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ABSTRACT:

Over the past decade several products have been using enterprise database technology to store and manage geospatial imagery and  
raster data inside RDBMS, which in turn provides the best manageability and security. With the data volume growing exponentially,  
real-time or near real-time processing and analysis of such big data becomes more challenging. Oracle Spatial GeoRaster, different  
from most other products, takes the enterprise database-centric approach for both data management and data processing. This paper  
describes  one  of  the  central  components  of  this  database-centric  approach:  the  processing  engine  built  completely  inside  the 
database. Part of this processing engine is raster algebra, which we call the In-database Raster Analytics. This paper discusses the  
three key characteristics of this in-database analytics engine and the benefits. First, it moves the data processing closer to the data  
instead of moving the data to the processing, which helps achieve greater performance by overcoming the bottleneck of computer  
networks. Second, we designed and implemented a new raster algebra expression language. This language is based on PL/SQL and 
is currently focused on the “local” function type of map algebra. This language includes general arithmetic, logical and relational  
operators and any combination of them, which dramatically improves the analytical capability of the GeoRaster database. The third  
feature is the implementation of parallel processing of such operations to further improve performance. This paper also presents  
some sample use cases. The testing results demonstrate that this in-database approach for raster analytics can effectively help solve 
the biggest performance challenges we are facing today with big raster and image data. 

1. INTRODUCTION

There are some prominent characteristics of geospatial imagery 
and raster data. First, they are special and complex data types in 
comparison  with  structured  and  simple  data  types  such  as 
numbers and strings. Second, they require specialized indexing, 
querying,  processing  and  analyzing  algorithms.  Thirdly,  they 
are generally huge in size, thus they are “big data” in nature. 
These  mean  that  we  have  to  build  special  processing  and 
analysis engines for the geospatial image and raster database. 
And scalability and performance of such systems are keys to 
success.

For  geospatial  image  and  raster  data  archiving  and 
management,  enterprise  RDBMS  technologies  have  been 
widely used as the foundation.  Over  the past decade,  several 
products including GeoRaster,  RasDaMan, and ArcSDE have 
demonstrated this database technology (Baumann, 2001. ESRI, 
2005. Oracle, 2004). The common feature of these products is 
to store image and raster data inside RDBMS databases, which 
in turn provide the best manageability and security. GeoRaster 
is unique because it takes the database-centric approach (Xie, 
2008a. Xie, 2011). This approach not only builds spatial indices 
but  also provides  all  data  management  and  query operations 
inside  the  database  itself.  It  is  truly  scalable  and  provides 
greater  performance  by  removing  the  need  of  constantly 
moving the datasets in and out of the database. 

For geospatial image and raster data processing and analyzing, 
many advanced and highly efficient  desktop systems such as 
ERDAS Imagine and PCI Geomatica and server-based engines 
such  as  ArcGIS  are  readily  available.  When  a  large-scale 
enterprise RDBMS based spatial database is built, such desktop 
and server-based systems generally can connect to it and then 
retrieve  the imagery  and raster  data  out  of  the database and 

process them in the client or another server. However, moving 
the  data  between  the  database  and  the  processing  engine  is 
costly  given  the  speed  and  bandwidth  limitations  of  the 
computer networks.

With  the  data  volume  growing  exponentially,  real-time  and 
near real-time processing and analysis of such big data becomes 
more important and urgent. So, building a fast processing and 
analysis solution for the image and raster databases is critical. 
Oracle Spatial GeoRaster takes the enterprise database-centric 
approach for both data management and data processing. This 
paper presents one of the central components of this database-
centric approach: the processing engine built completely inside 
the database.  Part  of this processing engine is raster algebra, 
which we call the In-database Raster Analytics. There are three 
key features of this in-database raster analytics engine. First, it 
moves the data processing closer to the data instead of moving 
the  data  to  the  processing.  Second,  to  implement  this  we 
designed a new raster algebra language. The third feature is the 
implementation of parallel processing of such raster operations 
inside  the  database.  This  paper  discusses  these  key 
characteristics  of  this  in-database  analytics  engine  and  the 
advantages.

2. IN-DATABASE PROCESSING

In-database  processing,  also  known  as  in-database  analytics, 
refers  to  the  integration  of  data  processing  and  analytical  
functionalities into the databases or data warehouses. The basic 
idea is to eliminate the overhead of moving large data sets from 
the enterprise databases to separate processing and analytical  
software applications.
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An  in-database  analytics  approach  is  much  faster,  more 
efficient, and more secure than traditional analytics approaches. 
In-database  analytics  delivers  immediate  performance, 
scalability  and  security  improvements  because  data  never 
leaves the database until results are filtered and processed (Das,  
2010).

In-database processing is performed and promoted as a feature 
by many of the major database and data warehousing vendors,  
including  Oracle,  IBM,  Teradata,  Netezza,  Greenplum  and 
Aster  Data  Systems  (Grimes,  2008.  Berger,  2009).  For 
example, Oracle Data Mining and Oracle R Enterprise are in-
database  data  analysis  engines.  Coupled  with  the  power  of 
SQL, they eliminate data movement and duplication, maintain 
security and minimize latency time from raw data to valuable 
information.

In-database  processing  has  been  successfully  used  in  many 
high-throughput  and  mission-critical  applications,  including 
fraud  detection,  pricing  and margin  analysis.  The  success  of 
this approach and its applications inspired us to consider the 
same  strategy  for  image  and  raster  processing  and  analytics 
inside Oracle Spatial GeoRaster.

As we mentioned in the introduction, geospatial  imagery and 
raster data are big data. A typical geoimage database has tens or 
hundreds of terabytes of data. Petabytes of data is not abnormal. 
Data has “weight” and geospatial image and raster data sets are 
particularly “heavy”. Given that the processing and analysis are 
data  intensive,  data  locality  should  always  be  an  important 
factor  in  our  design  and  implementation  strategy.  So  we 
conclude that building an in-database analytics  engine should 
be a good strategy. It moves the data processing closer to the 
data instead of moving the data to the processing, which helps 
achieve greater performance by overcoming the bottleneck of 
computer networks. 

3. THE MAP ALGEBRA LANGUAGE

Image and raster data processing and analysis involve a large 
set of operations, including image geometric corrections, image 
enhancement  and  classifications,  map  algebraic  operations, 
terrain analysis, geostatistics, to name a few. Since map algebra 
is the basic and most commonly used technique in raster data 
analysis  and  GIS  modeling,  we  mainly  discuss  its 
implementation in this paper.

Developed through the 1980′s by Professor C. Dana Tomlin as 
part  of  his  PhD  thesis  work,  Map  Algebra  is  a  high-level  
language  providing  a  framework  for  performing  raster  data 
analysis and cartographic modeling. Map Algebra includes a set 
of operators, such as arithmetic, boolean, logical, relational, and 
combinatorial  operations.  It  also  includes  a  set  of  functions, 
which are generally classified into four categories: local, focal,  
zonal and global (Tomlin, 1990). 

There are  many implementations  of  Map Algebra.  However, 
the exact syntax and workflow of the expressions and functions 
could be very different among those implementations, while the 
concepts  and  functionality  remain  the  same.  Generally,  a 
computing language should include declaration of variables and 
constants,  data  processing  operations  (expressions)  and 
procedures (functions), statements and programs. We think the 
same should be true for a good Map Algebra implementation. 

PL/SQL, the Oracle procedural extension of SQL, is a portable, 
high-performance  transaction-processing  language.  PL/SQL 
combines  the  data-manipulating  power  of  SQL  with  the 
processing  power  of  procedural  languages.  You  can  control 
program flow with statements like IF and LOOP. As with other 
procedural programming languages, you can declare variables, 
define  procedures  and  functions,  and  trap  runtime  errors. 
PL/SQL  lets  you  break  complex  problems  down  into  easily 
understandable  procedural  code,  and  reuse  this  code  across 
multiple applications. When a problem can be solved through 
plain SQL, you can issue SQL commands directly inside your 
PL/SQL programs, without learning new APIs. PL/SQL's data 
types correspond with SQL's column types, making it easy to 
interchange PL/SQL variables with data inside a table (Oracle, 
2012).

Oracle  Spatial  GeoRaster  is  completely  built  inside  the 
enterprise  Oracle  database  server.  The  PL/SQL  language  is 
available to GeoRaster already and the users are mainly using 
PL/SQL to manage, query and manipulate GeoRaster objects. 
So, we can further leverage the power of the PL/SQL language. 
For our geospatial analysis purposes, what this language lacks 
is the specific map algebra expressions and functions. 

To implement this we designed a new raster algebra expression 
language  covering  general  arithmetic,  casting,  logical  and 
relational operators as shown below.

arithmeticBinaryOp:
                +
              |  -
              |  *
              |  /
comparisonOp:
                 =
              |  <
              |  >
              | >=
              | <=
              | !=
arithmeticUnaryOp:
                +
              |  -
booleanBinaryOp:
                &
              |  |
booleanUnaryOp:
                !
rangeType:
                 castint
               | castonebit
               | casttwobit
               | castfourbit
               | casteightbit
numericFunction:
                abs
              |  sqrt
              |  exp
              |  log
              |  ln
              |  sin
              |  cos
              |  tan
              |  sinh
              |  cosh
              |  tanh
              |  arcsin
              |  arccos
              |  arctan
              |  ceil
              |  floor
ID:
              integer number
constantNumber:
              double number
band:
              integer number
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identifier:
             {ID,band}
              | {band}
unaryArithmeticExpr:
                (arithmeticUnaryOp arithmeticExpr)
binaryArithmeticExpr:
                arithmeticExpr  arithmeticBinaryOp arithmeticExpr
functionArithmeticExpr:
                numericFunction (arithmeticExpr)
arithmeticExpr:
                unaryArithmeticExpr
              |  binaryArithmeticExpr
              |  functionArithmeticExpr
              |  (arithmeticExpr)
              |  constantNumber
              |  castingExpr
              |  identifier
castingExpr:
              rangeType(arithmeticExpr)
unaryBooleanExpr:
                booleanUnaryOp booleanExpr
binaryBooleanExpr:
                booleanExpr booleanBinaryOp booleanExpr
booleanExpr:
                unaryBooleanExpr
              |  binaryBooleanExpr
              |  (booleanExpr)
              |  arithmeticExpr comparisonOp arithmeticExpr

The “identifier” in the expression refers to a raster layer of a 
GeoRaster object. It is either a single band number if there is 
only one GeoRaster object involved,  or  a  pair  of  (ID,  band) 
where ID refers to one of GeoRaster objects in the expression 
and band refers to a specific band of that GeoRaster object.

We also developed four major procedures including arithmetic 
operation,  conditional  query,  classify  and  cell  value-based 
update as follows. 

   sdo_geor_ra.rastermathop: runs arithmeticExpr operations. 
   sdo_geor_ra.findcells: searches cells based on booleanExpr. 
   sdo_geor_ra.classify: applies arithmeticExpr to cells and then 
           segments the raster. 
   sdo_geor_ra.rasterupdate: updates cells of a raster based 
           booleanExpr.

Each of these procedures take many layers from one or many 
GeoRaster  objects,  apply  booleanExpr  and/or  arithmeticExpr 
expressions  over  those  layers,  do  the  specific  algebraic 
computation or modeling, and output a new GeoRaster object. 
The expressions can be defined in any way based the syntax of 
the expression language above. 

4. PARALLEL PROCESSING

As  we  mentioned  in  the  introduction,  scalability  and 
performance  of  such  systems  are  also  keys  to  success.  The 
scalability of GeoRaster in the database has been mainly solved 
by  the  design  of  the  GeoRaster  data  model,  the  control  of 
memory usage in the GeoRaster engine, and the application of 
Oracle GRID Computing technologies (Xie, 2006. Xie, 2008a. 
Xie  2008b).  This  scalability  applies  to  this  in-database  map 
algebra as well. So, our focus here is mainly about performance 
of the processing engine. 

Performance depends upon the design and implementation of 
the in-database processing strategy, the processing algorithms, 
speed of I/O, flexible memory utilization, to name a few. Given 

that modern computers are mostly multicore or have multiple 
CPUs, parallel  processing becomes a very important solution 
for speedup. Parallel processing divides a large task into many 
smaller  tasks,  and executes  the smaller  tasks  concurrently in 
different CPU’s or on several computing nodes. As a result, the 
larger  task  completes  more  quickly.  The  major  benefits  of 
parallelism are speedup (faster)  and scaleup (more users) for 
massive data processing operations. So it should be an essential 
factor in our software implementation. Note that concurrency is 
already part of the GeoRaster database, which can help improve 
the speed of massive data processing too (Xie, 2006). 

The  Oracle  database  provides  a  powerful  SQL  parallel 
execution engine that can run almost any SQL-based operation 
– DDL, DML and queries – in the Oracle Database in parallel.  
When you execute a SQL statement in the Oracle Database it is 
decomposed  into  individual  steps  or  row-sources,  which  are 
identified as separate lines in an execution plan (Dijcks, 2010). 

With  this  parallel  execution  framework,  however,  the 
individual  raster  processing  functions,  such  as  mosaic  and 
raster  algebra  operations,  cannot  be  directly  parallelized 
without some special implementation. This is because each of 
the heavy image processing and raster manipulation operations 
is not purely row-based and has its own logic in how the raster 
data (or raster blocks) are internally processed. 

There are several ways to leverage the oracle parallel execution 
engine, among which pipelined and parallel table function is  an 
important  aspect  of  parallelism.  Table  functions  can be used 
and controlled by any user. The goal of a set of table functions  
is to build a parallel processing pipeline leveraging the parallel 
processing  framework  in  the  database  (Oracle  2008.  Dijcks, 
2010).  We  leverage  table  functions  to  encapsulate  complex 
logic in a PL/SQL construct so that we can process different 
subsets  of  the  data  of  a  GeoRaster  object  in  parallel.  To 
parallelize  those operations we  have  to  begin  with  explicitly 
controlling the level of degree of parallelism and deciding what 
subsets of the data to be handled in each subprocess. We used 
the output raster to split the whole region into subsets and the 
total number of subsets is decided by the degree of parallelism 
(DOP), which can be controlled by user input. Then the Oracle 
parallel  execution  framework  will  split  the  whole  task  into 
different subprocesses based on the total number of subsets and 
each subprocess will process one of the subsets independently. 
When all subsets are finished, the whole process is done.

As an example, the following conditional query finds all pixels 
in a three-band image where the cell value of the first band is 
greater than 10 and less than 50, the cell value of the second 
band is greater than or equal to 100 and less than 150, and the 
cell value of the third band is greater than 200 and less than 
245. The result is a new image of all pixels meeting the query 
condition. The parameter ‘parallel=4’ means the process will be 
parallelized  into  4  processes,  each  of  which  will  process  a 
quarter of the original image simultaneously,  thus the overall 
performance will be improved significantly. 

declare 
   geor    SDO_GEORASTER; -- source image
   geor1  SDO_GEORASTER; -- result image
begin
   select georaster into geor from georaster_table where georid = 1;
   select georaster into geor1 from georaster_table where georid = 2 for update;
   sdo_geor_ra.findcells (
       geor,
       '(({0}>10)&({0}<50)&{1}>=100)&({1}<150)&({2}>200)&({2}<245)',
       null, geor1, null, 'false',
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       'parallel=4');
   update georaster_table set georaster = geor1 where georid = 2;
   commit;
end;

We conducted some initial tests on the parallel implementation 
of  sdo_geor_ra.findcells  as  well  as  sdo_geor_ra.classify.  The 
sdo_geor.findcells test uses the above script to query an image 
based  on  all  three  bands  while  the  sdo_geor_ra.classify  test 
segments the first band of the three-band image into 12 classes.  
We used a x86_64 Linux Server to do the tests. It has 4 Intel(R) 
Xeon(R)  X5670 CPUs  and  the  CPU speed  is  2.93GHz.  The 
total  memory  is  8GB.  The  operating  system  is  Red  Hat 
Enterprise Linux Server 5.4. We used four 3-band images of 
different sizes. The results are shown in table 1 and 2.

Table 1. Execution time in seconds of sdo_geor.findcells with and without parallelism

Degree of 
Parallel ism

image size and image dimension size in row x column x band

238.7MB
8930x8912x3

954.8MB
17860x17824x3

2.15GB
26790x26736x3

3.82GB
35720x35648x3

1 17.33 45.14 87.80 153.36
2 15.33 26.43 55.19 106.00
4 11.67 23.33 49.80 80.79
8 10.12 20.68 40.92 74.63

Table 2. Execution time in seconds of sdo_geor.classify with and without parallelism

Degree of 
Parallelism

image size and dimension size in row x column x band

238.7MB
8930x8912x3

954.8MB
17860x17824x3

2.15GB
26790x26736x3

3.82GB
35720x35648x3

1 6.47 44.03 80.50 138.45

2 4.89 36.33 58.19 86.68
4 3.86 26.52 44.84 77.55

8 3.50 21.35 41.09 68.00

There  is  only 1  disk  on  this  machine  so  the  I/O  contention 
among parallelized subprocesses is very high.  That has a big 
impact on  the performance numbers. However, even with only 
one  disk,  table  1  and  2  show that  when  the  raster  algebra 
operation is parallelized into 2 to 8 subprocesses, the processing 
operation is significantly faster than the same operation without 
parallelism. In addition, the overall performance improvement 
scales very well with image size increasing as shown in table 1 
and 2.  There are still  more room for  improvement  yet  to  be 
done.  However,  we  can  reasonably  assume  the  performance 
improvement  could be much better  if  the  machine  has more 
CPU’s  and  more  memory,  and  particularly  if  a  high-speed 
storage cluster (using Oracle ASM technology)  or a high-end 
machine  such  as  Oracle  Exadata  Database  Machine  is  used. 
Some  database  tuning  techniques  will  help  improve  parallel 
performance as well. 

5. APPLICATIONS

Currently, the raster algebra engine implementation is focused 
only  on  the  “local”  function  type  of  map  algebra  and  is 
designed to work with the standard PL/SQL language and run 
completely  inside  the  database.  Using  the  PL/SQL  and  the 
raster algebra expressions and functions, users can implement a 
wide  range  of  applications,  such  as  applying  complex  pixel 
queries  in  the  database,  editing  a  raster  based  on  raster  cell 
values and formulated query conditions, segmenting images or 
classifying  a  thematic  map,  and  conducting  cartographic 

modeling  over  a  large  number  of  rasters  and  images  of 
unlimited size. The engine runs these algebra expressions and 
functions as single processes inside the database and each of 
those processes can be parallelized, thus dramatically improves 
the  analytical  capability  and  performance  of  the  GeoRaster 
database.

Map Algebra is mainly used in cartographic modeling and is 
considered an essential component of any GIS systems. These 
applications and the importance of the map algebra expressions 
and functions are well known. Due to the lack of testing dataset 
of thematic layers for a case study area and the easy access of 
Landsat  imagery,  we  only  use  Normalized  Difference 
Vegetation  Index  (NDVI)  and  Tasseled  Cap  Transformation 
(TCT) as our application examples in this paper to demonstrate 
the capability.

In remote sensing, NDVI was one of the most successfully and 
widely used vegetation index (VI), which can quickly identify 
vegetated areas and monitor plant growth or their "condition". 
Using Landsat TM imagery,  the standard NDVI computation 
formula is (TM4 – TM3) / (TM4 + TM3). The following script 
takes a Landsat 7 ETM+ image and compute the NDVI, which 
is stored as another raster of floating number data type. Note, in 
our algebra language, band number starts with 0, so the formula 
translates into the expression '({3}-{2})/({3}+{2})’.

declare 
  geor1       MDSYS.SDO_GEORASTER; 
  geor2      MDSYS.SDO_GEORASTER; 
begin
  -- source ETM+ image
  select georaster into geor1 from georaster_table where georid = 2; 
  -- to store NDVI 
  select georaster into geor2 from georaster_table where georid = 3 for update; 
  mdsys.sdo_geor_ra.rasterMathOp(geor1,
       SDO_STRING_ARRAY('({3}-{2})/({3}+{2})'),
       'celldepth=32bit_real',geor2);
  update georaster_table set georaster = geor2 where georid = 3;
  commit;
end;

Figure 1 shows a small area of the original ETM+ 543 image 
and the resulting NDVI image after running the above script.

 

Fig. 1, ETM+ 543 color image (left) and NDVI image (right). Image 
Courtesy of PCI Geomatics.

The concept of tasseled cap transformation is a useful tool for 
compressing  spectral  data  into  a  few  bands  associated  with 
physical  scene  characteristics  (Crist  and  Cicone  1984).  TCT 
helps  analyze  the  physical  ground  features.  With  Landsat 
imagery, it uses 5 bands of either original digital number (DN) 
or  reflectance  data  to  generate  6  new bands,  each  of  which 
represents different ground features. The 6 resulting bands are 
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generally called (soil) brightness, (vegetation) greenness, (soil 
and  canopy)  wetness,  haze,  TC5,  and  TC6.  Each  or  a 
combination  of  them  is  useful  for  different  applications, 
including crop growth monitoring and analysis, biomass study, 
agriculture planning, to name a few. In this test, we used a full  
scene Landsat  5 TM image  and the  Landsat  5 Tasseled Cap 
Transformation  coefficients  for  DN Data  (Crist  and  Cicone, 
1986).  The  following  script  takes  a  TM  image  as  input, 
automatically  generates  the  TCT  expression  based  on  the 
coefficient  matrix,  execute  the  expression,  and  create  a  new 
image holding the results. 

declare
   type array_type is varray(6) of binary_double;
   type array_array_type is varray(6) of array_type;
   tct_coeff array_array_type := array_array_type(
      array_type( 0.3561,  0.3972,  0.3904,  0.6966,  0.2286,  0.1596),
      array_type(-0.3344, -0.3544, -0.4556,  0.6966, -0.0242, -0.2630),
      array_type( 0.2626,  0.2141,  0.0926,  0.0656, -0.7629, -0.5388),
      array_type( 0.0805, -0.0498,  0.1950, -0.1327,  0.5752, -0.7775),
      array_type(-0.7252, -0.0202,  0.6683,  0.0631, -0.1494, -0.0274),
      array_type( 0.4000, -0.8172,  0.3832,  0.0602, -0.1095,  0.0985));
   i integer;
   gr1 sdo_georaster;
   gr2 sdo_georaster;
   stmt varchar2(5024);
begin
   select georaster into gr1 from georaster_table where georid = 2;
   select georaster into gr2 from georaster_table where georid = 4 for update;
   stmt:='';
   i:=1;
   -- the following code generates the TCT expression
   LOOP
        stmt:=stmt||
           '''('||trim(to_char(tct_coeff(i)(1),'0.9999'))|| ')*{0}+' ||
           '('||trim(to_char(tct_coeff(i)(2),'0.9999'))|| ')*{1}+' ||
           '('||trim(to_char(tct_coeff(i)(3),'0.9999'))|| ')*{2}+' ||
           '('||trim(to_char(tct_coeff(i)(4),'0.9999'))|| ')*{3}+' ||
           '('||trim(to_char(tct_coeff(i)(5),'0.9999'))|| ')*{4}+' ||
           '('||trim(to_char(tct_coeff(i)(6),'0.9999'))|| ')*{6}''' ;
        IF(i<6) THEN
            stmt:=stmt||',';
       END if;
       i := i + 1;
       IF i > 6 THEN
         EXIT;
       END IF;
   END LOOP;
   stmt := 'call sdo_geor_ra.rasterMathOp(:1,SDO_STRING2_ARRAY('||stmt||'),'||
         '''celldepth=32BIT_REAL'',:2)';
   execute immediate stmt using gr1,in out gr2;
   update georaster_table set georaster = gr2 where georid = 4;
   commit;
end;

The  actual  raster  algebra  expression  and  command,  i.e.,  the 
“stmt”, generated by the above script is as follows (reformatted 
a bit for readability). Note that you can also directly apply this 
expression to make the above script look even simpler.

sdo_geor_ra.rasterMathOp(:1,  SDO_STRING2_ARRAY(
    '(0.3561)*{0}+(0.3972)*{1}+(0.3904)*{2}+(0.6966)*{3}+(0.2286)*{4}+(0.1596)*{6}',
    '(-0.3344)*{0}+(-0.3544)*{1}+(-0.4556)*{2}+(0.6966)*{3}+(-0.0242)*{4}+(-0.2630)*{6}',
    '(0.2626)*{0}+(0.2141)*{1}+(0.0926)*{2}+(0.0656)*{3} +(-0.7629)*{4}+(-0.5388)*{6}',
    '(0.0805)*{0}+(-0.0498)*{1}+(0.1950)*{2}+(-0.1327)*{3}+(0.5752)*{4}+(-0.7775)*{6}',
    '(-0.7252)*{0}+(-0.0202)*{1}+(0.6683)*{2}+(0.0631)*{3}+(-0.1494)*{4}+(-0.0274)*{6}',
    '(0.4000)*{0}+(-0.8172)*{1}+(0.3832)*{2}+(0.0602)*{3}+(-0.1095)*{4}+(0.0985)*{6}'),
    'celldepth=32Bit_REAL',  :2)

The source image (the file name is L5044034_03420110918.tif, 
available  from  the  U.S.  Geological  Survey)  covers  the  San 
Francisco Bay area and is 377MB (7091 rows, 7961 columns, 7 
bands  and 8bit  integer)  in  size.  The  result  image  is  1.26GB 
(7091 rows, 7961 columns, 6 bands, and 32bit float) in size. In  
repeated tests on a low-end commodity linux machine, the total 

execution time (without parallelism) is only 3 minutes or less. 
Figure 2 shows a small  subset of the source image,  and the 
brightness, greenness and wetness resulted from the TCT.

Using the  same raster  algebra  language,  users  can also  very 
easily add some additional scripts in the above PL/SQL block 
to convert  the 32bit floating number image into 8 bit integer 
image  and  in  the mean  time  apply image  stretching (simply 
another map algebra expression) on the TCT image to generate 
a new GeoRaster object for visualization and analysis purposes.

     

    

Figure 2. TM 123 Color Image (upper left), Brightness (upper right), 
Greenness (lower left) and Wetness (lower right). TM Image Courtesy 

of the U.S. Geological Survey

As shown in the syntax and the above examples, the PL/SQL 
language  and  the  map  algebra  expressions  are  powerful  and 
flexible for users to easily implement numerous processing and 
analytical  applications.  In  addition  to  the  optimized 
implementation of raster algebra algorithms and the embedded 
parallel  processing,  users  can  further  leverage  the  power  of 
Oracle  Enterprise  GRID Computing  infrastructure  to  quickly 
process and analyze thousands of images and rasters stored in 
the GeoRaster database concurrently and on a global basis (Xie, 
2008a). 

6. CONCLUSIONS

Satellite  imagery,  airborne  photographs  and  other  geospatial 
raster  data  are  complex  data  types  that  require  specialized 
database  management  systems  and  analysis  solutions. 
Unprecedented  data  volume  plus  real  time  or  near-real  time 
archiving  and  processing  requirements  of  such  data  dictate 
extreme  scalability  and  performance  of  such  systems  and 
solutions.  Oracle  Spatial  GeoRaster  takes  an  enterprise 
database-centric approach by enhancing Oracle database server 
to  solve  the  database  management  challenges  and  achieve 
virtually unlimited scalability and great  performance.  The in-
database raster analytics engine proposed in this paper enhances 
Oracle  Spatial  GeoRaster  database  management  system  by 
embedding  some  analytical  algorithms  inside  the  database 
allowing data to be processed where the data is stored.  This  
approach  coupled  with  parallel  processing  capabilities  offers 
great performance benefits for many basic and commonly used 
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database management operations. This also removes the need 
of separate solutions for some GIS and business applications. 
For traditional remote sensing and GIS applications, specialized 
image processing packages and GIS solutions are still required. 
However, such third party solutions can also benefit greatly in 
performance from this analytics engine by pushing some basic 
data processing and filtering operations into the database so that 
less data is retrieved and transported into the client for further 
processing and analysis. 
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