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ABSTRACT: 
  

Currently, data captured by Mobile Laser Scanners (MLS) is becoming a leading source for the modelling of building façade 
geometry. Automatic processing of MLS point clouds for feature extraction on building facades is a demanding work. Point cloud 
segmentation and recognition are the most important steps in this context. In this paper, a new approach for automatic and fast 
processing of MLS data for the detection of building patches while restricting to segment other features is introduced. After filtering 
of the point clouds, the building façade extraction takes place. An initial building point cluster detection and roughness based point 
separation within the cluster itself are the preliminary stages of this process. Thereafter points are segmented into planar patches 
based on the Random Sample Consensus (RANSAC) technique, as most facades are dominated by planar faces. An intelligent seed 
point selection method is introduced, and growing rules are applied in order to extract the most significant planar features which 
represent the building facades. Each segmented plane is afterwards processed to recognize the façade features. A rule based 
partitioning tree, constructed from the 2D geometric knowledge of building features is used for facade feature recognition. The 
approach has been tested with several urban data sets, and results demonstrate that the method can be applied in an efficient 
modelling process. 
 
 

                                                                 

1.1 

1.2 

*  Corresponding author   

1. INTRODUCTION 

Motivation & Goals  

Large scale 3D reconstructions of street scenes, especially 3D 
building models, are of growing interest in advanced 
visualization for location-based systems such as vehicle 
navigation, city planning and tourism industry (Cornelis et al., 
2008). Furthermore, new developments in the area of computer 
graphics, the entertainment industry and virtual reality increase 
the demand for more complex and realistic models (Becker, 
2009). In this sense, polyhedral building models have to be 
enriched with relevant façade features.  An efficient solution, in 
this regard, is geometric modelling of building facades, 
explicitly, from 3D point cloud data. A crucial step in the 
modelling process is the automatic processing of point clouds 
for the extraction of different façade features on buildings, 
since the quality of the models is strongly dependent on the 
performance of feature extraction and recognition process 
(Rabbani, 2006). Although great progresses have been made in 
terms of accuracy and speed in order to detect building façades, 
versatile processing strategies for the automatic detection of 
such features from heterogeneous urban environments are still 
required to develop. Currently, the point clouds acquired by 
MLS is becoming a leading source for the modelling of 
building façade geometry because MLS is a fast, efficient and 
cost-effective method to collect accurate 3D geometry of 
building facades from large urban areas.  
 
In this paper, a new approach to automatic processing of MLS 
point clouds for the extraction of building façade features is 

introduced. The main aim of this work is to extract a set of 
features of building facades by analyzing their planarity and 
linearity in an efficient manner. Due to the massive amount of 
points, the direct analysis of unstructured 3D point clouds is 
cumbersome so that the proposed method relies on a cluster-
wise processing strategy which further assists to obtain a 
quality outcome at the end. The first step is the detection of 
potential building clusters in order to reduce the processing 
time and to detect reliable and accurate planes depicting 
building facades. In the following step, a segmentation is 
performed using a roughness based planar region segmentation 
method, reducing complexity due to object heterogeneity. 
Finally, a new method based on general prior knowledge on 
geometry of façade features, in 2D, is proposed for the 
recognition of elements of each building façade.  
 
The paper is organized as follows: The first section introduces 
the rationale of the work. Section two describes the overall 
method of our approach in detail. Evaluation of the methods 
and results obtained with of the developed algorithm are shown 
and discussed in section three. The final section draws some 
conclusions and gives an outlook on future work. 
 

Related work 

The segmentation of point clouds into planar faces on building 
facades can be considered as a main step in the automatic point 
cloud processing of MLS data. During the last decade, several 
algorithms have been developed to extract planar surfaces from 
laser scanner point clouds using different segmentation 
methods. The most relevant existing methods for detecting and 
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extracting of features from point clouds data can be categorized 
into the three groups namely clustering of features (Filin & 
Pfeifer, 2006, Hofmann et al., 2003), region growing 
(Dorninger & Nothegger, 2007 and Pu & Vosselman, 2006) and 
model fitting (Boulaassal et al., 2007, 2008). Although model 
fitting is based on decomposition of the data into geometric 
primitive shapes, both clustering of features and region growing 
methods are based on pattern recognition for segmenting 
homogenous regions (Awwad et al., 2010).  The advantage of 
the region growing method is that it is fast, robust in the 
presence of noise and extracted large connected components 
straight away. (Pu & Vosselman, 2009) adopt the region 
growing concept on top of the 3D Hough Transform to extract 
planar facade features in TLS data. In this method, seed 
segments are detected by the 3D Hough Transform and 
extended by adding adjacent points if their distance to the plane 
is below than some threshold. Once there are no more points to 
be added for a particular segment, the next seed surface is 
selected and grown. (Rutzinger et al., 2009 & 2011) apply the 
same segmentation method for the extraction of vertical 
building walls from MLS data.  Their results confirm that this 
plane estimation method performs well with both TLS and 
MLS data. However, the Hough Transform may be very 
sensitive to the segmentation parameters (Tarsha-Kurdi et al., 
2007). Instead, RANSAC is increasingly used to segment 
planar faces. The determination of planar surfaces based on the 
RANSAC method is studied by (Boulaassal et al., 2007), where 
an adoption of RANSAC algorithm can be used to improve the 
quality of plane detection. They assume that the best plane is 
the one containing the maximum number of points with low 
standard deviation. Thus, the extended RANSAC algorithm 
allows them to detect the best plane within a short time. Later 
on, points, relevant to the derived planes are removed to 
improve the detection performance further (Boulaassal et al., 
2008).  
 
In feature recognition tasks, formal grammars have widely been 
applied. (Ripperda and Brenner, 2007) introduce a recognition 
strategy for façade feature recognition using the formal 
grammar and rjMCMC. They define the grammar which 
describes the general structure of building facades, the 
alignment of windows in grids, both regular and irregular. The 
structural and hierarchical relations are analyzed and then 
illustrated them in the form of shape grammar by (Becker, 
2009) in order to estimate and to refine parts of facades, missed 
in scanning process. A bottom-up method based on the 
Knowledge about the semantic meaning of building facades is 
investigated by (Pu, 2010) to extract building features from 
TLS data.   
 
Our contribution to the research field of façade point extraction 
is to utilize synergetic properties of both 2D and 3D 
environment of point clouds to the processing workflow, which 
assists for segmenting and extracting the maximum different 
planar surfaces efficiently, with best fit to reality. Further, this 
paper focuses in recognizing façade elements from MLS data 
based on knowledge about the 2D geometry of building 
facades. 
 
 

2. METHODOLOGY  

In this section, the methodology used for the processing of 
unfiltered MLS point clouds for building façade detection is 
presented. Façade data processing is divided into four main 
stages (shown in figure 1): Object point detection, clustering 

and building cluster selection, planar feature extraction and 
recognition façade features. These steps are fully automated 
and performed with only few steering parameters. Results of 
each stage provide the input data for the following stage. The 
final output of the process is a set of planar patches of each 
building façade. The following subsections are discussed each 
step in detail. 

 
 

Figure 1. Processing flowchart for building facade feature extraction 
 
2.1 Ground point classification 

In general, ground points can be defined by points residing on 
smooth non-vertical lowest surfaces. Various ground modelling 
methods have been developed for ground based Lidar data.  The 
method, developed in this paper, is similar to the method 
proposed by (Mass et al., 2008) to generate a TLS based terrain 
model by analyzing the local height histogram. First, the whole 
domain is partitioned into finite number of horizontal grids with 
a lateral dimension of dx x dy. The Z-axis of each grid is split 
into several bins with a height dz. For each point, the 
corresponding grid Si, in which the point falls, is calculated, and 
the histogram bin corresponding to its Z-value within the 
calculated grid is incremented. In each grid, the height of the 
bin belonging to the lowest significant peak of the height 
histogram is selected and assigned as an approximate ground 
height of the corresponding grid. 

 

 
Figure 2. Ground point classification. Red, green and brown colours 

denote the road, terrain and objects points respectively  
 
Nevertheless, the height of a lower histogram bin does not 
represent the real ground height if an object is occluded by 
other objects or the building roof points fall into the grid. In this 
case, the ground height of the grid should be filtered by 
checking the neighborhood consistency and comparing with the 
most frequently occurring height value. Although the majority 
of non-ground points can be eliminated this way, some lowest 
part of the objects such as lower parts of building facades and 
poles may erroneously be labeled as ground. A planar surface 
through the ground points is therefore estimated for each grid 
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and adjusted by adding or removing points determined as inliers 
or outliers respectively. Once the ground points are selected, 
these points are segmented into continuous and smooth ground 
regions by applying a region growing method with respect to 
the grids. For this, the surface normal and the residuals between 
the mean ground points of a grid are analyzed. In figure 2, the 
results of the ground point classification is shown. 
 
2.2 

2.3 

2.3.1 

Clustering and classification of building points 

After ground points are detected, the remaining object points 
contain buildings, trees, vehicles and other urban features. As 
the majority of building façades can be described by a set of 
planar surfaces, the detected object points should be segmented 
into planar faces to extract building façade features from other 
urban objects. Processing time may be considerable when 
extracting planar regions from the whole object point dataset at 
once. Further more, segmentation of massive point clouds leads 
to under- and over-segmentation as well. These problems can 
be reduced by grouping the point clouds into individual 
building clusters and then extracting planar segments from each 
group rather than from all the object points. Therefore, the next 
step of the methodology is the clustering and classification of 
points respective to each individual building. 
  
In the clustering step, the proximity of points can be considered 
as the main key factor so that points located close to each other 
should be assigned to a single object. Since the point cloud has 
been previously partitioned into grid cells, the connections of 
grid cells are employed to acquire the proximity of point 
distribution. Connected grid cells which do not empty are 
grouped into clusters by utilizing a connected component 
labelling algorithm. This process considers points inside a grid 
cell and points within directly connected grid cells i.e. a 26-
connectivity of each cell. First, 8-connected neighbours are 
searched on a 2D lattice of 3D grids which is similar to range 
image segmentation (e.g. Hetzel et al, 2001). Second, vertical 
searching via an extended Franklin and Landis’ Algorithm, as 
detailed in (Franklin and Landis, 2006 and Isenburg and 
Shewchuk, 2009), is performed. Subsequently, isolated grid 
cells and grid cells with a number of points less than a 
predefined threshold are deleted. 
 
With the help of general knowledge on buildings, the following 
attributes are considered in such a way that individual building 
point clusters are recognized and obtained. 

1. The maximum height of the clusters should exceed a 
predefined threshold. 

2. Clusters with a number of grid cells less than a 
predefined threshold are classified as non-building 
objects. 

3. Small and elongated clusters, either vertical or 
horizontal, are assumed to belong to other objects 
such as poles, wire lines, and so on. 

 
In this way, most of the non-building objects, such as 
pedestrians, road signs, vehicles, flower beds, small vegetation 
patches are detected. Remaining clusters, considered as the 
building clusters, are further analyzed based on the assumption 
that a building can be described, in 2D space, by line segments. 
Possible line segments, passing through the façade planes, are 
retrieved by horizontal slicing of the laser points at a defined 
height interval and applying 2D Hough Transform as described 
in (Tarsha-Kurdi et al., 2007). Simultaneously, points relevant 
to the detected line segment are removed from the Hough space 
in order to increase the detection performance. In this way, all 

the dominant building façade clusters are extracted, as shown in 
figure 3 (lower left), and also most of the closed vegetation 
parts connected with building edges are effectively removed. 
 

Segmentation of coplanar points 

In this step, each building point cluster obtained from the 
previous step (i.e. section 2.2) is segmented into groups of 
coplanar patches. For this, the coherence of point distribution 
and point proximity are considered. The plane extraction 
process is carried out in two stages. In the first part, we 
compute the surface roughness value of each point and in the 
second step, we select good seed planes based on the surface 
roughness values and then grown by adding all points close to 
the planes. 

Surface Roughness Estimation 
 
The purpose of this step is to effectively isolate non-building 
points (e.g. vegetation patches) located close to the building 
facades from buildings. The criterion used to distinguish 
building and vegetation is the surface roughness of points, as 
most of building features are smooth planar faces. A surface 
roughness value of each point is estimated, as described in 
(Nalani & Maas, 2012), by fitting an orthogonal regression 
plane for the direct neighboring points and then computing the 
standard deviation of the plane fitting residuals, i.e. the sum of 
the squares of distances from points to the plane. The basic 
least squares minimization is used to obtain the normal vector 
of each point. In this sense, the eigenvector corresponding to 
the smallest eigenvalue of the covariance matrix 

 (where PT
ii

k

i

PPPPC ))(( 00
1

cov −−=∑
=

0 is the centroid of 

the points) is computed for solving the normal vector. 
Subsequently, points, whose roughness value is below a defined 
threshold, are labeled as potential building points (see figure 3, 
lower right). 
 

 

 
Figure 3.  Sample results of initial building point extraction. Upper left: 

classified ground (green) and object points (red); Upper 
right: Detected building footprints; Lower left: Detected 
dominant building clusters (different colors represent 
individual building clusters); Lower right: Roughness 
analysis (orange represents building and green represents 
edges or closed vegetation) 

 
2.3.2 Plane Detection 
 
A Surface Roughness based Region Growing method is 
developed for the detection of planar surfaces. The principle of 
region growing is to start with a seed segment and then grow it 
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by adding points from the neighbors (Pu & Vosselman, 2009). 
In our method, points with a low roughness value and similar 
normal vectors are selected as potential seed points and a 
smooth plane is fitted using the RANSAC (Fischler and Bolles, 
1981) planar fitting algorithm to define initial seed segment, as 
described in (Nalani & Maas, 2012). All nearest neighbor 
points are added to the seed segment if the points have been 
assigned as building points and the distance from the point to 
the seed plane is less than some predefined threshold. Since the 
planar growing process does not take into account points, which 
have been identified as non-building points (high surface 
roughness value), a problem arises in building edges. In this 
case, an additional processing step is introduced for the planar 
growing process that improves the point selection especially on 
building edges. The surface roughness value of each neighbor 
point of a non-building point, which fulfills the distance criteria 
to the current planar segment, is examined to ensure whether it 
has been connected to the building points. A point is only 
attached to the planar segment if it has neighbors with low 
roughness value and the angle between the normal of the point 
(np) and the normal of the plane (ns) is smaller than a defined 
parameter θ: cos-1 (np. ns) < θ. Accordingly, each point, which 
belongs to the building facades, is assigned to a planar segment. 
Some results of the algorithm are shown in figure 4 and 7.  
 
 

 
Figure 4. Segmentation results – Case 1 (the different features are 

denoted by different colours) 
 

2.4 Façade feature recognition 

The final step in this work is the recognition of most important 
façade features such as walls, windows, doors, roofs and so 
forth, automatically. In this paper, a rule based partitioning tree 
is introduced to categorize these façade features, as illustrated 
in figure 5.  
 
A set of rules, accumulating the hierarchical relations between 
the facades elements, are defined based on the knowledge of 
building facades. The geometric patterns of façade elements 
and the interrelationship among them in 2D space are 
considered in knowledge description. The common attributes of 
façade features such as shape, direction, size, position and 
spatial relationship are employed to illustrate knowledge about 
building structures in 2D, including characteristics of each 
façade feature. The recognition is started by dividing the whole 
planar segments, assigned as the parent-node (i.e. building), 
into two child-nodes, based on the assumption that a building 
can be compound with roof parts and wall parts. Then, new 
child-nodes for each existing child-node are allocated according 
to the corresponding rules, as described in table 1, until no 
child's parent node is found. Finally, façade features are 
extracted as shown in figure 6 and 8. 

 

 
Figure 5: The partitioning tree 

 

 

 

 
 
Figure 6.  Feature recognition results – Case1. Upper: Detected walls; 

Middle: Detected windows; Lower: Detected roofs 
(brown), railings (pink), sidewalls (green) & doors 
(magenta) 
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Façade features Rules 

Wall segments / 
Roof segments 

In 2D, all the wall elements are considered as 
linear while roof parts are not. Angle between 
normal of the horizontal plane (nh) and normal 
of the façade segment (ns): α = cos-1(nh.ns)  is 
tested with a defined threshold. 

Wall facades Long lines with height difference of points 
should not be less than a predefined threshold. 

Intrusions/ 
Extrusions 

The distance between selected wall line and 
line segment of wall parts should be within a 
given threshold. 

Doors / windows Ratio between length and point height 
difference should be within a certain range. 

Table 1: Rules for recognizing façade features in 2D 
 
 

3. RESULTS & DISCUSSION 

The proposed method of automatic laser scanner point cloud 
processing for building façade feature detection as outlined in 
section 2 can be applied for both terrestrial and mobile laser 
data. The test dataset which have been selected to evaluate the 
performance of the proposed approach is MLS data acquired by 
TopScan in Bonn, Germany. The dataset includes various 
object features such as buildings, trees, terrain surfaces, 
pedestrians, vehicles and different features of facades. The 
results of the different stages of the method are demonstrated in 
figure 3, 4, 6 and 8.  
 
The results of the first stage, i.e. the classification of ground 
and non-ground points (figure 1) confirm that most objects 
types such as buildings, trees and poles can be successfully 
classified as non-ground points. The building point cluster 
detection algorithm, which has been applied to detect dominant 
building areas, enhances the efficiency of the subsequent 
processing steps as it reduces the amount of point clouds 
drastically. Furthermore, by selecting points solely within the 
potential clusters for planar segmentation, spurious planar 
detection of other objects can be reduced. However, the cell 
size affects to the results of clustering. A large cell size adds 
other object points, located close to the buildings while small 
cell size removes some building points. In this case, we used a 
cell size 0.1m. In addition to that, the extended Franklin and 
Landis’ algorithm is employed for time-efficient clustering as it 
works with large amount of data set effectively. 
 

 
Figure 7. Segmentation results – Case 2 (the different features are 

denoted by different colours) 
 
In planar segmentation, surface roughness of points is assisted 
for the correct recognition of seed segments. As a result, 
maximum number of different planar surfaces is extracted 

correctly, having close solution to the reality. In contrast, the 
benefit from this process is that trees, located near to facades, 
can be effectively secluded from buildings as most of the 
vegetation points have high roughness value. In this case, we 
used a 0.05m threshold to eliminate vegetation patches during 
the plane extraction process. On the other hand, this intelligent 
seed point selection by using roughness helps to find the correct 
planar patch from RANSAC with a sufficient large set of 
supporting points usually within a few iterations. Some results 
of the segmentation process, referring to different data sets 
acquired by MLS techniques, are presented in figure 4. By 
visual inspection, we can say that our approach has segmented 
most of the building façade features correctly with less number 
of spurious results.  
 
Finally, features of each building facade are progressively 
partitioned by utilizing a rule based partitioning tree. Figure 6 
shows that different facade features such as windows, doors and 
walls can be clearly identified by our approach. At the moment, 
the façade feature recognition has been evaluated exclusively 
by visual examination. Based on the visual comparison of all 
recognized features, we can conclude that our proposed method 
is effective and exact. However, there are a few limitations in 
this method. The first one is its inability to recognize all the 
windows due to lack of laser points on windows. Another 
limitation is that the method takes into account only the main 
features during the recognition. Consequently, additional rules 
should be constrained in order to identify detailed façade 
elements accurately. 
 

 
 

 
 
Figure 8.  Feature recognition results – Case 2. Upper: Detected walls; 

Lower: Detected railings 
 
 

4. CONCLUSION & OUTLOOK 

In this paper, an approach for automated processing of MLS 
point clouds for detection of building façade features is 
outlined. Potential building clusters are recognized effectively 
from the raw point clouds and planar faces are extracted based 
on RANSAC and region growing concepts. Based on the 
surface roughness of the points, an enhanced seed point 
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recognition method is introduced. Thus, quality segments are 
obtained. The advantage of the proposed algorithm is that the 
workflow decreases the number of points to be processed by 
means of a step by step process, which further allows for a 
better handling of very large MLS point clouds. Our results 
confirm the feasibility and robustness of the approach for 
segmenting different types of point clouds. For the recognition 
of detected segments, we present a rule based partitioning tree 
which store the façade knowledge of geometry in 2D. At 
present, it includes rules for recognition only main features of 
building facades. Though, the experiment proves that the 
method, introduced is effective visually, further improvements 
need to be done in order to increase the feature recognition 
ability in the future.   
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