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ABSTRACT: 

 

Co-registration of point clouds of partially scanned objects is the first step of the 3D modeling workflow. The aim of co-

registration is to merge the overlapping point clouds by estimating the spatial transformation parameters. In the literature, one of 

the most popular methods is the ICP (Iterative Closest Point) algorithm and its variants. There exist the 3D least squares (LS) 

matching methods as well. In most of the co-registration methods, the stochastic properties of the search surfaces are usually 

omitted. This omission is expected to be minor and does not disturb the solution vector significantly. However, the a posteriori 

covariance matrix will be affected by the neglected uncertainty of the function values. This causes deterioration in the realistic 

precision estimates. In order to overcome this limitation, we propose a new method where the stochastic properties of both 

(template and search) surfaces are considered under an errors-in-variables (EIV) model. The experiments have been carried out 

using a close range laser scanning data set and the results of the conventional and EIV types of the ICP matching methods have 

been compared.   

 

1. INTRODUCTION 

 

3D object modeling plays an important role for many 

applications from reverse engineering to creating the real-

world models for virtual reality, architecture or deformation 

analysis. In the last decade, laser scanners had an utmost 

importance for 3D object modeling due to their capability of 

providing 3D point cloud data in a quick and direct fashion. 

Since the range scanners are line-of-sight instruments, in 

many cases an object has to be scanned from different 

standpoints. As a result, separate point clouds, which are in 

their own local co-ordinate systems, are obtained. In order to 

form a 3D model, these point clouds have to be combined in a 

high order co-ordinate system. This process is called 

alignment or registration.  

 

Various methods have been proposed and the related studies 

are still in progress especially in computer vision discipline 

including the most popular Iterative Closest Point (ICP) 

algorithm and its variants. Since the introduction of ICP by 

(Chen and Medioni, 1991) and (Besl and McKay, 1992), 

many variants have been introduced on the basic ICP concept. 

A detailed review of the ICP variants can be found in (Akca, 

2010) and (Rusinkiewicz, 2001). Despite the popularity of the 

ICP method, there are some disadvantageous aspects of it in 

terms of statistical assesment of the estimated parameters. The 

ICP based algorithms generally use closed-form solutions for 

the estimation of transformation parameters. The closed-form 

solutions cannot fully consider the statistical quality of the 

estimatimation.  

 

One another powerfull and adaptive method for the co-

registration problem is the 3D least squares surface matching 

method proposed by  (Gruen and Akca, in 2005). The method 

is the extension and an adaptation of the mathematical model 

of least squares 2D image matching for the 3D surface 

matching problem. The transformation parameters of the 

search surfaces (floating, to be transformed) are estimated 

with respect to a template surface (fixed). The solution is 

achieved when the sum of the squares of the 3D spatial 

(Euclidean) distances between the surfaces are minimized. 

The parameter estimation is achieved by using the 

Generalized Gauss-Markov model. (Akca, 2010). In this 

model, the points of the template surface are considered as 

observations, contaminated by random errors, while the 

search surface points are assumed as error-free. 

 

                                                              (1) 

 

with the assumptions  

 

         
                                 (2) 

 

where y is the template point vector, x is the search point 

vector, ey is the true error vector for template points, t is the 

translation vector, R is the rotation matrix, and P is the weight 

matrix. Here, and also in the ICP methods, the stochastic 

properties of the search surfaces are usually omitted. This 

omission is expected to be minor and does not disturb the 

solution vector significantly. However, the a posteriori 

covariance matrix will be affected by the neglected 

uncertainty of the function values of x. This causes 

deterioration in the realistic precision estimates. More details 

on this issue can be found in the literature (Gruen, 1985), 

(Maas, 2002), (Gruen and Akca, 2005), (Kraus et al., 2006), 

and (Akca, 2010).  

 

The current algorithms consider the noise as coming from one 

measurement set only, but in fact both measurement sets are 

corrupted by noise. To obtain more realistic precision 
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estimation values, alternative approaches which take the 

stochastic properties of the elements of design matrix into 

consideration should be applied. The problem can be solved 

by using a model which is called in the literature as Errors-in-

Variables model. (Markovsky and  Huffel, 2007) outlined 

different solution methods and application areas of EIV model 

in detailed.  (Ramos and Verriest, 1997) proposed to use the 

total least squares (TLS) approach for the registration of m-

Dimensional data. They used a mixed solution which is the 

combination of least squares and total least squares methods 

for the registration of 2D medical images. However, they do 

not give any information about the precision of the 

transformation parameters. (Akyılmaz, 2007) used the total 

least squares method for coordinate transformation in geodetic 

applications. Since a closed-form solution method is used in 

this study, there is no information about precision of the 

estimated parameters as well. A mathematical model has been 

given by (Neitzel, 2010) where an iterative Gauss-Helmert 

type of adjustment model with the linearized condition 

equations is adopted. However, in this method the size of the 

normal equations to be solved increases dramatically with the 

number of conjugate points, since each corresponding point 

pair introduces three more Lagrange multipliers into the 

normal equations. Thus, the larger the number of conjugate 

points, the greater the normal equations to be solved.  

 

For an optimal solution of the so-called EIV problem, we 

propose a modified iterative Gauss-Helmert type of 

adjustment model. In this model, the rotation matrix R is 

represented in terms of unit quaternions q= [q0  q1  q2  q3] in 

order i) to satisfy the special structure of the design matrix A 

and ii) to reduce the number of iterations for fast convergence. 

Moreover, the dimension of the normal equation matrix to be 

solved is dramatically reduced to the number of unknown 

transformation parameters which is six for the rigid-body 

transformation problem. The mathematical model has been 

implemented in MATLAB programming environment. This 

work aims at comparing the proposed TLS parameter 

estimation model with the conventional LS model for the 

point cloud co-registration problem.   

 

2. ERRORS-IN-VARIABLES MODEL 

 

The aim of co-registration process is to transform the search 

surface with respect to the template surface by establishing 

the correspondences between two overlapping data sets. Once 

the appropriate point correspondences are established between 

two point data sets, the basic computation is to estimate the 

transformation parameters using the point correspondences. 

The geometric relationship is established by the six 

parameters of the 3D rigid-body transformation. 

 

 

In the conventional Gauss-Markov model, Eq. (1) represents 

the observation equation which assumes the template surface 

elements are observations and they are the only contaminated 

part by the random errors. Alternatively in the EIV model, the 

search surface elements are also erroneous and a true error 

vector should be added to these elements as well. The 

observation equations in EIV model are formed as 

 

               ).                   (3) 

 

If we apply this model to 3D rigid-body transformation, the 

mathematical model is established as; 

 

                                      (4) 

 

where vx is the n×1 vector of observation errors and vA is an 

n×m error matrix of the corresponding elements of design 

matrix. Elements of both vx and vA are independently and 

identically distributed with zero mean. Once a minimisation 

[ ̃   ̃ ] is found, then any β satisfying (A −  ̃ ) ⋅β = l +  ̃   is 

the solution of the problem by TLS. 

 

2.1 Proposed Modified Gauss-Helmert Model 

Generalized total least squares solution of the 3D-similarity 

transformation by introducing the quaternions as the 

representation of the rotation matrix*scale factor (S=sR) 

based on iteratively linearized Gauss-Helmert model has been 

successfully presented by (Akyilmaz, 2011). However, this 

model requires the solution of a normal matrix which includes 

the corresponding terms for transformation parameters as well 

as the Lagrange multipliers, thus yielding a larger size of 

system of equations to be solved at each iteration with the 

increase of the identical points of the transformation problem.  

Following the idea in (Akyilmaz, 2011), (Kanatani and 

Niitsuma, 2012) has developed a new computational scheme 

for 3D-similarity transformation which they call Modified 

Iterative Gauss-Helmert model by reducing the so-called 

Lagrange multipliers and hence the size of the normal matrix 

is dramatically reduced. In other words, the unknowns to be 

solved at each iteration are equal to seven, i.e. the number of 

transformation parameters. This kind of a reduction provides 

advantage, in terms of computational aspects especially. We 

refer to (Kanatani and Niitsuma, 2012) for details of the 

mathematical model. Modified Gauss-Helmert model in 

(Kanatani and Niitsuma, 2012) is a seven parameters 

similarity transformation. Therefore, in our study, we 

modified the model by eliminating the scale factor in order to 

apply 6 parameters rigid-body transformation.  For this 

purpose we normalise the quaternion by using the 

q0²+q1²+q2²+q3² = 1 equality. Then the rotation matrix defined 

by quaternions is obtained as; 

  [

                                   
                            
                           

] (5) 

   √    
    

    
     

 

In so-called model, let    and      are the corresponding pairs 

(i=1,…,M) ;  Qxx[ai]  and Qxx[bi] are normalized covariance 

matrices;  ̅ and  ̅  are the true positions  of      and    

respectively. The optimal estimation of the similarity 

transformation parameters R (rotation), T (translation) and s 

(scale factor) in the sense of Maximum Likelihood is to 

minimize the Mahalanobis distance given as follows. 
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   (6)                                                                           

       

 

And  

 

 ̅    ̅                       (7) 

 

Since the model is non-linear, it is linearized by the Taylor 

Series expansion. Finally, the total error vector is defined as 

 

                   (8) 
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With the weight matrix;  

 

        [  ] 
     [  ] 

                  (9) 

 

After modifications, Eq. 6 can be expressed in the following 

form: 

 

  
 

 
∑   

                                          (10) 

 

Differentiating (6) with respect to qi, i = 1, 2, 3 

 
  

   
     

 

We define a 3x3 Ui matrix as follows 

 

   [                 ]                 (11) 

 

After these definitions, parameters are estimated by the 

solution of following 6-D linear equation.   
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Since so-called model is non-linear, initial approximations of 

q and T are updated and iteration is repeated until it 

converges.  

2.2 Correspondence Search 

 

The correspondence search has been carried out with respect 

to two different error metrics.  The first one is point-to-point 

error metric which was introduced by (Besl and McKay, 

1992) in their original ICP paper. According to this method, 

each available point in template surface is matched with a 

point in search surface which has the minimum Euclidean 

distance. This procedure is very complex in terms of 

computational aspects and takes the most part of the time. The 

procedure has been accelerated by using a kd-tree searcher in 

our implementation.  

This error metric, tries to find a correspondence for each point 

in template surface even for non-overlapping areas which 

usually leads false matchings. It is possible to prevent this 

kind of false matchings by introducing some conditions. In 

our implementation, the first condition that we used is a 

threshold value for Euclidean distances. The point pairs 

whose Euclidean distances exceeding this value were 

excluded from the matching. The second condition used at 

this part is a boundary condition. Points on the border of the 

object and in addition the data holes inside the model have 

been excluded from matching as well.  As the result of the 

implementation, indexes of best matching points in two data 

sets and the Euclidian distances were obtained. 

 

The second error metric is point-to-plane algorithm which 

was introduced by (Chen and Medioni, 1991). The reason of 

using these two error metrics together is to take the 

advantages of both methods. Although each iteration of the 

point-to-plane ICP algorithm is generally slower than the 

point-to-point version, researchers have observed significantly 

better convergence rates in the former (Rusinkiewicz, 2001). 

So we used the correspondences coming from the point-to-

point algorithm to narrow the search area and speed up the 

process at point-to-plane search. According to this condition, 

one point’s search area is limited with the maximum 8 

neighboring triangles of the matched point at first step. After 

this limitation, a significant decrease at processing time has 

been observed.Then; the correspondence operator starts to 

seek a minimum Euclidean distance location on the limited 

search surface. Here there is another issue that should be 

taken into consideration. The point that has the minimum 

distance value must lie within the related triangle when it is 

projected towards the unit normal vector.  Therefore, the point 

providing the minimum distance was projected onto surface 

towards unit normal vector and touch point representing the 

point was calculated. After then it was checked whether that 

touch point is inside the triangle or not by applying a point-in-

polygon test. Points which passing the point-in-polygon test 

were listed as corresponding point of the related point in 

template data set. 

 

2.3   Experimental Results 

 

The EIV model algorithm was implemented in MATLAB 

programming language. Additionally, another implementation 

which is based on the Gauss-Markov model was made again 

using the MATLAB in order to make comparisons between 

two models.  The data set is a part of “Weary Heracles” 

statue which has been scanned by Breuckmann optoTOP-HE 

coded structured light system. The average point spacing of 

the data is 0.5 mm. 
 
 

 
Figure 1. 3D comparion of TLS and LS registered data.  
 
 

 
Figure 2. Residuals after TLS estimation.  
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Figure 3. Residuals after LS estimation 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. CONCLUSION 

 

The motivation of the study is to investigate the error 

behaviours of parameter estimation of rigid-body 

transformation by applying EIV model which considers the 

both data sets are characterized as erroneous. An 

implementation has been made in MATLAB computing 

language for the comparison of two models. The first 

experimental test with the „Weary Herakles‟ data presented. 

However, more tests with different data sets have to be carried 

out. Our future plan is to carry out more experiments  by 

using; 

- Real data sets coming from different type of 

sensors. 

- Syntethic data with various noise level. 

- Data sets that have different a posteriori co-variance 

matrices.    
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