the basic and most commonly used technique in raster data
analysis and GIS modeling, we mainly discuss its
implementation in this paper.

Developed through the 1980′s by Professor C. Dana Tomlin as
part of his PhD thesis work, Map Algebra is a high-level
language providing a framework for performing raster data
analysis and cartographic modeling. Map Algebra includes a set
of operators, such as arithmetic, boolean, logical, relational, and
combinatorial operations. It also includes a set of functions,
which are generally classified into four categories: local, focal,
zonal and global (Tomlin, 1990).

There are many implementations of Map Algebra. However,
the exact syntax and workflow of the expressions and functions
could be very different among those implementations, while the
concepts and functionality remain the same. Generally, a
computing language should include declaration of variables and
constants, data processing operations (expressions) and
procedures (functions), statements and programs. We think the
same should be true for a good Map Algebra implementation.

PL/SQL, the Oracle procedural extension of SQL, is a portable,
high-performance transaction-processing language. PL/SQL
combines the data-manipulating power of SQL with the
processing power of procedural languages. You can control
program flow with statements like IF and LOOP. As with other
procedural programming languages, you can declare variables,
define procedures and functions, and trap runtime errors.
PL/SQL lets you break complex problems down into easily
understandable procedural code, and reuse this code across
multiple applications. When a problem can be solved through
plain SQL, you can issue SQL commands directly inside your
PL/SQL programs, without learning new APIs. PL/SQL's data
types correspond with SQL's column types, making it easy to
interchange PL/SQL variables with data inside a table (Oracle,
2012).

Oracle Spatial GeoRaster is completely built inside the
enterprise Oracle database server. The PL/SQL language is
available to GeoRaster already and the users are mainly using
PL/SQL to manage, query and manipulate GeoRaster objects.
So, we can further leverage the power of the PL/SQL language.
For our geospatial analysis purposes, what this language lacks
is the specific map algebra expressions and functions.

To implement this we designed a new raster algebra expression
language covering general arithmetic, casting, logical and
relational operators as shown below.

arithmeticBinaryOp:
 +
 | -
 | *
 | /
comparisonOp:
 =
 | <
 | >
 | >=
 | <=
 | !=
arithmeticUnaryOp:
 +
 | -
booleanBinaryOp:
 &
 | |
booleanUnaryOp:
 !
rangeType:
 castint
 | castonebit
 | casttwobit
 | castfourbit
 | casteightbit
numericFunction:
 abs
 | sqrt
 | exp
 | log
 | ln
 | sin
 | cos
 | tan
 | sinh
 | cosh
 | tanh
 | arcsin
 | arccos
 | arctan
 | ceil
 | floor
ID:
 integer number
constantNumber:
 double number
band:
 integer number

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

92

identifier:
 {ID,band}
 | {band}
unaryArithmeticExpr:
 (arithmeticUnaryOp arithmeticExpr)
binaryArithmeticExpr:
 arithmeticExpr arithmeticBinaryOp arithmeticExpr
functionArithmeticExpr:
 numericFunction (arithmeticExpr)
arithmeticExpr:
 unaryArithmeticExpr
 | binaryArithmeticExpr
 | functionArithmeticExpr
 | (arithmeticExpr)
 | constantNumber
 | castingExpr
 | identifier
castingExpr:
 rangeType(arithmeticExpr)
unaryBooleanExpr:
 booleanUnaryOp booleanExpr
binaryBooleanExpr:
 booleanExpr booleanBinaryOp booleanExpr
booleanExpr:
 unaryBooleanExpr
 | binaryBooleanExpr
 | (booleanExpr)
 | arithmeticExpr comparisonOp arithmeticExpr

The “identifier” in the expression refers to a raster layer of a
GeoRaster object. It is either a single band number if there is
only one GeoRaster object involved, or a pair of (ID, band)
where ID refers to one of GeoRaster objects in the expression
and band refers to a specific band of that GeoRaster object.

We also developed four major procedures including arithmetic
operation, conditional query, classify and cell value-based
update as follows.

 sdo_geor_ra.rastermathop: runs arithmeticExpr operations.
 sdo_geor_ra.findcells: searches cells based on booleanExpr.
 sdo_geor_ra.classify: applies arithmeticExpr to cells and then
 segments the raster.
 sdo_geor_ra.rasterupdate: updates cells of a raster based
 booleanExpr.

Each of these procedures take many layers from one or many
GeoRaster objects, apply booleanExpr and/or arithmeticExpr
expressions over those layers, do the specific algebraic
computation or modeling, and output a new GeoRaster object.
The expressions can be defined in any way based the syntax of
the expression language above.

4. PARALLEL PROCESSING

As we mentioned in the introduction, scalability and
performance of such systems are also keys to success. The
scalability of GeoRaster in the database has been mainly solved
by the design of the GeoRaster data model, the control of
memory usage in the GeoRaster engine, and the application of
Oracle GRID Computing technologies (Xie, 2006. Xie, 2008a.
Xie 2008b). This scalability applies to this in-database map
algebra as well. So, our focus here is mainly about performance
of the processing engine.

Performance depends upon the design and implementation of
the in-database processing strategy, the processing algorithms,
speed of I/O, flexible memory utilization, to name a few. Given

that modern computers are mostly multicore or have multiple
CPUs, parallel processing becomes a very important solution
for speedup. Parallel processing divides a large task into many
smaller tasks, and executes the smaller tasks concurrently in
different CPU’s or on several computing nodes. As a result, the
larger task completes more quickly. The major benefits of
parallelism are speedup (faster) and scaleup (more users) for
massive data processing operations. So it should be an essential
factor in our software implementation. Note that concurrency is
already part of the GeoRaster database, which can help improve
the speed of massive data processing too (Xie, 2006).

The Oracle database provides a powerful SQL parallel
execution engine that can run almost any SQL-based operation
– DDL, DML and queries – in the Oracle Database in parallel.
When you execute a SQL statement in the Oracle Database it is
decomposed into individual steps or row-sources, which are
identified as separate lines in an execution plan (Dijcks, 2010).

With this parallel execution framework, however, the
individual raster processing functions, such as mosaic and
raster algebra operations, cannot be directly parallelized
without some special implementation. This is because each of
the heavy image processing and raster manipulation operations
is not purely row-based and has its own logic in how the raster
data (or raster blocks) are internally processed.

There are several ways to leverage the oracle parallel execution
engine, among which pipelined and parallel table function is an
important aspect of parallelism. Table functions can be used
and controlled by any user. The goal of a set of table functions
is to build a parallel processing pipeline leveraging the parallel
processing framework in the database (Oracle 2008. Dijcks,
2010). We leverage table functions to encapsulate complex
logic in a PL/SQL construct so that we can process different
subsets of the data of a GeoRaster object in parallel. To
parallelize those operations we have to begin with explicitly
controlling the level of degree of parallelism and deciding what
subsets of the data to be handled in each subprocess. We used
the output raster to split the whole region into subsets and the
total number of subsets is decided by the degree of parallelism
(DOP), which can be controlled by user input. Then the Oracle
parallel execution framework will split the whole task into
different subprocesses based on the total number of subsets and
each subprocess will process one of the subsets independently.
When all subsets are finished, the whole process is done.

As an example, the following conditional query finds all pixels
in a three-band image where the cell value of the first band is
greater than 10 and less than 50, the cell value of the second
band is greater than or equal to 100 and less than 150, and the
cell value of the third band is greater than 200 and less than
245. The result is a new image of all pixels meeting the query
condition. The parameter ‘parallel=4’ means the process will be
parallelized into 4 processes, each of which will process a
quarter of the original image simultaneously, thus the overall
performance will be improved significantly.

declare
 geor SDO_GEORASTER; -- source image
 geor1 SDO_GEORASTER; -- result image
begin
 select georaster into geor from georaster_table where georid = 1;
 select georaster into geor1 from georaster_table where georid = 2 for update;
 sdo_geor_ra.findcells (
 geor,
 '(({0}>10)&({0}<50)&{1}>=100)&({1}<150)&({2}>200)&({2}<245)',
 null, geor1, null, 'false',

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

93

 'parallel=4');
 update georaster_table set georaster = geor1 where georid = 2;
 commit;
end;

We conducted some initial tests on the parallel implementation
of sdo_geor_ra.findcells as well as sdo_geor_ra.classify. The
sdo_geor.findcells test uses the above script to query an image
based on all three bands while the sdo_geor_ra.classify test
segments the first band of the three-band image into 12 classes.
We used a x86_64 Linux Server to do the tests. It has 4 Intel(R)
Xeon(R) X5670 CPUs and the CPU speed is 2.93GHz. The
total memory is 8GB. The operating system is Red Hat
Enterprise Linux Server 5.4. We used four 3-band images of
different sizes. The results are shown in table 1 and 2.

Table 1. Execution time in seconds of sdo_geor.findcells with and without parallelism

Degree of
Parallel ism

image size and image dimension size in row x column x band

238.7MB
8930x8912x3

954.8MB
17860x17824x3

2.15GB
26790x26736x3

3.82GB
35720x35648x3

1 17.33 45.14 87.80 153.36
2 15.33 26.43 55.19 106.00
4 11.67 23.33 49.80 80.79
8 10.12 20.68 40.92 74.63

Table 2. Execution time in seconds of sdo_geor.classify with and without parallelism

Degree of
Parallelism

image size and dimension size in row x column x band

238.7MB
8930x8912x3

954.8MB
17860x17824x3

2.15GB
26790x26736x3

3.82GB
35720x35648x3

1 6.47 44.03 80.50 138.45

2 4.89 36.33 58.19 86.68
4 3.86 26.52 44.84 77.55

8 3.50 21.35 41.09 68.00

There is only 1 disk on this machine so the I/O contention
among parallelized subprocesses is very high. That has a big
impact on the performance numbers. However, even with only
one disk, table 1 and 2 show that when the raster algebra
operation is parallelized into 2 to 8 subprocesses, the processing
operation is significantly faster than the same operation without
parallelism. In addition, the overall performance improvement
scales very well with image size increasing as shown in table 1
and 2. There are still more room for improvement yet to be
done. However, we can reasonably assume the performance
improvement could be much better if the machine has more
CPU’s and more memory, and particularly if a high-speed
storage cluster (using Oracle ASM technology) or a high-end
machine such as Oracle Exadata Database Machine is used.
Some database tuning techniques will help improve parallel
performance as well.

5. APPLICATIONS

Currently, the raster algebra engine implementation is focused
only on the “local” function type of map algebra and is
designed to work with the standard PL/SQL language and run
completely inside the database. Using the PL/SQL and the
raster algebra expressions and functions, users can implement a
wide range of applications, such as applying complex pixel
queries in the database, editing a raster based on raster cell
values and formulated query conditions, segmenting images or
classifying a thematic map, and conducting cartographic

modeling over a large number of rasters and images of
unlimited size. The engine runs these algebra expressions and
functions as single processes inside the database and each of
those processes can be parallelized, thus dramatically improves
the analytical capability and performance of the GeoRaster
database.

Map Algebra is mainly used in cartographic modeling and is
considered an essential component of any GIS systems. These
applications and the importance of the map algebra expressions
and functions are well known. Due to the lack of testing dataset
of thematic layers for a case study area and the easy access of
Landsat imagery, we only use Normalized Difference
Vegetation Index (NDVI) and Tasseled Cap Transformation
(TCT) as our application examples in this paper to demonstrate
the capability.

In remote sensing, NDVI was one of the most successfully and
widely used vegetation index (VI), which can quickly identify
vegetated areas and monitor plant growth or their "condition".
Using Landsat TM imagery, the standard NDVI computation
formula is (TM4 – TM3) / (TM4 + TM3). The following script
takes a Landsat 7 ETM+ image and compute the NDVI, which
is stored as another raster of floating number data type. Note, in
our algebra language, band number starts with 0, so the formula
translates into the expression '({3}-{2})/({3}+{2})’.

declare
 geor1 MDSYS.SDO_GEORASTER;
 geor2 MDSYS.SDO_GEORASTER;
begin
 -- source ETM+ image
 select georaster into geor1 from georaster_table where georid = 2;
 -- to store NDVI
 select georaster into geor2 from georaster_table where georid = 3 for update;
 mdsys.sdo_geor_ra.rasterMathOp(geor1,
 SDO_STRING_ARRAY('({3}-{2})/({3}+{2})'),
 'celldepth=32bit_real',geor2);
 update georaster_table set georaster = geor2 where georid = 3;
 commit;
end;

Figure 1 shows a small area of the original ETM+ 543 image
and the resulting NDVI image after running the above script.

Fig. 1, ETM+ 543 color image (left) and NDVI image (right). Image
Courtesy of PCI Geomatics.

The concept of tasseled cap transformation is a useful tool for
compressing spectral data into a few bands associated with
physical scene characteristics (Crist and Cicone 1984). TCT
helps analyze the physical ground features. With Landsat
imagery, it uses 5 bands of either original digital number (DN)
or reflectance data to generate 6 new bands, each of which
represents different ground features. The 6 resulting bands are

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

94

generally called (soil) brightness, (vegetation) greenness, (soil
and canopy) wetness, haze, TC5, and TC6. Each or a
combination of them is useful for different applications,
including crop growth monitoring and analysis, biomass study,
agriculture planning, to name a few. In this test, we used a full
scene Landsat 5 TM image and the Landsat 5 Tasseled Cap
Transformation coefficients for DN Data (Crist and Cicone,
1986). The following script takes a TM image as input,
automatically generates the TCT expression based on the
coefficient matrix, execute the expression, and create a new
image holding the results.

declare
 type array_type is varray(6) of binary_double;
 type array_array_type is varray(6) of array_type;
 tct_coeff array_array_type := array_array_type(
 array_type(0.3561, 0.3972, 0.3904, 0.6966, 0.2286, 0.1596),
 array_type(-0.3344, -0.3544, -0.4556, 0.6966, -0.0242, -0.2630),
 array_type(0.2626, 0.2141, 0.0926, 0.0656, -0.7629, -0.5388),
 array_type(0.0805, -0.0498, 0.1950, -0.1327, 0.5752, -0.7775),
 array_type(-0.7252, -0.0202, 0.6683, 0.0631, -0.1494, -0.0274),
 array_type(0.4000, -0.8172, 0.3832, 0.0602, -0.1095, 0.0985));
 i integer;
 gr1 sdo_georaster;
 gr2 sdo_georaster;
 stmt varchar2(5024);
begin
 select georaster into gr1 from georaster_table where georid = 2;
 select georaster into gr2 from georaster_table where georid = 4 for update;
 stmt:='';
 i:=1;
 -- the following code generates the TCT expression
 LOOP
 stmt:=stmt||
 '''('||trim(to_char(tct_coeff(i)(1),'0.9999'))|| ')*{0}+' ||
 '('||trim(to_char(tct_coeff(i)(2),'0.9999'))|| ')*{1}+' ||
 '('||trim(to_char(tct_coeff(i)(3),'0.9999'))|| ')*{2}+' ||
 '('||trim(to_char(tct_coeff(i)(4),'0.9999'))|| ')*{3}+' ||
 '('||trim(to_char(tct_coeff(i)(5),'0.9999'))|| ')*{4}+' ||
 '('||trim(to_char(tct_coeff(i)(6),'0.9999'))|| ')*{6}''' ;
 IF(i<6) THEN
 stmt:=stmt||',';
 END if;
 i := i + 1;
 IF i > 6 THEN
 EXIT;
 END IF;
 END LOOP;
 stmt := 'call sdo_geor_ra.rasterMathOp(:1,SDO_STRING2_ARRAY('||stmt||'),'||
 '''celldepth=32BIT_REAL'',:2)';
 execute immediate stmt using gr1,in out gr2;
 update georaster_table set georaster = gr2 where georid = 4;
 commit;
end;

The actual raster algebra expression and command, i.e., the
“stmt”, generated by the above script is as follows (reformatted
a bit for readability). Note that you can also directly apply this
expression to make the above script look even simpler.

sdo_geor_ra.rasterMathOp(:1, SDO_STRING2_ARRAY(
 '(0.3561)*{0}+(0.3972)*{1}+(0.3904)*{2}+(0.6966)*{3}+(0.2286)*{4}+(0.1596)*{6}',
 '(-0.3344)*{0}+(-0.3544)*{1}+(-0.4556)*{2}+(0.6966)*{3}+(-0.0242)*{4}+(-0.2630)*{6}',
 '(0.2626)*{0}+(0.2141)*{1}+(0.0926)*{2}+(0.0656)*{3} +(-0.7629)*{4}+(-0.5388)*{6}',
 '(0.0805)*{0}+(-0.0498)*{1}+(0.1950)*{2}+(-0.1327)*{3}+(0.5752)*{4}+(-0.7775)*{6}',
 '(-0.7252)*{0}+(-0.0202)*{1}+(0.6683)*{2}+(0.0631)*{3}+(-0.1494)*{4}+(-0.0274)*{6}',
 '(0.4000)*{0}+(-0.8172)*{1}+(0.3832)*{2}+(0.0602)*{3}+(-0.1095)*{4}+(0.0985)*{6}'),
 'celldepth=32Bit_REAL', :2)

The source image (the file name is L5044034_03420110918.tif,
available from the U.S. Geological Survey) covers the San
Francisco Bay area and is 377MB (7091 rows, 7961 columns, 7
bands and 8bit integer) in size. The result image is 1.26GB
(7091 rows, 7961 columns, 6 bands, and 32bit float) in size. In
repeated tests on a low-end commodity linux machine, the total

execution time (without parallelism) is only 3 minutes or less.
Figure 2 shows a small subset of the source image, and the
brightness, greenness and wetness resulted from the TCT.

Using the same raster algebra language, users can also very
easily add some additional scripts in the above PL/SQL block
to convert the 32bit floating number image into 8 bit integer
image and in the mean time apply image stretching (simply
another map algebra expression) on the TCT image to generate
a new GeoRaster object for visualization and analysis purposes.

Figure 2. TM 123 Color Image (upper left), Brightness (upper right),
Greenness (lower left) and Wetness (lower right). TM Image Courtesy

of the U.S. Geological Survey

As shown in the syntax and the above examples, the PL/SQL
language and the map algebra expressions are powerful and
flexible for users to easily implement numerous processing and
analytical applications. In addition to the optimized
implementation of raster algebra algorithms and the embedded
parallel processing, users can further leverage the power of
Oracle Enterprise GRID Computing infrastructure to quickly
process and analyze thousands of images and rasters stored in
the GeoRaster database concurrently and on a global basis (Xie,
2008a).

6. CONCLUSIONS

Satellite imagery, airborne photographs and other geospatial
raster data are complex data types that require specialized
database management systems and analysis solutions.
Unprecedented data volume plus real time or near-real time
archiving and processing requirements of such data dictate
extreme scalability and performance of such systems and
solutions. Oracle Spatial GeoRaster takes an enterprise
database-centric approach by enhancing Oracle database server
to solve the database management challenges and achieve
virtually unlimited scalability and great performance. The in-
database raster analytics engine proposed in this paper enhances
Oracle Spatial GeoRaster database management system by
embedding some analytical algorithms inside the database
allowing data to be processed where the data is stored. This
approach coupled with parallel processing capabilities offers
great performance benefits for many basic and commonly used

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

95

database management operations. This also removes the need
of separate solutions for some GIS and business applications.
For traditional remote sensing and GIS applications, specialized
image processing packages and GIS solutions are still required.
However, such third party solutions can also benefit greatly in
performance from this analytics engine by pushing some basic
data processing and filtering operations into the database so that
less data is retrieved and transported into the client for further
processing and analysis.

7. REFERENCES

Baumann, P., 2001. Web-enabled Raster GIS Services for
Large Image and Map Databases. In: 5th Int’l Workshop on
Query Processing and Multimedia Issues in Distributed
Systems (QPMIDS'2001), Munich, Germany, September 3-4,
2001

Berger C., 2009. Oracle Data Mining 11g: Competing on In-
Database Analytics, An Oracle Technical White Paper.
http://www.oracle.com/technetwork/database/options/odm/orac
ledatamining11gwpv3-130702.pdf (16 March 2012)

Crist, E., R. Cicone, 1984. A physically-based transformation
of Thematic Mapper data -- the TM Tasseled Cap. IEEE Trans.
on Geosciences and Remote Sensing, GE-22: 256-263.

Crist, E., R. Laurin, R. Cicone, 1986. Vegetation and soils
information contained in transformed Thematic Mapper data.
In: Proceedings of IGARSS '86 Symposium, 1465-70. Ref. ESA
SP-254. Paris: European Space Agency.

Das J., 2010. Adding Competitive Muscle with In-Database
Analytics. Database Trends and Applications.
http://www.dbta.com/Articles/Editorial/Trends-and-
applications/Adding-Competitive-Muscle-with-In-Database-
Analytics-67126.aspx (16 March 2012)

Dijcks, J., H. Baer, M. Colgan, 2010. Oracle Database Parallel
Execution Fundamentals, An Oracle Technical Whitepaper.
http://www.oracle.com/technetwork/articles/datawarehouse/twp
-parallel-execution-fundamentals-133639.pdf (16 March 2012)

ESRI, 2005. Raster Data in ArcSDE® 9.1 - An ESRI White
Paper. http://www.esri.com/library/whitepapers/pdfs/arcsde91-
raster.pdf (16 March 2012)

Grimes, S., 2008. In-Database Analytics: A Passing Lane for
Complex Analysis. Information Week.
http://www.informationweek.com/news/software/bi/212500351
?cid=RSSfeed_IE_News (16 March 2012)

Oracle, 2004. Oracle Spatial GeoRaster, 10g Release 1 (10.1).

Oracle, 2008. Oracle Database Data Cartridge Developer's
Guide 11g Release 1 (11.1).
http://docs.oracle.com/cd/B28359_01/appdev.111/b28425/pipe
_paral_tbl_ref.htm#i76723 (16 March 2012)

Oracle, 2012. Oracle Database PL/SQL Language Reference
11g Release 2 (11.2).
http://docs.oracle.com/cd/E11882_01/appdev.112/e25519.pdf
(16 March 2012)

Tomlin, D., 1990. Geographic Information Systems and
Cartographic Modeling. Prentice Hall Inc.

Xie, Q., Z. Li, W. Xu, 2006. Using Enterprise Grid Computing
Technologies to Manage Large-Scale Geoimage And Raster
Databases. In: the Proceedings of ASPRS 2006 Annual
Conference, Reno, Nevada, May 1 – 5, 2006.

Xie, Q., S. Ravada, W. Xu, Z. Zhang, 2008a. An Enterprise
Database-centric Approach for Geospatial Image Management
and Processing. In: The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, Beijing, China, Vol. XXXVII. Part B4. pp. 199 – 204.

Xie, Q., 2008b. Oracle Spatial, Raster Data. Encyclopedia of
GIS, Shashi Shekhar and Hui Xiong (editors), Springer. pp. 826
- 832.

Xie, Q., J. Sharma, J. Ihm, 2011. Oracle Spatial 11g GeoRaster,
An Oracle Technical White Paper.
http://download.oracle.com/otndocs/products/spatial/pdf/spatial
11gr2_georaster_twp.pdf (16 March 2012)

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

96

