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ABSTRACT: 

 

Automated close-range photogrammetric network orientation has traditionally been associated with the use of coded targets in the 

object space to allow for an initial relative orientation (RO) and subsequent spatial resection of the images. Over the past decade, 

automated orientation via feature-based matching (FBM) techniques has attracted renewed research attention in both the 

photogrammetry and computer vision (CV) communities. This is largely due to advances made towards the goal of automated 

relative orientation of multi-image networks covering untargetted (markerless) objects. There are now a number of CV-based 

algorithms, with accompanying open-source software, that can achieve multi-image orientation within narrow-baseline networks. 

From a photogrammetric standpoint, the results are typically disappointing as the metric integrity of the resulting models is generally 

poor, or even unknown, while the number of outliers within the image matching and triangulation is large, and generally too large to 

allow relative orientation (RO) via the commonly used coplanarity equations. On the other hand, there are few examples within the 

photogrammetric research field of automated markerless camera calibration to metric tolerances, and these too are restricted to 

narrow-baseline, low-convergence imaging geometry. The objective addressed in this paper is markerless automatic multi-image 

orientation, maintaining metric integrity, within networks that incorporate wide-baseline imagery. By wide-baseline we imply 

convergent multi-image configurations with convergence angles of up to around 90o. An associated aim is provision of a fast, fully 

automated process, which can be performed without user intervention. For this purpose, various algorithms require optimisation to 

allow parallel processing utilising multiple PC cores and graphics processing units (GPUs). 

 

 

1. INTRODUCTION 

Automated network orientation via coded targets commonly 

leads to a precise calculation of the object space coordinates due 

to the integrity and highly accuracy of the image point 

correspondence determination. In addition, and contrary to the 

currently developed feature-based matching orientation 

techniques, there are no factors that limit the development of a 

highly convergent and consequently geometrically strong 

photogrammetric network. It has been shown by Jazayeri (2010) 

and Barazzetti (2011a) that the matching accuracy achieved by 

feature-based matching (FBM) procedures is approximately 0.3 

pixels. Additionally, Remondino et al. (2006) has shown that 

the image coordinates of the homologous points extracted using 

FBM can be further improved through use of least-squares 

matching (LSM) techniques. An increase to approximately 0.25 

pixels (Barazzetti, 2011a) can be anticipated in such cases, but 

this will not have a significant impact in the resulting accuracy 

of the photogrammetric network. 

 

Considering that the accuracy of the current state of the art 

FBM algorithms is unlikely to be further improved, the focus 

should instead be placed on the design and optimisation of the 

network geometry. Thus, the topic of this paper concerns the 

development of algorithms that will allow the successful 

orientation of highly convergent multi-image networks. The 

approach developed starts with the familiar feature extraction 

stage via algorithms such as SIFT (Lowe, 1999) and SURF 

(Bay et al., 2008) to provide possible common points among 

images. This produces both valid matching points and a large 

percentage of outliers. The prime objective then is to develop a 

photogrammetric methodology to effectively filter out these 2D 

image point outliers within image pairs, such that the remaining 

valid matches can be used to perform a robust multi-image RO 

to sub-pixel accuracy.  A secondary objective is to try and make 

this procedure more efficient in order for it to be performed in a 

timely manner. For this purpose, selected algorithms are 

implemented to run in parallel either in the CPU or GPU. 

General-Purpose computation on Graphics Processing Units 

(GPGPU) has helped to solve various computationally intensive 

problems due to the high-performance of the GPUs, which are 

comprised of many core processors capable of very high 

computation and data throughput. 

 

 

2. POINT CORRESPONDENCE CALCULATION 

The proposed methodology, shown in Figure 1, starts with 

feature point extraction and description through the use of an 

algorithm such as SIFT or SURF. It should be noted that image 

detectors and descriptors do not provide matches but their 

purpose is limited to the detection and description of feature 

points in one image. An additional step is required to find point 

correspondences for two or more images. Feature descriptors 

calculate a vector of 64 or 128 dimensions to describe an 

interest point. The descriptor vector can be utilised to match 

points in different images. For an interest point that is visible in 

a pair of images, the feature descriptor algorithm is expected to 

return almost identical descriptor vectors. Typically, the 

Euclidean length of the descriptor vector is used to quantify 

such a relationship. Thus, the process of finding point 

correspondences involves the calculation and comparison of all 
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the descriptor lengths in order to find the best possible matches. 

However, since in many cases images contain repetitive patterns 

or features, the descriptor vectors are not unique. As a result, 

this procedure produces both valid matching points and a large 

percentage of outliers, as shown in Figure 2. 

 

 

Indisputably, the computational cost of finding potential 

homologous points can be very high and it is highly dependent 

on the number of interest points. For example, to find the best 

match of an interest point in another image having N interest 

points, N descriptor vector length calculations and searches are 

required. This problem is commonly known as nearest 

neighbour (NN) search and its computational cost is O(N) if all 

the distances among descriptor vectors have already been 

calculated.  One solution is to limit the number of points so that 

the calculations can be performed in a timely manner. This can 

be optimally achieved by using a threshold in the interest point 

detector stage in order to obtain points with high affine 

invariance response only. While this is expected to provide 

sufficient matches for narrow baseline imagery due to the small 

angle variation and consequently high similarity of features, it 

can certainly pose a problem in highly convergent imagery 

where the resultant points in each image might not be common. 

Thus, in order to increase the number of possible matches for 

wide baseline imagery, it is imperative that no threshold is used 

for the interest point detection stage. 

 

 
 

Figure 2. SURF matching results for an image pair 

 

However, as already mentioned, an increased number of points 

will lead to an extensive number of calculations. Barazzetti 

(2011a) proposed the use of a kd-tree to organise the data and 

optimise the calculations of the NN search. Due to the way that 

the kd-tree stores data in memory, it is able to perform this 

search efficiently by using the tree properties to quickly 

eliminate large portions of the search space. The computational 

cost of a NN search after building the kd-tree is O(logN) 

compared to O(N) when a simple linear search is performed. In 

order to further optimise this procedure an implementation of 

the kd-tree that runs in parallel within the available CPU cores 

was developed. The kd-tree is a highly scalable algorithm and 

the availability of each extra CPU core can halve the calculation 

time. For example, in an 8-core CPU the computation of 

corresponding matches for a pair of images where the number 

of extracted SURF points exceeded 20 thousand per image was 

approximately 15s. 

 

In the initial matching, a large number of outliers emerge, 

especially in situations where images contain similar patterns or 

features. This can preclude a successful RO. An additional 

advantage of the kd-tree is the ability to perform k-nearest 

neighbour searches (kNN). This allows the calculation of not 

only the best match for a point pair, but also potentially the k 

best matches. This information can be used in the point 

correspondence calculation stage to filter similar descriptor 

vectors. This can easily be achieved by setting a criterion so that 

the difference in the descriptor length of the first and second 

best match for each point is more than 60%, for example. It 

should be noted, however, that this does not constrain one point 

from being uniquely matched, and consequently an additional 

filtering process has to be performed so that a one-to-one 

relationship between the feature point matches is ensured. 

Figure 3, shows the SURF results that were previously 

presented in Figure 2 after the application of this filtering 

procedure. 

 

While the kd-tree algorithm offers various advantages it can 

also suffer from what is known the curse of dimensionality. For 

a large number of points and especially with high 

 

Figure 1. Flowchart of the proposed matching methodology 
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dimensionality, in this case 64 or 128, the speed of the 

algorithm is only slightly better than a linear search of all of the 

points. For this reason investigations in the field of GPGPU 

were initiated. The computer science community has researched 

extensively on this problem but even though GPU kNN 

solutions have been presented, there are certain limitations 

associated with them, mainly related to the size of the datasets 

that can be processed.  

 

     

Figure 3. SURF matching results after distance threshold and 

one-to-one relationship restrictions applied. 

 

The solution developed for this research is based on that 

proposed by Garcia et al. (2008), with the difference that 

various optimisations have been applied in order to address any 

shortcomings. The algorithm developed is written in the CUDA 

programming language and can easily be employed as part of 

any program developed in the C or C++ programming 

languages. CUDA has been actively developed by NVIDIA and 

as a consequence it is only available for NVIDIA GPUs. While 

alternative options exist, CUDA is certainly the only one that 

has achieved wide adoption and usage.  

 

With the use of the GPU the calculation time of a kNN search is 

reduced dramatically. The required time for a pair of images 

containing approximately 300,000 points each, is two minutes 

when performed by the GPU. Such calculation times would be 

impossible to reach using the CPU, even when parallel kNN 

implementation is employed. Additionally, in order to provide a 

direct comparison to the parallel CPU kNN implementation, a 

search for a pair of images where the number of extracted 

SURF points exceeded 20,000 per image is a matter of a few 

hundred milliseconds when performed in the GPU. The above 

calculations were performed with an NVIDIA GPU using the 

available 192 cores. A significant performance gain could be 

anticipated when a state of the art GPU with 1536 cores is 

employed due to the parallel execution of the calculations. 

 

 

3. POINT CORRESPONDENCE REFINEMENT 

At this stage it is considered that the point correspondence has 

been calculated and that a one-to-one relationship has been 

established, as previously mentioned. It should be noted that 

even if a higher distance threshold between the first and second 

best match is used, it can never be ensured that outliers will be 

absent from the data and this is why an additional refinement 

step is required. For this additional stage of filtering, two 

similar quasi-RANSAC approaches are proposed, one based on 

the affine and the other on the projective model. This 

refinement procedure is premised on the assumption that point 

correspondences for pairs of images have been successfully 

established and consequently transformations such as the affine 

or projective can be used to transfer points from one image to 

the other. In the next paragraphs it will be explained how this 

process can be used to filter outliers. The process can be split 

into four distinct phases, as indicated in Figure 1. The first 

phase is different, depending on the transformation model used 

while the remaining phases are identical regardless of the 

transformation used. 

 

While an affine transformation cannot model the pinhole 

camera model accurately at whole-image scale, it can 

adequately do so for smaller areas. For an optimal geometry and 

utilisation of all the currently matched points, a 2D Delaunay 

triangulation takes place. This triangulation need only be 

performed in one image of the pair. As the affine transformation 

requires a minimum of three homologous 2D points, the formed 

triangles are used to calculate all the local affine 

transformations.  

 

The projective model can also account for image skew and can 

thus handle image transformations better than the affine model. 

However, the projective transformation has eight unknown 

parameters so four identical points are required for the 

calculation of each of the local transformations. In a similar 

manner to the triangulation process, a quadrangulation process 

takes place. In order to calculate the quadrangles, a 2D 

Delaunay triangulation is initially performed. Then, pairs of 

triangles that share a common line are merged to form a 

quadrilateral.  

 

The second step of this methodology is the same for both 

transformation models and is based on data mining algorithms. 

Its purpose is to identify the clustering structure of the local 

transformation parameters and the consequently the outliers. 

Following a careful literature review, an algorithm known as 

DBSCAN (Ester et al., 1996) was selected for both its 

efficiency and speed. DBSCAN was proposed to cluster data 

based on the notion of density reachability. Basically, 

neighbouring points are merged in the same cluster as long as 

they are density reachable from at least one point of the cluster. 

Additional criteria such as minimum points per cluster can 

easily be assigned. As a result, transformations that are not part 

of any cluster are considered as outliers and removed. A 

variation of this algorithm, known as OPTICS (Ankerst et al., 

1999) can also be used for this purpose. OPTICS aims to deal 

with DBSCAN’s major weakness, the problem of detecting 

clusters of varying density. 

 

The third phase of the filtering approach employs one of the 

simplest clustering algorithms, the k-means algorithm. The k-

means algorithm clusters the filtered transformation parameters 

into k clusters so that each belongs to the cluster with the 

nearest mean. In this case the transformation parameters are 

clustered using the Euclidean distance as a metric. Figure 4, 

highlights the basis on which this phase is applied. Erroneous 

matches, marked in red in Figure 4, will certainly result in 

affine or projective parameters that are not similar to any of the 

correct local transformations. As a consequence they are not 

expected to be grouped with any other transformation 

parameters.  

 

However, in some cases it occurred that a few erroneous 

transformations were grouped together due to neighbouring 

mismatches. This resulted in another criterion being added so 

that each group would contain a minimum of eight 

transformations. Consequently, clusters containing less than 

eight transformations were deemed to be outliers. It is important 
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to note that the removal of outliers at any of the aforementioned 

phases does not necessarily disregard a feature point, since each 

point can take place in many transformations. Figure 4, for 

example, shows that the central feature point participates in a 

total of six affine transformations. The biggest problem of the k-

means algorithm is that there is no notion of outliers and this is 

the main reason that the previous clustering phase was 

employed along with the additional criteria to ensure that the 

majority of outliers are removed. 

 

In this research, a variation of the typical k-means was used 

where the number of groups returned, which is not necessarily 

k, is optimised depending on the input data. The advantage of 

this algorithmic variation is that a large value can be set as the 

number of the required clusters without worrying about 

data/cluster fragmentation, since the value can change 

dynamically. In addition, a different algorithm, known as k-

means++ (Arthur et al., 2007), was used for the calculation of 

the initial values of the k-means clustering algorithm in order to 

avoid poor clustering results. This algorithm is also reported to 

offer speed and accuracy improvements compared to the 

traditional k-means. Parallel implementations of both k-means 

and k-means++ algorithms were developed in order to make the 

calculations even more efficient.  

 

 

Figure 4. An erroneous 2D point and the resultant 

triangulation are displayed. 

 

The fourth and final step of the filtering procedure involves a 

rigorous least squares (LS) adjustment with outlier detection. 

This is performed for each cluster. In this phase, the actual 2D 

points that comprised every transformation are used to calculate 

the affine or projective parameters for the whole group. A 

rejection threshold is set for the process in order to remove any 

points that have a high residual and are potentially outliers. This 

threshold is calculated dynamically during every iteration of the 

LS adjustment while the value of one pixel is set as the 

maximum. The dynamically calculated value is set as three 

times the RMS of the transformation. This ensures the integrity 

of the transformation for groups containing either good or bad 

matches. While this threshold might seem strict, experimental 

evaluation has shown that it performs very well, even when 

uncalibrated cameras are used. The reason for this lies in the 

clustering of the similar transformation parameters. 

 

 

4. AUTOMATED NETWORK ORIENTATION 

With the procedure described above, correct 2D 

correspondences among pairs of images can be found. By doing 

so, the orientation of an arbitrary number of images is reduced 

to the same process as orienting image networks that employ 

targets. The difference with this technique compared to 

previously reported approaches, for example Barazzetti (2011a), 

is that there is no need to orient the images in a sequential order, 

since 2D point matches among images are known a-priori. This 

circumvents the need for a sequential orientation of the 

photogrammetric network. Figure 5, shows a photogrammetric 

network comprised of 14 images, where a 7-ray point is 

highlighted. 

 

An optional procedure can be implemented to strengthen the 

network after the automated orientation process is complete. 

Additionally, this procedure can be utilised for the addition of 

new 2D point correspondences to the network. In the point 

correspondence determination process for non-coded targets, 

which employs geometric constraints, candidate 3D points 

obtained via initial 2-ray intersection are back-projected to each 

image in order to find additional corresponding 2D observations 

in close proximity to the back-projected points. If an existing 

3D point is found, the 2D measurement is added as a new 

observation. If no 3D point is found, a new 3D point is added to 

the network. 
 

 

This procedure does not cause any problems for the structured 

scenes typically present in close-range photogrammetric 

applications. On the other hand, feature extraction algorithms 

provide numerous points so on many occasions the back 

projection of multiple 3D points can occur within the area 

covered by a single pixel due to the ability of sub-pixel 

matching. Thus, in order for the geometrically constrained point 

correspondence determination to be successful, highly accurate 

interior orientation (IO) parameters have to be known. 

Additionally, this procedure can be further optimised to work 

with uncalibrated cameras by using the feature descriptor 

information that is available.  

 

Figure 6 shows the proposed algorithm where new 2D point 

correspondences are added to the network, or additional rays are 

added to existing 3D points sequentially. This procedure has 

also been implemented to run in parallel. The use of the feature 

descriptor allows the search to be limited to a specific number 

of points, making this procedure much more efficient and 

reliable for cases where the IO is not known. It is noteworthy 

that due to the nature of typical close-range photogrammetric 

measurements employing targets in the object space, a specific 

number of 2D points usually exist in an image. However, when 

feature extraction algorithms are employed a few hundred 

thousand 2D points can be anticipated. Searching for matches 

using a geometric constraint can be quite slow in such cases as 

all the 2D points have to be traversed. 

 

 

 

Figure 5. Automated targetless orientation of a 

photogrammetric network comprised of 14 images. 
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5. EXPERIMENTAL EVALUATION 

A number of experimental tests were conducted to evaluate the 

proposed methodology. Software was developed in C++ and 

CUDA and integrated into the iWitnessPRO (Photometrix, 

2012) software package to allow for easier testing. The scope of 

the testing covered both image pairs, with convergence angles 

of up to 90o, as well as existing multi-image photogrammetric 

data sets. During this testing procedure both the affine and the 

projective model were evaluated. As anticipated, the projective 

model performed better than the affine model, the latter often 

rejecting a number of correct point matches as well. 

 

 

Figures 7 shows a characteristic image of one photogrammetric 

network, as well the resultant geometry of the object space. It 

aims to highlight that the present methodology does not have 

any issues with repetitive patterns. Figure 8 displays the amount 

of information that can be extracted from narrow baseline 

imagery, even though repetitive patterns are present. 

Additionally, in order to ascertain the reliability of the algorithm 

in cases of repetitive patterns, various tests with images 

displaying different parts of the same object were performed. In 

such cases the algorithm correctly returned no point 

correspondences. 

 

  

Figure 7. A characteristic image of the photogrammetric 

network along with the resultant object space. 

 

Finally, existing photogrammetric networks that employed 

coded targets were solved using both the proposed and the 

‘standard’ automated approach in order to compare the 

computed interior orientation (IO) and exterior orientation (EO). 

This investigation showed no significant variation in the results 

obtained, either in IO or EO determination. Barazzetti et al. 

(2011b) also performed a similar investigation for a targetless 

camera calibration procedure and reported a similarly successful 

outcome. 

 
 

 

 

Figure 8. Matching results for a pair of images. The resulting 

object array contained 2706 points. 

 

 

6. CONCLUSION 

Through adoption of the filtering process developed in the 

reported research, it was possible to filter all mismatched points 

and successfully perform a RO using the coplanarity condition 

equations. Results presented in the paper demonstrate that the 

approach developed can orient pairs of highly convergent 

images without the need for targets. This highlights the benefits 

of using the proposed filtering approach, as it allows subsequent 

automatic orientation of networks comprising an arbitary 

number of images. The performance of the methodology is 

impressive in terms of the time required to detect, describe and 

match the feature points, along with the filtering methods 

introduced. Parallel processing implementations in the CPU as 

well the GPU provided a significant performance boost to the 

algorithms, as the filtering and RO stage could be performed in 

less than a second in cases where the number of extracted SURF 

points exceeded 40,000 per image. Finally, it is noteworthy that 

an image matching accuracy of better than a 0.3 pixels was 

attained, not atypical for many moderate-accuracy close-range 

photogrammetric measurement applications. 
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