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ABSTRACT: 

 

Terrestrial laser scanning data that are acquired from multiple scan locations need to be registered before any 3D modeling and/or 

analysis is conducted. This paper presents a rigorous point-to-plane registration approach that minimizes the distances between two 

overlapping laser scans, using the General Least Squares adjustment model. The proposed approach falls under the class of fine 

registration and does not require any targets or tie points. Given some initial registration parameters, the proposed approach utilizes 

the scanned points and estimated planar features on both scans to determine the optimum parameters in the least squares sense. Both 

the uncertainty of the points due to the incidence angle, and the uncertainty of the local normal vectors of the planar features are 

taken into account in the stochastic model of the adjustment. The impact that these considerations with the stochastic model have on 

the registration is then demonstrated with comparisons on real terrestrial laser scanning data, and on smaller simulated data. 

 

 

1. INTRODUCTION 

The registration of terrestrial laser scanning data is a 

prerequisite to the 3D modeling and/or analysis phase, 

whenever the data are acquired from multiple scan locations. 

The interest in this paper is with fine registration methods that 

require no targets or tie points for merging a pair of scans. 

These methods utilize the 3D point data, and employ minimal 

(if any) processing of the data during the registration task. 

 

Two of the most popular approaches in this category of 

registration are the point-to-plane method of Chen and Medioni 

(1991), and the point-to-point method of Besl and McKay 

(1992).  Chen and Medioni (1991) minimize the euclidean 

distances between points on one scan and their corresponding 

planes from the other scan. Besl and McKay (1992) minimize 

the euclidean distances between points on one scan and their 

closest points from the other scan.  Many variations have since 

been proposed to improve different characteristics of these two 

methods, for example, convergence rate, convergence region, 

robustness, and correspondence search. Salvi et al. (2007), Liu 

(2004), and Rusinkiewicz and Levoy (2001) are some of the 

useful literature that describe these variations. 

 

From a photogrammetric perspective various approaches have 

been presented that deal with fine registration. Some work 

include that of Maas (2000) who introduced the least squares 

TIN matching for airborne LIDAR strip matching.  A similar 

approach was published by Schenk et al. (2000) for the 

matching of scans acquired from airborne platforms (LIDAR 

and classical photogrammetry). Schenk et al. (2000) were 

primarily interested in comparing the minimization of elevation 

differences (i.e. parallel to the z-axis), with minimization 

parallel to local surface normals. Jaw (1999) employed a 

matching strategy in a related, but somewhat different task. His 

concern was the use of control surface data obtained from 

sensors such as airborne LIDAR, for aerial triangulation. 

Recently, Levin and Filin (2010) presented an approach where 

close-range terrestrial images were registered using airborne 

LIDAR data. Similar to Jaw (1999) the LIDAR surface data 

provided the control for the image registration, and they 

minimized the point-to-plane distance between the 

photogrammetric images and the control surface.  Habib et al. 

(2010) included the ICPatch approach in their work on 

evaluating the quality of airborne LIDAR data. Here the authors 

minimized the volume created by a point and its corresponding 

triangular patch. 

 

These work and others like them focus on 2.5D data, and are not 

ideally suited to the registration of terrestrial laser scanning 

data, without modifications. Akca (2007), presented an 

approach, called Least Squares 3D Surface Matching (LS3D) 

that deals with 3D surface data.  The LS3D approach is an 

extension of the 2D least squares image matching, and 

incorporates full 3D geometry in the estimation of the 

transformation parameters that relate two overlapping scans. 

However, the stochastic properties of the local surface normals 

are neglected in this approach. In our proposed approach we pay 

special attention to the stochastic model. Both the uncertainty of 

the points due to the incidence angle, and the uncertainty of the 

local surface normals are taken into account in the stochastic 

model of the adjustment. 

 

The next section of the paper will present the mathematical 

formulation of the proposed registration approach. Section three 

will involve the stochastic model and its contribution from the 

incidence angles and local surface normals. Section four 

presents the experimental results which are provided in two 

parts.  The first part investigates the impact on aposteriori 

reference variance by different stochastic models. The second 

part provides some preliminary assessment of the proposed 

approach by comparisons with the approach of Chen and 

                                                                 
 The aposteriori reference variance is the quotient of the dot (or 

inner product) of the residual vector and the redundancy of 

the adjustment (Mikhail and Ackermann, 1976). 
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Medioni (1991). The conclusions and future work are given in 

Section five. 

 

 

2. PROPOSED POINT-TO-PLANE METHOD 

In a typical laser scanning campaign, two or more scans are 

required to cover the entire object space. Each scan results in a 

point cloud acquired in a local coordinate frame. Let    and   

refer to two partially overlapping scans (or surfaces), and their 

individual scanned points are respectively   , and   . Thus the 

scans   and   need to be registered to a common coordinate 

frame prior to any further processing steps, such as 3D 

modeling and/or other analysis.  

 

The two scans are registered to the same coordinate system by 

using the 3D 6-parameter rigid-body transformation (Cheok, 

2006) such that 

  

          (1) 

                              [        ]  

 

  is the conventional 3D orthogonal rotation matrix formed by 

3 sequential rotations (        ) about the x-, y-, and z-axes 

by the angles       respectively.   is the vector of translations 

(        ) that are parallel to the x-, y-, and z-axes respectively. 

The 6 parameters are thus               .  

 

2.1 Correspondence 

Terrestrial laser scan data are unstructured and no exact point 

correspondence exists between two scans. However, registration 

can still be achieved (Chen and Medioni, 1991). For each point 

the registration goal is to minimize the euclidean distances 

between that point and its hypothesized corresponding planar 

element which is estimated from points in the other scan. 

 

In our approach we establish point-to-plane correspondences on 

both scans (see Fig.1). This not only increases the redundancy 

of the adjustment, but also considers the uncertainty of both 

scans simultaneously. Each point    is transformed by the 

current parameters, to obtain  ̃ . We then find the 3 nearest 

scanned points in   to  ̃ , and this triplet forms its hypothesized 

corresponding planar element, (  ), whose normal vector ( ̂ ) 

is then determined. Similarly, each point    is transformed to 

obtain  ̃ , and its 3 nearest scanned points in   form   , whose 

normal vector  ̂  is determined. 

 

The transformed points  ̃ , and  ̃  are given by  

 

  ̃                         ̃            (2) 

          [        ] 
             [        ] 

            
  

 

Conceptually we can thus have the following correspondence 

set for each scanned point in  : { ̃     ̂ }, and for points in  : 

{ ̃     ̂ }, as depicted in Fig.1. 

 
 

Figure 1: Point-to-Plane Correspondence. The planar element 

for transformed point p̃ 1 is qe ≡ [q1, q2,q3] with local surface 

normal n̂ q, and similarly for transformed point q̃1,  

pe ≡ [p1, p2, p3] with local surface normal n̂ p. 

 

 

2.2 Least Squares Adjustment Model 

Given the initial transformation parameters the correspondences 

can be established then a least squares adjustment can be 

performed to obtain the optimum rigid-body transformation 

parameters. We begin the mathematical formulation with the 

point-to-plane distance. 

 

The signed distance ( ) between an arbitrary point  , and a 

plane with normal vector  ̂, whose parameters are (       ) is  

 

                 (3) 

If it is known that the plane passes through the point  , then  

 

          ̂ (4) 

where     is the dot (or inner) product of two vectors.   

 

For our point-to-plane registration we have two sets of 

condition equations, one relating the correspondence sets in  , 

and another the correspondence sets in    

 

     ̃       ̂  
                  

      ̃       ̂  
                (5) 

 

The point    in Eq.(5) refers to any of the scanned points 

forming the planar element   , and similarly for the point   . In 

linearized form these two correspondence sets give the classical 

General Least Squares equation* 

 

         (6) 

 

                                                                        
                                                                      
                                                                     
                                                               
                                                                              
 

The known quantities of Eq.(6) are  

 

   [
  

  
]    [

  

  
]    [

  

  
] (7) 

 

                                                                 
* The General Least Squares adjustment model is also referred 

to in the literature as the Gauss-Helmert adjustment model, 

and as the Mixed Adjustment model. 
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where  

   [  
       

    ]                             
                      

   [  
       

    ]                             
     

    [    ]                                             [    ] 
 

The observation vector is    [   ]  [               ] , 

and    is the  -   point in   as given in Eq.(2),   
     is the 

partial derivative of    with respect to  , and similarly for 

  
    , and the corresponding terms in   .  

 

The correspondence set for a transformed point can potentially 

change at each iteration, thus there is no iterating done on the 

observations as in the classical General Least Squares 

adjustment. Therefore, at each iteration we iterate only on the 

parameters, hence the reduced form of   , and    in Eq.(7).   

 

The unknown quantities of Eq.(6) are the residuals ( ), and the 

parameter corrections ( ) to the   initial rigid body parameters, 

              . The residuals may not always be of relevance 

in the current form. Alternatively it may be more meaningful to 

utilize the “equivalent” residuals (  ), which refer to the point-

to-plane distances for correspondence sets.   

 

Each pair of condition equations of the form in Eq.(5) involves 

observations from two sources - the transformed point, and the 

planar element. In other words, our proposed model 

incorporates the stochastic quantities of both scans, i.e. both the 

direct observations (transformed points) and the derived 

quantities (planar elements). If the stochastic properties of the 

planar elements are neglected then    and    in Eq.(7) will be 

reduced respectively to    [  
      ], and    

[    
    ], where   is the null matrix. 

 

For a single correspondence set in   (i.e.   condition equation), 

the terms of the coefficient matrices for    are  

 

  
      

   

  ̃ 
 

  ̃ 

   
  ̂  

                                                   

  
      

   

  ̂  

 
  ̂  

    

 
   

    

                                                           

               ̃     
  

  ̂  

    

 [ ̂  

    ]                                 

  
     

   

  ̃ 
 

  ̃ 

  
  ̂  

  [
  ̃ 

   
 
  ̃ 

   
]                                

 

            

  ̂  

  [(
  

  
   

  

  
   

  

  
  )    ]                

(8) 

 

   is the identity matrix of size 3, and   is a zero vector of 

length six. In Eq.(8) the location of the zero terms for   
      

must be consistent with that of the points in the planar element. 

If the first point is selected as    then the zero terms will be as 

given in Eq.(8).   

 

The Jacobian term 
  ̂  

    

  is the partial derivative of the local 

surface normal with respect to the planar element, and can be 

obtained from using the relevant rule of error propagation for 

multivariate cases (Mikhail and Ackermann, 1976).  This term 

captures the uncertainty of the local surface normals, and it 

impacts the stochastic model of the least squares adjustment. 

 

By similar manipulations one can obtain the terms for a 

correspondence set in  , and the terms for the differentiation of 

the rotation matrix can be found in Mikhail et al. (2001, 

pg.425).   

 

The parameters are updated in an iterative fashion by solving  

 

      (9) 

          
                  

            
 

  
   

  
   apriori reference variance (typically set to 1)  

   covariance matrix of the observations.   

 

Any of the classical adjustment criteria can be used for iteration 

termination, for example stopping once the change in 

parameters falls below a threshold, or using a maximum number 

of iterations. Since the parameters are of different types (i.e. 

angular and linear) two sets of parameter thresholds are advised 

if the first option is selected.  

 

 

3. STOCHASTIC MODEL 

The stochastic model plays a significant role in any weighted 

least squares adjustment, and in the context of fine registration 

the weights of the points are of specific interest. It is known 

(Soudarissanane et al., 2011; Romsek, 2008; Bae, 2006) that 

contributions to the precision of an individual laser point come 

from various factors including the instrument’s precision, 

geometric factors (e.g. incidence angle), radiometric factors 

(e.g. object reflectivity), environmental factors (e.g. humidity). 

In this paper we consider the instrument’s precision and the 

incidence angle, as these quantities are either provided (the 

precisions) or can be determined (the incidence angle). 

 

3.1 Individual Point Precision 

The 3x3 covariance matrix of a point is obtained from 

propagating the precision of the original spherical observables, 

which are typically provided by the manufacturer. Let the 

spherical coordinates of a point    be    [     ] , where 

   range,    horizontal angle, and    vertical angle. These 

quantities take values in the following intervals:    [     
  [        ]   [    ], where the angular terms are in 

radians. The variances of these spherical observables are 

respectively   
    

    
 . The covariance matrix for    is then a 

diagonal matrix with these variances on the main diagonal. 

 

Soudarissanane et al. (2011) reported that the incidence angle 

( ) had a cosine effect on the precision of laser points, where 

the cosine of the incidence angle is given as  

 

        
   ̂

      ̂ 
 (10) 

 

                     

  ̂                                    
 

If the laser footprint is approximated by a circle, then the 

diameter of a point at non-normal incidence (i.e.    ) 

increases with the cosine of the incidence angle, such that 

   
  

      
 (Bitenc et al., 2010). The signal-to-noise (SNR) 

ratio of a laser return deteriorates with the cosine of the 

incidence angle, and the square of the range (Soudarissanane et 

al., 2011), which increases the uncertainty of the range.  
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Thus we include the effect of the incidence angle in our 

formulation by dividing the precision of the range by the cosine 

of the incidence angle.  

 

Soudarissanane et al. (2011) also studied the effect of increasing 

range on the SNR, but we neglect this in our implementation, 

since most laser scanners have their range precision given in 

terms of a constant plus an additional term that varies by range. 

This additional term may have already been assigned to 

compensate for the range effect on the SNR. 

 

3.2 Analytical Evaluation 

If the stochastic properties of the planar elements are neglected 

then    and    in Eq.(7) will be reduced. This has a direct 

impact on the weighting scheme, since the “equivalent” weight 

matrix (  ) for the correspondences is obtained by  

 

          
     (11) 

 

In this section we will investigate analytically, the effect of 

point precision on   . Let us refer to the proposed adjustment 

model as the full model which carries both the terms from the 

transformed points and the planar elements. Let us then refer to 

the model that carries only the terms from the transformed 

points as the reduced model. 

 

The “equivalent” cofactor matrix (  ) is expressed as  

 

         
  (12) 

 

If  , and     are partitioned such that  

 

   [     ]              ([      ]) (13) 

 

then we have  

 

 
         

        
                   

                                          
(14) 

 

where    [  
       

    ]  ,    [  
       

    ]   (see 

Sec.2.2).   , and    are block diagonal cofactor matrices, with 

each participating point in  , and   contributing a 3x3 diagonal 

covariance matrix which is then scaled by the apriori reference 

variance (see Eq.(9)).  

 

Let    , and     represent the “equivalent” cofactor matrices 

for the full and reduced stochastic models, respectively. If we 

consider a single correspondence set of the form    in Eq.(5), 

(i.e.   condition equation), then term1 in Eq.(14) contains the 

contributions from the transformed point ( ̃ ), and term2 

contains the contributions from the planar element (   
). Since 

term2 is positive we have  

 

                

                            
                               (15) 

 

The precision of the points in    
 impact term2 in two ways, 

first in   , and second in   . The first is obvious, the second is 

                                                                 
 Recall this is for one equation. For a system of linear 

equations term1 and term2 are matrices. 

also easily seen when looking at the Jacobian (
  ̂  

    

) in Eq.(8). 

This Jacobian includes the precision of the points in    
.   

 

The consequence of neglecting term2 is that correspondence 

sets with transformed points of the same precision will be 

weighted equally, regardless of varying point precisions in their 

planar elements. Thus     more accurately captures the relative 

difference between correspondence sets. The impact of this 

difference on point cloud registration would be data dependent, 

and would be affected by the level of disparity between point 

precisions in the overlap region. 

 

 

4. RESULTS AND DISCUSSION 

Two types of experiments were conducted to evaluate the 

proposed method, which we will refer to here as the P2P 

method. The first type of experiment compared the adjustment 

performance of the P2P method against that of three theoretical 

modifications, on real terrestrial laser scanning data. The second 

type of experiment involved two sets of comparisons with the 

approach by Chen and Medioni (1991), which we will refer to 

loosely as the ICP method. One set of comparisons was done on 

the real data, and another set of comparisons was done on data 

that have been published in the literature. 

 

4.1 Effect of Stochastic Model on Registration 

The real laser data were obtained from the Working Group V/3 

of the International Society for Photogrammetry and Remote 

Sensing (ISPRS). The data represent 2 scans of a Buddha statue 

in Thailand and details of the data are found in Bae (2006). The 

scans were obtained with the Riegl LMS-Z210 instrument, 

whose range and angular precisions are respectively 2.5E-2m, 

and 4.7E-4rad. Intensity data were also provided and four 

common points were identified in the intensity images from 

which initial transformation parameter estimates were obtained. 

Fig.2 shows the variation in incidence angle for the scans.  

 

The aposteriori reference variance was used as the metric to 

compare the P2P approach (or model) with the three other 

modified models. This metric was chosen as both the functional 

and stochastic models of an adjustment contribute to this metric.  

All three theoretical variants of the P2P model had the same 

functional model, and the only difference was in the stochastic 

model. The four models will be referred to as P2P, P2Pr, P2Pi, 

and P2Pri, where  

 

1. P2P - full model, term1 and term2 in Eq.(14) are used  

2. P2Pr - reduced model, term2 in Eq.(14) is ignored  

3. P2Pi - full model, but incidence angle effect is 

ignored in the covariance matrix of the points   

4. P2Pri - reduce model, and incidence angle effect is 

ignored in the covariance matrix of the points.  

 

Fig.3 gives the aposteriori reference variance comparisons for 

the four different models. The P2P model gave the smallest 

aposteriori reference variance, and the largest variance was 

obtained by the model which ignored both the incidence angle 

effect and term2 (P2Pri).   

 

The curve for P2Pr shows an improved variance compared to 

P2Pri, reflecting the contribution of the incidence angle effect. 

However, greater improvement is obtained when including 

term2, even if the incidence angle effect is ignored. The F-test 
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Figure 3: Comparison of Reference Variances.    

Values above 75 on the y-axis are not shown. 

for a confidence level of α=0.05 indicated that the final 

variances for the 3 variants were statistically different to P2P. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Comparisons with ICP 

The comparisons with the approach by Chen and Medioni 

(1991), referred to here as the ICP method, were done to 

provide some context in terms of the performance of P2P 

relative to established methods. The Matlab toolbox developed 

by Salvi et al. (2007) was used to perform the ICP registration.   

 

4.2.1 Buddha Data:  For the P2P adjustment all points were 

weighted equally. ICP correspondences were established by 

normal shooting on the right scan (the   surface of Chen and 

Medioni (1991)),), and for the P2P method, only 

correspondence sets of the form    in Eq.(5) were used. The 

metric used for comparison was the root mean square (rms) of 

the point-to-plane distances, and Fig.4 gives the registration 

results. 

 

Final rms values for the P2P method were better than that of the 

ICP method by approximately 1.5cm. The rms of point-to-plane 

distances does not always reflect the quality of the registration, 

and as such no conclusions are drawn here from these 

comparisons. 

 

4.2.2 Published Data:  The Matlab registration toolbox by 

Salvi et al. (2007) provided surface data which Salvi et al. 

(2007) used for evaluating various registration methods. Four of 

the surfaces were used in our comparisons (see Table 1), and all 

were transformed with known parameters to obtain the 

“overlapping” (or “adjacent”) surface, then the registration 

methods were used to determine the parameters. The 

transformation parameters used by Salvi et al. (2007) were used 

in our experiment, which was a rotation of 5degrees about all 

three axes, and a shift of 0.2units along the z-axis. The owl 

surface did not converge by the ICP method with this parameter 

set, and instead a transformation of 0.1degree rotation about all 

axes, with a shift of 0.05 along the z-axis was used. No 

incidence angle effect was used for P2P, because the adjacent 

surface data were created, rather than observed. Unlike 

Sec.4.2.1, here the correspondence sets of both    and    in 

Eq.(5) were used for the P2P method. 

 

No noise was added to the data, and the ICP and P2P iterations 

were terminated when the root mean square correspondence 

error was less than 1E-3 units. The correspondence error is the 

norm of the difference between a transformed point and its 

known location. Table 1 gives the number of iterations needed 

for termination, and the mean time per iteration. The runtime 

comparisons are to provide some preliminary context in terms 

of computational performance, but are not meant to be strict 

evaluations. Both approaches were implemented in Matlab 

7.11.0 on an Intel(R) Core(TM), 2.13GHz, 3.00GB RAM pc. 

For correspondence search the ICP method utilized the box 

structure (Akca, 2007), and the P2P method utilized the kd-tree 

structure. 

 

The ICP method’s average runtime was less than that of the P2P 

method in all cases except for the frog surface, which was the 

most difficult for the ICP method. Although the P2P method 

was slower on average per iteration, the number of iterations 

needed for termination was between one-third and one-half that 

of the ICP method, resulting in a reduced overall computational 

time. Once more these experiments are to provide some 

preliminary context for the P2P method in terms of 

computational time, and no conclusions of superiority are 

drawn.  Instead these comparisons indicate that the P2P 

compares favorably with the ICP method in terms of 

computational time, for these surfaces. 

 

Table 1 Comparison with the approach by Chen and Medioni 

(1991). The highlighted (bold) values are from the proposed 

(a)                                            (b)                      

Figure 2: Incidence Angles for Buddha data, (a) Left View, 

(b) Right View. 

Figure 4: Comparison of Registration Methods. The y-axis 

gives the root mean square point-to-plane distance. 
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P2P registration method. The results from the approach by Chen 

and Medioni (1991) are in parentheses. 

Surface # Points #Iterations Avg. Time per Iter.  (sec) 

fractal 4096 5(11) 1.99(1.74) 

wave 4096 5(13) 2.14(1.36) 

owl 4902 6(18) 2.49(2.18) 

frog 4977 8(23) 2.43(4.93) 

 

 

 

5. CONCLUSIONS AND FUTURE WORK 

A rigorous point-to-plane registration approach was presented 

which utilizes the General Least Squares adjustment model.  

The novel approach includes the effect of the incidence angle in 

the stochastic model, and all direct observations and derived 

quantities (the local normals) are included in the adjustment 

model. The impact of these steps was explained analytically, 

and their importance in registration was demonstrated by 

comparisons of the aposteriori reference variance on real 

terrestrial laser scanning data. Comparisons with the real data 

and other published data indicate that the proposed approach 

has the potential to compare favorably with the well-established 

approach of Chen and Medioni (1991). 

 

The future  work involve extensive comparisons  with published  

registration methods, and extending the proposed approach for 

data of dimension greater than 3, so as to include the ancillary 

information  that  typically accompanies terrestrial laser scan 

data  (intensity  and  RGB  data). Implementation improvements 

that exist for the method of Chen and Medioni (1991) may also 

be relevant to the proposed approach and these should be 

explored in future work. 
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