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ABSTRACT: 

 

Terrestrial Laser Scanners (TLSs) have become state-of-the-art metrological sensors for many surveying purposes in recent years. 

Due to the demand for high precision surveying with TLSs, efficient, rigorous and in-situ calibration methodologies are always 

desired. Recent research on in-situ calibration with planar features has demonstrated improved cost-effectiveness and promising 

results (Glennie and Lichti, 2010; Chow et al., 2011; Chow et al., 2012). However, if there is a need for calibrating the scanners 

when sufficient plane surfaces with several orientations are not available, as commonly occurs indoors, other common geometric 

features, namely cylindrical structures, can be used as alternative geometric constraints for in-situ self-calibration. Cylindrical 

features can be found in indoor environments such as water pipes attached to the walls or suspended from ceilings, concrete pillars, 

metal poles and many others. In this paper, three 3D models of cylinders, with vertical and horizontal orientations containing one 

scaling, two rotational and two translational parameters are discussed. The cylinder models are parameterized with the sexternal 

orientation parameters and the additional parameters as the least-squares functional models for the self-calibration. The self-

calibration is examined with the real data obtained from the Lecia HDS6100 panoramic TLS. The results of vertical, horizontal and 

mixed cylinder-based calibration with data captured by different scanner position are analysed in detail in terms of the parameters 

correlations. The results show realistic estimation of calibration parameters for several cases. The results also suggest that using both 

vertical and horizontal cylinders for the calibration can effectively decorrelate the parameters especially for the case of lack of 

cylinder point cloud overlap. The concepts developed in this paper might also be extended to the hybrid type TLSs, as well as to the 

self-calibration of airborne laser scanning (ALS) using cylindrical features such as oil pipes or other large scale cylindrical 

infrastructure. 

 

 

1. INTRODUCTION 

Cost effective in-situ self-calibration of terrestrial laser scanners 

(TLSs) is always desired for high accuracy surveying. Planar 

features can be used to perform in-situ self-calibration whenever 

flat planar surfaces with several different orientations are 

available in an unoccupied space (Glennie and Lichti, 2010; 

Chow et al., 2011).  However, indoor in-situ calibration may 

sometimes be hindered by the lack of spacious scenes with 

several flat planar surfaces (e.g. flat ceiling surface may be 

“contaminated” by vents, lighting or rough insulating foam), 

while outdoor in-situ calibration may also be inhibited by 

extreme weather conditions if the planar surfaces of building 

façades are used. Thus, the use of alternative geometric features 

for calibration will enhance flexibility of the in-situ calibration. 

Furthermore, high correlations always exist between parameters 

for point-based and plane-based calibration (Lichti 2010; Chow 

et al. 2011) and this hinders their estimations. 

 

The alternative geometric features used for in-situ calibration 

should also be readily found and segmented if applicable, 

automatically, in most indoor and outdoor scenes. Cylindrical 

features can be one of them as there are often metal poles (e.g. 

lamp poles and sign poles), concrete pillars, water/gas pipes, or 

many other examples existing in the surrounding. 

 

In this paper, a new self-calibration method using cylindrical 

features for TLSs is introduced and calibration results are 

analysed in terms of the parameters. Though using cylindrical 

features on sensor calibration is a rather new concept, the 

cylindrical features are well studied by a number of researchers 

in terms of fitting algorithms (e.g. Shakarji, 1998), point cloud 

registration (e.g. Rabbani et al., 2007) and segmentation (e.g. 

Pfeifer et al. 2004). In particular, cylindrical pole-like objects 

are one of the most popular segmented features (e.g. Lehtomäki 

et al., 2010). Therefore, the idea of the cylinder-based self-

calibration will also benefit from the rapid development of 

automatic segmentation of the cylindrical features. In this paper, 

the parameter correlations of the calibration will be focused. 

 

 

2. THE CALIBRATION MODEL 

The principle of cylinder-based self-calibration is similar to that 

of plane-based (Chow et al., 2011) except for the geometric 

models involved. This employs the least-squares algorithm to 

estimate the external orientation parameters (EOPs), the 

cylinder model parameters, and also the additional parameters 

(APs) simultaneously in such a way that the observation points 

from the TLS are first transformed to the object space by the 

rigid body equation (Equation 1) and then the object space 

coordinates are constrained to lie on cylindrical features with 

the minimum residuals produced using the least-squares. The 

following equation transforms the scanner space coordinates, (X  

Y Z)T to the object space coordinates, (x y z)T: 
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where ωk, φk, κk, Xsk, Ysk, and Zsk are the EOPs of the scanner 

position k. 

 

While only one geometric model is required for modelling of 

planes in all different orientations, there are three separate 

geometric models (denoted by fV, fHx and fHy) for vertical and 

horizontal cylindrical features. The models are presented in 

Sections 2.1 and 2.2. The calibration can involve one or more of 

the models simultaneously in one single adjustment process 

depending on the orientations of the cylindrical objects existing 

in the calibration site. 

 

2.1 Mathematical Model for Vertical Cylinders 

Since there are only five degrees of freedom for cylinders 

(Rabbanni et al., 2007), the vertical cylinder geometric model 

(fV) is parameterized with the centre of the cylinder on the x-y 

plane (xc, yc), the tilt angle of the cylinder about the x-axis (α') 

and y-axis (β) and the radius of the cylinder (r). Figure 1 shows 

the model parameters for the ith vertical cylinder in the object 

space and fV can be expressed as the following equation: 
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Figure 1. The vertical cylinder model with cylinder centre      

(xc, yc) in the object space 

2.2 Mathematical Models for Horizontal Cylinders 

When 45˚<|α'|<135˚ or 45˚<|β|<135˚ for the vertical cylinder, 

the cylinder should be modelled in another way such that the 

rotation about the z-axis (γ) becomes significant. Thus we treat 

the cylinder as horizontal. There are two models (fHx  and  fHy) 

for the horizontal cylinder. If, after the translation of the 

cylinder centre, such a horizontal cylinder has a relatively small 

angle (|γ|<45˚) for the rotation to align with the x-axis than with 

the y-axis, the model fHx can be used. For the jth horizontal 

cylinder in the object space, fHx can be expressed as the 

following: 
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 (yc, zc) is the centre of the cylinder in the y-z plane,  β and γ are 

the rotation angles of the cylinder about the y-axis and z-axis 

respectively and r is the radius of the cylinder. Figure 2 depicts 

the model parameters. 

 

 
Figure 2. The horizontal cylinder model with cylinder centre 

(yc, zc) in the object space 

 
 

Figure 3. The horizontal cylinder model with cylinder centre 

(xc, zc) in the object space 

 

The model fHy is used for horizontal cylinders that have a 

relatively small angle for rotating to align with the y-axis than 

that with the x-axis after the translation of the cylinder centre. 
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Therefore, for the jth horizontal cylinder, fHy can be expressed 

as: 
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(xc, zc) is the centre of the cylinder in the x-z plane,  α'  and γ are 

the rotation angles of the cylinder about the x-axis and z-axis 

respectively and r is the radius of the cylinder. Figure 3 shows 

the model parameters. 

 

2.3 Mathematical Model for Scanner Systematic Error  

The scanner space coordinates (x, y, z) are the derived 

coordinates from the raw measurements, range (ρ), horizontal 

direction (θ), and elevation angle (α) expressed in a spherical 

coordinate system, similar to that of the theodolites and total 

stations. Thus the system error terms, ∆ρ, ∆θ and ∆α for the 

range, horizontal direction, and elevation angle measurement 

respectively should also be expressed in the spherical 

coordinate system as the following: 
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In this work, only the basic error coefficients are used for the 

calibration and the error terms can be expressed as: 

 

         
0aρ =∆    (11) 

                                 ( )αbθ 1sec=∆                   (12) 

               
0cα =∆                   (13) 

 

a0, b1 and c0 are the rangefinder offset, the collimation axis error 

and the vertical circle index error respectively. More detail 

about these terms and also other error modelling coefficients 

can be found in Lichti (2007). 

 

 

3. EXPERIMENTAL DESCRIPTION 

3.1 Data Capture 

The proposed cylinder-based method was examined with real 

data captured by a panoramic TLS, Lecia HDS6100. Previous 

calibration work using other approaches for the Lecia HDS6100 

can be found in Chow et al. (2012). Three independent datasets 

(Datasets A, B and C) were captured with the HDS6100 at three 

different locations at the University of Calgary campus. 

Cylinder features were segmented manually from the captured 

data for the calibration. The datasets comprise: 

 

• Dataset A: Five vertical metal poles that support a wooden 

shelter, with a radius of approximately 6 cm, were captured 

from four different scanner positions as shown in Figure 4. 

 

• Dataset B: Five horizontal water pipes hanging from a ceiling 

in a hallway, with average radius 8 cm, were captured in two 

different scanner positions as shown in Figure 5. 

 

• Dataset C: Five vertical concrete pillars (radius approximately 

38 cm) and three horizontal hanging water pipes (radius 

approximately 8 cm) in two different scanner positions as 

shown in Figure 6. 

 

 
Figure 4. Dataset A: vertical poles 

       

  
Figure 5. Dataset B: 

hanging water pipes 

Figure 6. Dataset C: concrete 

pillars and hanging water pipes 

 

3.2 Calibration  

Several two-station calibrations were applied to all three 

datasets. For each calibration, the basic systematic error terms 

described in Section 2.3, the cylinder parameters, and the 

scanner positions Ni (i =1,2,3…) relative to the scanner position 

M were estimated simultaneously with a least-squares 

adjustment. We denote the calibration as M-Ni. For example, for 

Dataset A, when we calibrate the scanner by fixing the scanner 

position 1 and estimating the EOP for scanner position 2, we 

denote the calibration as 1-2.  

 

3.2.1 Dataset A – Vertical Cylinder-based Calibration 

 

Figure 7 shows the five pole locations and the four scanner 

positions in object space. The point clouds are coloured the 

same as their respective scanner position. For the five poles, 

three calibrations using fV: 1-2, 1-3, and 1-4 were performed 

and the results are shown in Section 4.1. 

 

3.2.2 Dataset B – Horizontal Cylinder-based Calibration 

 

The point clouds of the five parallel hanging water pipes 

(Figure 8) were extracted for performing the 1-2 calibration 

using the horizontal cylinder model fHx. The results are shown in 

Section 4.2.  
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Figure 7. The scanner position and the five pole positions in a 

common object space (the object space of scanner position 1) 

for Dataset A 

 

Figure 8. The scanner positions and the five pipe positions in a 

common object space (the object space of scanner position 1) 

for Dataset B 

 

3.2.3 Dataset C – Mixed Cylinder-based Calibration 

Two 1-2 calibrations were performed using different numbers 

and types of cylinders for Dataset C. The first 1-2 used only five 

pillars with fV while the second 1-2 used five pillars and the 

three hanging water pipes with fV  and fHx respectively as shown 

in Figure 9. The results are shown in Section 4.3.  

 

Figure 9. The scanner positions, the five pillar positions, and 

also the three water pipe positions in a common object space 

(the object space of scanner position 1) for Dataset C 

 

 

4. CALIBRATION RESULTS 

4.1 Dataset A Calibration Results 

The estimated calibration coefficients with their standard 

deviations (σ) are shown in Table 1. It can be seen that the 1-2 

has the lowest σ for a0 and b1 and 1-3 has the largest. The 

estimated values for a0 and b1 also fall into a reasonable range. 

This can be analysed along with the correlation matrices shown 

in Figure 10, 11 and 12 for 1-2, 1-3 and 1-4 respectively. The 

estimated c0 and also its σ are higher than what are expected. 

This is most likey due to the high α'3-c0 correlation (Figure 10) 

for 1-2. This high correlation also exits for 1-4 (Figure 12).   

 

Table 1. Estimated calibration coefficients for Dataset A 

calibration
est. value 

(mm)

σ 

(mm)

est. value 

(")

σ 

(")

est. value 

(")

σ 

(")

1-2 -0.92 0.04 10.90 1.10 -65.60 9.48

1-3 -2.74 0.10 8.13 2.40 18.60 10.50

1-4 -1.45 0.06 2.93 1.76 30.12 6.58

a0 c0b1

 

It can be seen that 1-2 gives the lowest number of high 

correlation coefficients (0.9 - 0.99 shown as red, 0.8 - 0.89 

shown as yellow in Figures 10, 11 and 12) while 1-3 gives the 

highest number of them among the three calibrations. The 1-2 

captures the five cylinders at scanner positions 1 and 2 as 

depicted in Figure 7, the point clouds captured at these two 

positions can overlap with the largest extent comparing to 1-3 

and 1-4. This can be shown by inspecting the x-y plot of the 

cylinder point cloud for 1-2, 1-3 and 1-4 in Figures 13, 14 and 

15 respectively.  

 

Figure 10. The correlation matrix of Dataset A 1-2 (white for 

coefficients > 0.99; red for coefficients between 0.9 and 0.99; 

yellow for coefficients between 0.8 and 0.89; green for 

coefficient between 0.7 and 0.79; blue for coefficients < 0.7) 

 

 
Figure 11. The correlation matrix of Dataset A 1-3 (white for 

coefficients > 0.99; red for coefficients between 0.9 and 0.99; 
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yellow for coefficients between 0.8 and 0.89; green for 

coefficient between 0.7 and 0.79; blue for coefficients < 0.7) 

For 1-3, the scanning positions lead to the least average overlap 

of the cylinder point clouds. This is likely the main cause for the 

high correlations between the scanner position parameters and 

the cylinder centre parameters for all five cylinders as seen in 

Figure 11. Among the five poles for 1-3, poles 1, 2 and 3 have 

the least overlap (there is no overlap point cloud for pole 3 in 1-

3 as shown in Figure 14) and thus their associated correlations 

are relatively higher. Apart from this, the correlations between 

cylinder parameters is also high for 1-3, presumably also due to 

the low overlap of cylinder point clouds. Overall, the estimated 

results and the correlation coefficients of 1-2 suggest that a five 

vertical poles two-stations calibration can work appropriately. 

 

 
Figure 12. The correlation matrix of Dataset A 1-4 (white for 

coefficients > 0.99; red for coefficients between 0.9 and 0.99; 

yellow for coefficients between 0.8 and 0.89; green for 

coefficient between 0.7 and 0.79; blue for coefficients < 0.7) 

 

Calibration 1-4 has more overlap for pole 4 and pole 5 than 1-3 

does, therefore, the correlation between the centre of poles 4 

and 5, and the scanner position are mitigated. However, there is 

no overlap for pole 1 and 2 in 1-4, and therefore the 

corresponding correlations remain high as illustrated in Figure 

12.  Furthermore, it is worth noting that high correlation exists 

between κ and  Xs, and this indicates that the scanner position is 

somehow difficult to estimate. This is probably due to the fact 

that the scanner position relies mainly on poles 4 and 5 since 

they have the most overlap. However, both poles 4 and 5 have 

only spanned approximately half of the cylinder circular surface 

and thus it results in insufficient cylinder surface data to 

determine the scanner positions. 

 

 
Figure 13. Pole x-y plot for Dataset A 1-2 

 

 
Figure 14.  Pole x-y plot for Dataset A 1-3 

 

Figure 15.  Pole x-y plot for Dataset A 1-4 

 

4.2 Dataset B Calibration Results 

For the Dataset B calibration 1-2 , each of the pipes has some 

overlap in the middle, as the scanner positions 1 and 2 were 

beneath the pipes are on either side of the set of pipes as 

illustrated in Figure 8. There is “sufficient” overlap of the point 

clouds captured from two positions on either side of the hallway 

(approximately 2.2 m apart). This results in the absence of the 

extreme high correlation coefficients (red) presenting in the 

correlation matrix as shown in Figure 16. However, the matrix 

is “spoiled” by one absolute correlation, i.e. 1, between Xs and 

Ys. This is presumably due to the fact that all hanging pipes are 

parallel, so the estimation of Xs and Ys just “slide” along the 

parallel pipes. Therefore, if an orthogonally-oriented pipe or 

one with a significantly different orientation were included, this 

Xs-Ys correlation problem might be relieved.  

 

 
Figure 16. The correlation matrix of Dataset B 1-2 (white for 

coefficients > 0.99; red for coefficients between 0.9 and 0.99; 

yellow for coefficients between 0.8 and 0.89; green for 

coefficient between 0.7 and 0.79; blue for coefficients < 0.7) 

 

4.3 Dataset C Calibration Results 

The two different 1-2 calibrations demonstrate the effect of 

mixing vertical and horizontal cylinder features for the 

calibration. The estimated calibration coefficients are shown in 

Table 2. The estimated a0 and b1 became much more realistic 

after the inclusion of three extra parallel horizontal water pipes 

(pipe 6, 7 and 8) to the calibration using only five vertical 

pillars. This is also explained by inspecting the two correlation 

matrices shown in Figure 17 and Figure 18 for the only-vertical 

cylinder-based 1-2 and mixed cylinder-based 1-2 respectively. 

 

Table 2. Estimated calibration coefficients for Dataset C 

calibration
est. value 

(mm)

σ 

(mm)

est. value 

(")

σ  

(")

est. value 

(")

σ 

(")

1-2 (5 vertical pillars) -25.31 0.10 922.00 6.56 -43.85 2.10

1-2 (5 vertical pillars 

+ 3 horizontal pipes)
2.56 0.03 -4.43 0.62 7.14 0.74

a0
b1 c0

 

The five pillar centres are highly correlated with each other due 

to the lack of the overlap of the point clouds similar to the 
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situation of Dataset A 1-3. The inclusion of three extra parallel 

horizontal water pipes has considerably reduced the number of 

high correlation coefficients as shown in Figure 18. Higher 

correlations still exist between the rotational EOPs and the 

rotation angles of pillars 3, 4 and 5.  The water pipes located in 

between pillars 1 and 2 decorrelates the pillar 1 and 2 

parameters with other pillar parameters. However, some high 

and fairly high (yellow, green) correlations between pillar 1 and 

2, and the water pipes centres are introduced. Overall, the 

inclusion of the horizontal features to the vertical features has 

been shown to be able to decorrelate most high correlations 

caused by the lack of overlapping point clouds. 

 

 
Figure 17. The correlation matrix of Dataset C 1-2: vertical 

cylinders only (white for coefficients > 0.99; red for coefficients 

between 0.9 and 0.99; yellow for coefficients between 0.8 and 

0.89; green for coefficient between 0.7 and 0.79; blue for 

coefficients < 0.7) 

 

 
Figure 18. The correlation matrix of Dataset C 1-2: vertical and 

horizontal cylinders (white for coefficients > 0.99; red for 

coefficients between 0.9 and 0.99; yellow for coefficients 

between 0.8 and 0.89; green for coefficient between 0.7 and 

0.79; blue for coefficients < 0.7) 

 

 

5. CONCLUSIONS 

This paper has demonstrated a new cylinder-based self-

calibration method for TLSs with three datasets captured by a 

panoramic scanner. The calibration results are analysed in terms 

of the parameter correlations which are shown to be dependent 

on the overlapping cylinder point clouds captured at different 

positions. Five vertical poles have been shown to be sufficient 

for calibration while when only several hanging water pipes are 

used for calibration, hanging pipes with different orientations 

should be used to avoid absolute correlation(s) between the x 

and y coordinate of the EOPs. The simultaneous usage of 

vertical and horizontal cylindrical features for calibration has 

shown to effectively deccorrelate high correlation caused by 

lack of overlapping cylinder point clouds. Overall, the 

cylindrical features have been demonstrated to be an alternative 

to planes and points which have traditionally been used in TLS 

calibration. 
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