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ABSTRACT: 

 
Mobile terrestrial laser scanners (MTLS) produce huge 3D point clouds describing the terrestrial surface, from which objects like 
different street furniture can be generated.  Extraction and modelling of the street curb and the street floor from MTLS point clouds 
is important for many applications such as right-of-way asset inventory, road maintenance and city planning. The proposed pipeline 
for the curb and street floor extraction consists of a sequence of five steps: organizing the 3D point cloud and nearest neighbour 
search; 3D density-based segmentation to segment the ground; morphological analysis to refine out the ground segment; derivative 
of Gaussian filtering to detect the curb; solving the travelling salesman problem to form a closed polygon of the curb and point-in-
polygon test to extract the street floor. Two mobile laser scanning datasets of different scenes are tested with the proposed pipeline. 
The results of the extracted curb and street floor are evaluated based on a truth data. The obtained detection rates for the extracted 
street floor for the datasets are 95% and 96.53%. This study presents a novel approach to the detection and extraction of the road 
curb and the street floor from unorganized 3D point clouds captured by MTLS. It utilizes only the 3D coordinates of the point cloud. 
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1. INTRODUCTION 

The market is seeing a rapid growth in the utilization of mobile 
laser scanning systems in many road corridor applications. 
These systems capture huge point clouds that describe a very 
high detailed road scene. These systems are fast and accurate; 
but their use is still limited due to their cost and the huge 
amount of data they capture. It is important to automate the 
detection of different road furniture such as the curb and the 
street floor from the point cloud captured by these systems. The 
curb separates the street floor and side walk and is used to direct 
rainwater into the drainage system. Automatically extracting a 
highly detailed street floor helps in maintaining the pavement 
by estimating the road surface conditions. The location of 
bumps and dips can be detected to estimate the roughness of the 
road surface. The aim of this research is to automatically extract 
both the road curb and the street floor from an unorganized 3D 
point cloud of a road scene captured by a vehicle-based laser 
scanning system named TITAN.  
 
 

2. LITRATURE REVEIW 

Several researchers have proposed different techniques to 
extract the curb and the street floor from different data types, 
like satellite images, aerial imagery, airborne and terrestrial 
LiDAR point cloud. Eloïse et al. (2010) proposed a pipeline for 
extracting and modelling roads as 3D surfaces. They utilized 
both the laser point cloud acquired from a terrestrial mapping 
system and 3D road axes derived from aerial imagery. They 
detected the ground points by utilizing a clustering technique in 
which the seed points are obtained from analysing the elevation 
histogram of each vertical scan line.  

Rao et al. (2006) have presented a method to segment ground 
and non-ground points. It is based on projecting the points onto 
a horizontal plane and then producing an accumulation image of 
cells. A cell is considered a part of the ground segment if it 
contains a few points with a small difference in elevation. The 
problem of this method is that it classifies points belonging to 
bottom of poles and tree trunks as a ground points. Goulette et 
al. (2007) analyzed the histogram of each scan line to detect 
ground points where the ground is a horizontal plane with a 
high point density. They refined the segmented ground by 
utilizing a fuzzy logic algorithm. This method is not applicable 
if the available terrestrial LiDAR data is in an unorganized 
format. 
 
Eloïse et al. (2010) detected the curb stone by analyzing the 
gradient computed over the ground segment. They registered 
the road axes to the point cloud, by which the curb and road 
segments are ordered and connected. Identifying ground points 
by the lowest peak of the elevation histogram is not always 
practical as it includes points belonging to the bottom of objects 
lying on the floor level like, poles, tree trunks and pedestrian 
feet. El-Halawany et al. (2011) utilized an elevation gradient-
based segmentation in 3D and 2D edge detection technique to 
extract the curb. Belton and Bae (2010) proposed a method to 
extract the 2D cross section of the curb by analyzing the curb 
profile. First, they stored the point cloud in a 2D grid, and 
extracted the road surface by selecting the lowest points in 
height in each grid cell. The curb line is extracted by fitting a 
curb profile and joining adjacent profiles to form a line 

representation of the curb. There are two main limitations for 
the proposed method by Belton and Bae. First, they assumed 
that the ground points are located on the lowest, smooth, 
horizontal surface. This assumption is not always true especially 
for roads which have underpasses. Second, identifying the road 
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surface based on the lowest points in height in each grid cell 
and fitting a curb profile will not always work with MLS data, 
which have a different nature compared to data captured by 
stationary scanning. MLS point clouds suffer many problems 
such as data artefacts, a combination of multiple sensors, and 
mis-registrations of multiples drivelines. A different approach 
analyzes the cross section profile by the laser range points 
(Chen et al., 2007). They detected the road boundary by 
analyzing the cross sections profiled by laser range points. 
Because the road surface appears as a straight line in the scan, 
the longest straight line in one scan line can be chosen in order 
to extract the road boundary. Jaakkola et al. (2008) developed a 
method for identifying the road curb from MTLS point clouds. 
This method applies 2D image processing techniques on 
intensity and height images. These images are used to detect the 
curb stones. They applied this method on a short road sample 
with a straight curb in one extension, where the street direction 
is known.  
 
For the extraction of the street floor from aerial LiDAR many 
techniques have been utilized. Alharthy and Bethel (2003) used 
an intensity-based filtering to get road points, then a connected 
components techniques has been used to extract the road 
network. Hatger and Brenner (2003) utilized a GIS map to 
extract the road points. Oude Elberink and Vosselman (2006) 
utilized a 2D topographic database to recognize and model 
height discontinuities between different objects. Choi et al. 
(2007) extracted the road by a series of circle buffering 
clustering points. Jaakola et al. (2008) modelled the road 
surface as a triangulated irregular network by using a Delaunay 
Triangulation, where the input point clouds were in a scan lines 
format, the proposed technique can’t be used with unorganized 
point cloud format. Boyko and Funkhuser (2011) described a 
method for extracting the road from a large scale unstructured 
3D point cloud, the proposed method separates the road from 
the other objects by the aid of a 2D road map. New methods are 
needed to deal with the unorganized 3D point clouds that do not 
have profile information. These methods should be generalized 
in order to deal with different point cloud densities on the street 
floor, different curb shapes and different road side objects. 
 
 

3. STUDY AREA AND DATA 

The utilized data in this study was captured by TITAN. TITAN 
is a mobile laser scanning system for highway corridor surveys; 
it can be deployed on a passenger vehicle or small watercraft, 
(Figure 1). Light detection and ranging (LiDAR), digital 
imagery and video data are collected from the survey platform 
while it is moving at traffic speeds, (Glennie, 2009). The system 
is georeferenced with a high accuracy Global Positioning 
System (GPS) – Inertial Measurement Unit (IMU).  
 

Figure 1. TITAN mobile laser scanning system. 
Left: Close view. Right: Mounted on a truck. 

www.ambercore.com 

The tested datasets represent parts of Auriga Drive and 
Dalhousie Street in Ottawa (Figures 2 and 3). For the Auriga 
Drive dataset, the number of points is ~ 1.4 million and the 
point cloud density is ~ 400 pt/m2 on the street floor. The size 
of the point cloud (∆x, ∆y, ∆z) is approximately (106.4m, 
16.7m, 12.0m). For the Dalhousie Street dataset, the number of 
points is ~ 2.4 million and the point cloud density is ~ 1000 
pt/m2 on the street floor. The size of the point cloud (∆x, ∆y, 
∆z) is (93.2m, 56.7m, 13.5m). 
 

 
Figure 2.  Auriga Dr dataset. Left: Input point cloud. Right: 

www.bing.com. 
 

 
Figure 3.  Dalhousie St dataset. Left: Input point cloud. Right: 

www.bing.com. 
 

These two datasets have been chosen because they have 
different point cloud densities on the street floor, different road 
side objects (bushes in Auriga, building facades in Dalhousie), 
straight and curved curbs. These varieties allow testing the 
performance of the curb and the street floor extraction 
methodology.  
 
 

4. PROPOSED METHODOLOGY 

The proposed pipeline consists of a sequence of five steps 
(Figure 4): organizing the input irregular 3D point cloud and 
nearest neighbour search; density based segmentation to extract 
the ground segment; morphological analysis to refine the 
ground segment; derivative of Gaussian to detect the curb; 
solving the travelling salesman problem to form a closed 
polygon of the curb and point-in-polygon test to extract the 
street floor. The following sub sections describe in details the 
pipeline’s steps. 

 

 
Figure 4.  Street floor extraction pipeline. 
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4.1 First Step 

The utilized data in this study comprise multiple drive lines 
already registered together. This results in an unorganized 3D 
point cloud, which means that there is no neighbourhood 
structure in the point cloud. For organizing the point cloud, K-
D tree data structure technique is applied. This is important in 
order to accelerate the nearest neighbour search. The K-D 
Library for the Approximate Nearest Neighbour searching 
(ANN; Mount and Arya, 2006) has been used. After applying 
the K-D, all points are chosen as query points for the 
neighbourhood search. 
 
4.2 Second Step 

The second step aims at segmenting the point cloud into two 
main segments: ground and non-ground. This utilizes a density-
based filtering. The point density is higher along the trajectory 
of the system and decreases with distance from it. The number 
of points inside a sphere of defined radius is simply counted. 
The density threshold can be set automatically based on the 
mean density of the point cloud on the street floor, which is 
provided by the scanning system and the number of the drive 
lines. By doing so, the street floor, the curb and the sidewalk are 
extracted as the ground segment. On the other hand, most road 
side objects are extracted as non-ground points. These objects 
have a lower point density because they are located away from 
the trajectory of the scanning system.   
 
4.3 Third Step 

The ground segment is refined in the third step in order to 
remove non-ground objects such as parts of trees, poles and 
buildings. This is done by analyzing the morphological 
characteristics of the neighbourhood of every point in the 
ground segment. The morphological characteristics can be 
tested by analyzing the planarity, the surface normal direction 
and the elevation gradient within the neighbourhood. The 
ground segment is refined by removing points that do not have 
a horizontal planar neighbourhood. The result of this step is a 
refined ground segment, which consists of just the street floor, 
the curb and the sidewalk. This segment is utilized as an input 
for the edge detection step. 
 
4.4 Fourth Step 

The fourth step applies a 3D edge detection algorithm to extract 
edges like the curb from the refined ground segment. This is 
performed by utilizing the derivative of the Gaussian function 
(Figure 5). The idea is to apply the 2D image processing edge 
detection techniques like the derivative of the Gaussian function 
in 3D (Equation 1). Equations 2 and 3 define the derivatives of 
the Gaussian in the X and the Y directions. The derivatives are 
computed for the K neighbour points of every query point. 
Then, for every point in the neighborhood the derivatives are 
multiplied by the Z coordinate of the point and summed up over 
the neighborhood. After that, the FÖrstner operator is formed by 
constructing the autocorrelation matrix of derivatives (Equation 
4), (FÖrstner and Gülch, 1987). The autocorrelation matrix 
describes the structure of the neighbourhood, from which the 
neighbourhood can be classified into isolated point, planar 
surface or linear edge. The classification is done based on the 
size (w) and shape (q), (Equations 5 and 6) of the error ellipse 
of the autocorrelation matrix, w and q are computed from the 
eigenvalues (λ1, λ2). These eigenvalues define the axes of the 
error ellipse. They are computed in a closed form based on the 

trace and determinant of the autocorrelation matrix. An interest 
point is present if the given thresholds values wmin and qmin are 
exceeded. 
 

 
Figure 5.  Curb extraction pipeline.  
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where  G= the Gaussian function 
 X, Y= the 2D point coordinates 
 σ = the standard deviation (width of Gaussian curve) 

 
4.5 Fifth Step 

Finally, a closed polygon is constructed from the detected curb 
and a point-in-polygon test is then applied to extract the street 
floor. The travelling salesman problem is solved to construct the 
closed polygon of the curb points and to sort them. This means 
that every two successive points of the curb will form an edge. 
This way of representing the curb as a closed polygon will help 
in extracting the street floor in case of an incomplete curb. The 
point-in-polygon test is simply classifies every point in the 
refined ground segment as either street floor or non-street floor. 
This is based on the crossing number, where the point is 
classified as street floor if the crossing number is odd.  
 

  
5. RESULTS AND DISCUSSION 

Figures 6 and 7 illustrate the distribution of the 3D density for 
both datasets. It is clear that the street floor has higher density 
compared to the other side objects. Figures 8 and 9 show the 
results of the 3D density-based segmentation for the Auriga Dr. 
and Dalhousie St. Datasets, respectively. Figures 8 and 9 (left) 
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show the non-ground segments while the right figures show the 
ground segment. The parameter that has been utilized to 
separate the ground and the non-ground is the number of points 
inside a sphere of radius 20 cm for both datasets.  
 

 
Figure 6.  3D density of Auriga Dr data.  

 

 
Figure 7.  3D density of Dalhousie St data.  

 
As seen in Figures 8 and 9 (right), the extracted ground 
segments include some non-ground objects such as building 
facades, trees and side bushes. These objects are detected and 
removed from the ground segment based on analysing the shape 
and orientation. The thresholds of the refining parameters have 
been defined based on the properties of the objects of interest; 
for example, detecting points which have a horizontal planar 
neighbourhood like the street floor. The orientation of the 
surface normal direction should be close to 90o, the first and the 
second normalized eigenvalues should set close to 0.5 and the 
third one close to zero. The neighbourhood size and the search 
radius are defined based on the density of the point cloud. 
 

 
Figure 8.  Auriga Dr. Left: Non-ground segment. Right: Ground 

segment. 
 

 
Figure 9.  Dalhousie St. Left: Non-ground segment. Right: 

Ground segment.   
 

Figures 10 and 11 show the histograms of the 3D density for 
both datasets. The mean density is used to estimate an initial 

value for the density threshold. The used density thresholds are 
5 and 28 points in a sphere of radius 20 cm for the Auriga and 
Dalhousie datasets, respectively. The Dalhousie dataset has a 
higher threshold because it has a higher density.  
 

 
Figure 10. Histogram of the 3D density of the point cloud- 

Auriga Dr data. 
 

 
Figure 11. Histogram of the 3D density of the point cloud- 

Dalhousie St data. 
 

Figures 12 and 13 (right) show the results of refining the 
ground segments from the non-ground objects. The left figures 
show the non-ground objects that were removed by refining the 
ground segment. The results show that the non-ground segment 
obtained at the second and third steps can be used to detect 
other street furniture such as, poles, signs and trees. Extracting 
these objects becomes easier after removing the ground points. 
For example, the poles will be fully extracted without missing 
their bases as reported by (El-Halawany and Lichti, 2011). This 
is due to removing the ground points surrounding the base of 
the poles. 
 

 
 Figure 12.  Auriga Dr. Left: Non-ground. Right: Refined    

ground segment. 
 

 
Figure 13.  Dalhousie St. Left: Non-ground. Right: Refined 

ground segment. 
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By differentiating the Gaussian function, a more robust edge-
finder is formed. All curb points (Figures 14 and 15, right) have 
q values between 0.5 and 1. Non-curb edges are successfully 
filtered out based on the scaled value of w; the wmin threshold is 
set based on the number of points within the neighbourhood 
and the kernel width of the Gaussian function. The width of the 
Gaussian curve (σ) is set based on the average horizontal 
extension of the cross section of the curb. Some parts of the 
curb (Figures 14 and 15 rights) are missing in the final detected 
curb, especially at the places of road intersections, due to the 
noise in the input point cloud and the utilized thresholds. 

 

 
Figure 14.  The road curb of Auriga Dr. Left: truth data.  

Right: the extracted curb. 
 

 
Figure 15.  The road curb of Dalhousie St.  Left: truth data. 

Right: the extracted. 
 

A manually extracted curb was used to evaluate the extracted 
curb. Table 1 shows how much the extracted curb fits the 
boundary of the street floor (the reference curb in Figure 14 and 
15, left).  The evaluation was performed based on measuring the 
distance between the extracted and the reference curb at each 
point. The K-D tree is utilized to get the closest point in the 
reference curb dataset to every point in the extracted curb 
dataset. The measured distance is close to the normal distance 
between the two curbs due to the highly point cloud density. 
The results show that the maximum distance between the point 
pairs for both datasets is 13 cm and 21 cm for Auriga and 
Dalhousie, respectively. Theses distances are large because 
some of the detected curb points do not represent the curb; they 
represent other edges like parts of parked vehicles and side 
bushes. The standard deviation of 9 cm and 10 cm are 
acceptable compared to the actual point spacing of 7 and 4 cm 
for Auriga Dr. and Dalhousie St. Datasets, respectively. 
 
 

Statistic 
Auriga Dr. 

Dataset 
Dalhousie 
St. Dataset 

Number of automatically 
extracted points 

2181 3396 

Min distance 0.0 cm 0.0 cm 
Max distance 13  cm 21 cm 

Average distance 5.3 cm 6 cm 
Standard deviation 8.9 cm 10 cm 

 
Table 1. Statistical evaluation of the extracted curb. 

Solving the travelling salesman problem for the detect curb 
(Figure 16) allows the construction of a closed polygon and 
sorts the curb points. The sorting is done in order to connect 
every two successive curb points to form an edge. As can be 
seen from the results, the point-in-polygon test has performed 
qualitatively well. 

 
 

 
Figure 16. The closed curb polygon.  Left: Auriga Dr. Right: 

Dalhousie St. 
 
Although the curb is not completely detected, the street floor is 
successfully extracted, (Figures 17 and 18, right). Some parts of 
the street floor are missing due to many reasons such as 
incomplete curb especially at the locations of curved curbs 
(road intersections), the presence of parked vehicles and the 
segmentation and refinement of the ground segment in the 
second and third steps.  
 

 
Figure 17.  The street floor of Auriga Dr. Left: truth data. 

Right: the extracted street floor. 
 

 
Figure 18. The street floor of Dalhousie St. Left: truth data. 

Right: the extracted street floor. 
 

The extracted street floor is evaluated based on a manually 
extracted street floor (truth data). Table 2 lists the precision, 
recall and accuracy of the extracted street floor for both 
datasets.  It is clear that the detection rate in both cases is almost 
the same, the recall and the accuracy of Auriga dataset is higher 
than Dalhousie St. dataset. There are two reasons behind this. 
First, the detected curb is incomplete due to the presence of 
parked vehicles, a pedestrian crosswalk and parking lot 
entrance. Second, the truth street floor data include some parked 
vehicles which are removed from the extracted street floor 
during the refinement process in the third step.  
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 Auriga Dr 
Dataset 

Dalhousie 
St. Dataset 

Precision % 95 96.53 
Recall % 98.8 94.1 

Accuracy % 95.8 91.89 
 

Table 2. Evaluation of the extracted street floor for Auriga Dr. 
and Dalhousie St datasets. 

 
 

6. CONCLUSION AND OUTLOOK 

In this research a pipeline for the curb and the street floor 
extraction from unorganized 3-D point clouds has been 
proposed. The pipeline is split down into 5 main steps. The 
proposed pipeline has been tested with two different datasets 
and the results are evaluated with a truth data. The results 
showed the efficiency of the proposed methodology and its 
applicability with different road scenes that have varieties of 
side objects and different point cloud densities. The results 
show that the non-ground segment obtained at the second and 
third steps can be used to detect other street furniture such as, 
poles, signs and trees. The curb and the street floor extraction 
results are quite promising in term of the utilization of only the 
3D coordinates of the point cloud without utilizing any 
additional information. This study presents a novel approach to 
the detection and extraction of the road curb and the street floor 
from an unorganized 3D point clouds captured by an MTLS.  
 
Future work will be focused on testing the proposed 
methodology on different road scenes. It will also focus on 
reducing the number of the processing steps and the extraction 
parameters. It is also planned for further research to tune and 
automatically determining the thresholds for the extraction 
parameters.  
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