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ABSTRACT:

The application of perspective camera systems in photogrammetry and computer vision is state of the art. In recent years non-
perspective and especially omnidirectional camera systems were increasingly used in close-range photogrammetry tasks. In general
perspective camera model, i. e. pinhole model, cannot be applied when using non-perspective camera systems. However, several cam-
era models for different omnidirectional camera systems are proposed in literature. Using different types of cameras in a heterogeneous
camera system may lead to an advantageous combination. The advantages of different camera systems, e. g. field of view and resolu-
tion, result in a new enhanced camera system. If these different kinds of cameras can be modeled, using a unified camera model, the
total calibration process can be simplified. Sometimes it is not possible to give the specific camera model in advance. In these cases
a generic approach is helpful. Furthermore, a simple stereo reconstruction becomes possible using a fisheye and a perspective camera
for example. In this paper camera models for perspective, wide-angle and omnidirectional camera systems are evaluated. The crucial
initialization of the model’s parameters is conducted using a generic method that is independent of the particular camera system. The
accuracy of this generic camera calibration approach is evaluated by calibration of a dozen of real camera systems. It will be shown,
that a unified method of modeling, parameter approximation and calibration of interior and exterior orientation can be applied to derive
3D object data.

1 INTRODUCTION

The calibration of cameras is a very basic task in photogram-
metry and computer vision. The modeling of object and image
point projection is inevitable to derive accurate measurements
from camera images. Perspective projection is the most com-
monly used projection model in this context. In many cases,
this model is able to yield sub-pixel accurate camera calibrations.
However, this model is inappropriate for omnidirectional or wide-
angle camera systems, e. g. fisheye or catadioptric. Due to their
advantage of an extended field of view these camera systems be-
come increasingly popular. Therefore less cameras are necessary
to project an area in object space than using conventional camera
systems. Like perspective camera systems omnidirectional ones
can be used for stereographic tasks. However, there are some dis-
advantages like less resolution and a more complex optical de-
sign compared to perspective cameras. For modeling such ex-
tensive field of view systems particular models are necessary. In
literature exist many camera models for wide-angle and fisheye
lens camera systems which require different calibration methods
(Basu and Licardie, 1995, Fleck, 1995, Gennery, 2006, Kumler,
2000, Miyamoto, 1964). In contrast, a common approach of mod-
eling catadioptric systems has been established in literature that
holds true for an entire class of catadioptrics (Baker and Nayar,
1999, Geyer and Daniilidis, 2000). Hence, every particular cam-
era system has its own appropriate camera model. Additionally
it is often difficult to decide in advance which model is appro-
priate for a particular camera system. In these cases a general
model is useful that is able to model the majority of commonly
used camera systems. Such a general model relates any image
point to a unique direction in object space. There are different
approaches to model this relation. The most general approach is
a non-parametric or local one. This approach relates every single

pixel with a direction in object space (Ramalingam et al., 2005).
There are no explicit constraints for neighboring pixels. The rela-
tions of neighbor-pixels can be totally different and therefore the
modeling of almost any camera system is possible. In contrast,
the parametric or global approach gives a definition for image-
object-point mapping that is valid for the whole image plane and
depends only on the position of a pixel and a small set of pa-
rameters (Sturm et al., 2011). Because commonly used camera
systems in photogrammetry and computer vision project object
points in a regular manner, i. e. analytically, the parametric mod-
eling approach will be used here. Additionally, a generic model
makes an universal application possible and a prior determination
of an appropriate particular camera model unnecessary. Generic
parametric models for at least two different camera systems have
been introduced in literature (Fitzgibbon, 2001, Gennery, 2006,
Geyer and Daniilidis, 2000). These types of models render the
calibration of certain amount of non-perspective camera systems
possible, including perspective ones and are not restricted to a
single camera. Despite the generic character of such a model an
additional distortion model is still necessary to compensate for
lens effects.

The actual calibration, i.e. determination of the model’s parame-
ters, will be carried out using object and image point correspon-
dences. A maximum likelihood estimation (MLE) algorithm is
used for full scale parameter estimation (Marquardt, 1963). Due
to the non-linear character of the projection model it has to be
linearized before applying the MLE algorithm. Linearization re-
quires estimated values of each parameter. Deriving these initial
values is the challenging part of the total method. Furthermore
the method of deriving these initial parameters has to be as uni-
versal as the overall method is, in order to calibrate different cam-
era classes with a unitary method. The radial alignment constraint
(RAC) proposed by Tsai (Tsai, 1987) is invariant to radial com-
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ponent of the projection model. Camera classes differ basically
in their radial projection component. Therefore the RAC pro-
vides a unified method of deriving initial parameter values. The
combination of a generic camera model and an universal initial
value estimation yields a unified method of camera calibration.
Such a method is applicable to the vast majority of camera sys-
tems used in close-range photogrammetry and computer vision.
This means the successful calibration of perspective, wide angle,
telephoto, fisheye and catadioptric camera systems (with or with-
out single viewpoint) with a common method is possible. Having
such a generic calibration, two arbitary cameras, e.g. wide angle
and fisheye or catadioptric and fisheye, can be used for stereo ap-
plication. For validation of the proposed method real single and
stereo camera systems were calibrated. Results are presented in
the respective section of this paper.

2 CAMERA CLASSES AND MODELING

In the following section commonly used camera systems are clas-
sified according to their optomechanics. Every class and their
camera models mainly used in literature will be introduced. There
are three main classes: dipotrics, catoptrics and catadioptrics.
Where dioptrics are made solely of lenses and catoptrics solely of
mirrors, catadioptrics represent a combination of both. Generally
only dioptrics and catadioptrics are used in close-range metrol-
ogy. Therefore catoptrics will be left out in the remaining part of
this paper. The remaining two classes can be further divided into
two sub-classes.
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Figure 1: Shifting of projection center along optical axis

One subclass consists of camera systems where all object rays
intersect approximately in one unique point, i. e. the projection
center. This constraint is called single viewpoint (SVP). All other
camera systems that do not obey the SVP, i. e. with many pro-
jection centers, represent the other subclass. An incident angle
dependent projection center is depicted in figure 1. Here, the
intersection of object ray and optical axis depends on the inclina-
tion and is shifted accordingly on the optical axis. The approach
of parametric camera modeling defines a mathematical projection
that is based on a small set of parameters, which projects a partic-
ular object ray, represented by its incident angle θ, onto an unique
image point, represented by its radial distance r to the principal
point, and vice versa.

r = f(Ω, θ) (1)

This modeling is based on two assumptions. Firstly, the azimuth
of the object ray is invariant to the projection and therefore con-

stant. Secondly, the camera model is strictly monotonous. The
second assumption is quite obvious because it implies that each
image point represents an unique object ray.

2.1 Dioptrics

Light refracting optical systems consisting of lenses are called
dioptrics. This class includes short and long focal length lens
systems which cover most of the commonly used camera systems
in close-range metrology. For physical background and further
details please refer to textbooks like (Born et al., 1959, Hecht,
2002). The pinhole model is mostly used as the camera model of
vision systems of this class. The relation of inclination angle θ
and radius r of its projected image is given by:

r = c tan θ (2)

Where c is the principal distance. This parameter represents the
distance along the principle axis between projection center O
and image plane. The principal axis is perpendicular to the im-
age plane. The projection center represents the pinhole where
all object rays meet. Therefore, this model obeys the SVP con-
straint. The pinhole model realizes the perspective projection.
Figure 2 depicts the functional relation of the perspective projec-
tion. It is shown that either image radius or principal distance
has to be small to realize wide field of views with the perspective
model. Additionally, typical sensor sizes are depicted. The ac-
cording principal distance yields the largest possible inclination
angle. The asymptote is due to the definition of tangent. This
characteristics underline that the perspective camera model is not
appropriate for modeling of wide angle camera systems having
long focal distances. According to the perspective model the
radius increases significantly when inclination angle increases.
This would lead to huge sensors for wide angle camera systems
or physically impossible short focal lengths. To allow wide field
of views a different camera model is necessary, because gener-
ally wide angle lenses do not obey the perspective camera model.
These models reduce radii of large inclinations compared to the
perspective model.
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Figure 2: Perspective camera model

Furthermore, some of these models allow for field of views larger
than 180◦. Such models are evaluated in (Fleck, 1995) and de-
picted in figure 3. The stereographic, equidistant and equi-solid
angle models are suited best to model camera systems with ex-
tensive field of views. These kinds of trigonometric models can
be merged into a one-parameter model using Gennerys approach
(Gennery, 2006):

r = c
sin (Lθ)

L cos (max (0, Lθ))
(3)
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An often used camera system of the class of dioptrics is the fish-
eye lens. In literature many models for fisheyes were proposed
and no single model has become widely accepted. Fisheyes do
not obey the SVP constraint. A schematic ray tracing is depicted
in figure 4. The imaginary non-refracted object rays are tangent
to a caustic and intersect with the optical axis accordingly.
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Figure 3: Trigonometric camera models

The shift of projection center can be modeled as follows (Gen-
nery, 2006):

r =
(
c′ + ∆c (θ)

)
f (Ω, θ) (4)

with:
∆c =

(
θ

sin θ
− 1
)∑

i

kiθ
2i (5)

Our own experiments showed that the trigonometric part of for-
mula 5 is insignificant. The shifting of projection center can be
modeled accurately by using a polynomial only:

∆c =
∑
i

kiθ
2i (6)

Often the actual amount of shift is rather small. That is why many
authors approximate it by using a single projection center. One
example is the fisheye. In literature the equidistant model is often
used as an ideal model for fisheyes. This model is defined as
follows:

r = cθ (7)

Another common approach for fisheye modeling is a polynomial:

r =
∑
i

kiθ
2i+1 (8)

Formula 6 can be reformed as follows:

r =
∑
i

kiθ
2i+1 = k1

(
1 +

∑
i=1

hiθ
2i

)
θ (9)

caustic

Figure 4: Schematical raytracing of a fisheye

This results in the aforementioned equidistant model with sup-
plemental modeling of projection center shifting as in formula 6.
That means polynomial modeling as in equation 8 implicitly in-
cludes projection center shifting. Hence, polynomial is adequate
as a generic model for fisheyes an many other camera systems
with inclination angle dependent projections centers.

2.2 Catadioptrics

According to Hecht (Hecht, 2002) catadioptric are imaging sys-
tems made of a combination of lenses and mirrors. Generally,
these camera systems include one mirror shaped as a rotated conic
section and a dioptric camera system which projects the mirror’s
surface onto an image plane. Baker and Nayar (Baker and Nayar,
1999) derived the basis for application of these camera systems
in photogrammetry and computer vision. They gave a formaliza-
tion for this camera class. This formalization was the basis for
catadioptric model proposed by Geyer and Daniilidis (Geyer and
Daniilidis, 2000). This analytic model describes the whole class
of catadioptric systems that obey the SVP contraint. This model
is depicted schematically in figure 5. The object point is projected
onto a unit sphere first. The sphere’s center is the common pro-
jection center of all object rays. The intersections of the sphere
and the object rays are projected onto an image plane via a second
projection center O. This is the projection center of the dioptric
camera system, which is in many cases a perspective one.

Figure 5: Catadioptric model according to Geyer and Daniilidis

The functional relationship of this model is given by:

r =
sin θ

cos θ ± L (10)
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The usage, calibration and modeling of catadipotrics are compre-
hensively described in literature. A more profound understand-
ing of catadioptrics is givenin literature(Baker and Nayar, 1999,
Geyer and Daniilidis, 2000).

3 GENERIC PROJECTION MODELS

In this section we introduce an approach that is able to model all
camera systems described in section 2. This will be called the
generic camera model in the following. The model in equation 3
as well as equation 10 are suitable as generic models. Also the
polynomial in equation 8 as an approximation of other models
is suitable as a generic camera model. Furthermore there exists
an approach in literature (Fitzgibbon, 2001) that is often used in
this context. The division model proposed by Fitzgibbon can be
generalized to a rational function and is also evaluated to serve as
generic model:

r =
k1θ + k3θ

3 + k5θ
5 + . . .

1 + k2θ2 + k4θ4 + . . .
(11)

Table 1 summarizes the theoretical projection characteristics of
the aforementioned candidates for generic model in terms of mod-
eling the specific camera systems of the introduced classes. Gen-
nery’s model is equivalent to the dioptric’s models. The ability
to model catadioptrics is limited and depends on the particular
system. Generally speaking, it is not appropriate to model cata-
dioptrics. Geyer and Daniilidis’s (GaD) model is partly equiv-
alent and approximates the rest of the dioptrics models with an
accuracy of less than 1%. That is why this model is also not ad-
equate to serve as a generic model. Both of the polynomial and
the rational function show a complexity depended ability to ap-
proximated camera models introduced in this paper. To summa-
rize, both models perform equally well in terms of approximating
specific models. Generally, they incorporate two parameters to
yield accuracies below 1%. Soley approximating the perspective
model, the polynomial is not appropriate in cases of wide field of
views.

Despite both approximating models are not equivalent to the ma-
jority of the models there are some important advantages over
Gennery’s or GaD’s models. These two models showed an accu-
racy and applicability which is independent of the camera class.
Furthermore they are able to cope with a mixture of models eval-
uated in this paper. These conclusions are drawn from camera
systems which obey one of the aforementioned models. Usually,
this is not true in reality and the conclusions are not valid for real
camera systems. An evaluation of these models using real camera
systems is given in section 4.2. In most cases of calibrating real
camera systems a supplemental distortion model is needed. This
is because the proposed generic models only include radial sym-
metric projection components. Hence, there is no need to include
a radially symmetric distortion model. Including it in optimiza-
tion may lead to an unstable solution or will not converge.

4 CALIBRATION

The calibration of camera systems using the models introduced
in the sections 2 and 3 is to be done in a classic manner. A pho-
togrammetric target is set up and calibrated precisely. Figure 6
shows the calibration target used in this work. The centers of
the ellipses were determined as precise as 15µm. By employing
the information about ellipse centers in image and object space,
the model’s parameters can be determined. The observed object
points of the calibration target are projected into image space.

The projected position is compared to the actual (measured) po-
sition in image space. Parameters are optimized until both of the
positions coincide best and the RMS is minimal.

Figure 6: Calibration target with calibrated bars

Actual optimization is conducted using the robust Levenberg-
Marquardt algorithm (LMA). About a dozen of images with dif-
ferent orientations and swing yield point correlations. These cor-
relations are used by the maximum likelihood estimation of the
model parameters. In case of the polynomial the function to be
optimized is defined by:

[
x
y

]
=

∑
i

kiθ
2i+1

√
X2 + Y 2

[
X
Y

]
+

[
xdist
ydist

]
(12)

4.1 Initial values

Since equation 12 is non-linear it has to be linearized prior to pa-
rameter estimation. The linearization depends on adequate initial
values of the parameters (Taylor approximation). The determina-
tion of these initial values is the main challenge of the proposed
algorithm of generic camera calibration. The estimation of initial
values should be independent of the actual camera class. The ra-
dial alignment constraint (RAC) is an appropriate method to do
so. The RAC makes use of the invariance of the object ray az-
imuth described before. The direction in xy-plane is preserved.
The context is depicted in figure 7 and can be formulated mathe-
matically by equation 13:

~p ‖ ~r → ~p× ~r =

[
Y
Y

]
×
[
x
y

]
= Xy − Yx = 0 (13)

A direct linear transformation of equation 13 yields parts of the
parameters to be optimized. Further details are given in (Tsai,
1987). Both of the values of Z and c that cannot be determined
by this algorithm are derived in a subsequent step. The generic
polynomial and parameter values derived so far are used to set up
another MLE that solve for Z and c.

The combination of the aforementioned initial value determina-
tion and the full scale optimization using LMA leads to a generic
calibration method. This method can be used for calibration of
dioptric as well as catadioptric camera systems.

4.2 Results of calibration

The proposed method of calibration and generic models were
used to calibrate a multitude of different camera systems. Such
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Gennery GaD polynomial rational function.
perspective equivalent equivalent 3(60◦), 4(70◦) 2

stereographic equivalent equivalent 2 2

equidistant equivalent < 1% equivalent equivalent
equi-solid angle equivalent < 1% 2 2

orthogonal equivalent (equivalent) 2 2

Gennery limited 2− 4 2

GaD limited 2− 4 2

Table 1: Theoretical ability of approximation of camera models (amount of parameters)

Figure 7: Radial alignment constraint

systems include cellular cameras, webcams, off-the-shelf ama-
teur and professional cameras, industrial cameras with different
lenses like wide-angles or fisheyes as well as catadioptric sys-
tems. All systems could be calibrated with sub-pixel accuracy in
image space. The RMS was 0.2 pixels on average. Table 2 dis-
plays five showcase camera systems. These systems include two
catadioptrics, a fisheye and a short and one long focal length lens
camera system. The first column shows the values of trigonomet-
ric models as reference. The orthogonal model performs best.
Nevertheless, it has to be extended with a distortion model using
two up to four radial parameters. In opposition to the theoretical
conclusions with ideal conditions both of the models of Gennery
and GaD have to be extended by an appropriate radial distortion
model.

One up to three additional parameters were included in the radial
distortion model to yield calibrations as accurate as with trigono-
metric models. The overall amount of necessary parameters ex-
ceeds the one of the trigonometric model approach. The poly-
nomial and the rational function perform equally well. Incorpo-
rating these models yield accurate calibration with the smallest
amount of parameters at least in parts. The reasons for the com-
paratively bad results of the second catadioptric (CD 2) could not
be found.

5 STEREO WITH GENERIC PROJECTION MODELS

Having camera calibrations use the generic method proposed above,
classic epipolar geometry can be set up and stereo vision becomes
possible. In particular the combination of completely different
camera systems using a common model becomes possible. The
main difference to the classic approach of epipolar geometry lies
in the z-component of image point vectors. They have to comply
with the epipolar constraint:

∣∣∣∣∣ bx x′n x′′n
by y′n y′′n
bz z′n z′′n

∣∣∣∣∣ = 0 (14)

Where the z-component is determined as follows: The inversion
of the generic camera model yields the inclination angle. Inver-
sion of the polynomial or rational function is unique and allowed
because the camera model has to be strictly monotonic as moti-
vated before. The actual angle is the smallest positive value of the
inversion. Having determined that angle, the equation that gave
that angle can be reformed, yielding the z-component:

θn = cos−1

(
−Zn√

X2
n + Y 2

n + Z2
n

)
→ zn = −rn cot θn (15)

5.1 Results

The method described in sections 3, 4 and 5 was applied exem-
plarily to two different stereo systems and the achieved accuracies
were analyzed. Stereo system 1 consists of a catadioptric system
and a fisheye with a baseline of 1140 mm. The experimental
setup is shown in figure 8. As an illustration, the polynomial
model was chosen.

Figure 8: Experimental design of heterogeneous stereo system 1

The absolute orientation of the stereo model could be transformed
to the object coordinate system and hence, the accuracy of the
stereo model can be evaluated. Similarly, a second design was
chosen from two fisheye camera systems. Both stereo systems
were successfully calibrated and a stereo model was derived.

System 1 System 2
RMS [mm] ∆max[mm] RMS [mm] ∆max[mm]

X 1.7 6.9 1.4 5.1

Y 2.4 10.1 1.7 5.2

Z 1.7 7.0 1.1 5.1

XYZ 3.4 12.7 2.5 7.7

Table 3: Accuracies of the stereo models

We achieved accuracies as shown in table 3. The comparatively
poor calibration accuracies of the catadioptric camera systems are
reflected in the stereo model. The error (RMS) in the object space
was 3.4 mm at a distance of about one meter. System 2 showed
a much smaller error (RMS) of 2.5 mm in object space, which is
a direct result of the better calibration of the fisheye. Projection
of the object rays of the homologous points in each of the other
image does not result in epipolar lines. Instead, in dependence of
the complexity of the selected generic projection model, epipolar
curves are generated. These epipolar curves are shown in figure
9.
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1P-model Gennery GaD Polynomial Rational function
CD 1 0.20 (0.92) orth 4 0.24 (0.99) 5 0.25 (0.99) 5 0.20 (0.92) 3 0.20 (0.88) 4
CD 2 0.32 (1.49) orth 4 0.42 (1.82) 5 0.39 (2.05) 5 0.51 (2.22) 4 0.51 (2.22) 4

Fisheye 0.04 (0.32) orth 4 0.10 (0.87) 5 0.06 (0.35) 5 0.05 (0.39) 4 0.05 (0.44) 4
Wide-angle (120◦) 0.05 (0.28) orth 3 0.05 (0.38) 4 0.05 (0.37) 3 0.05 (0.34) 3 0.05 (0.36) 2

Regular 0.02 (0.09) 3 0.02 (0.09) 3 0.02 (0.09) 3 0.02 (0.09) 3 0.02 (0.09) 3

Table 2: Results of showcase calibrations

Figure 9: Epipolar curves with the generic projection model (in-
tersection as epipol)

6 SUMMARY AND OUTLOOK

In this paper, generic projection models were presented which
are able to replace specific models of dioptric and catadioptric
camera systems with comparable accuracy and complexity. This
helped to develop a unified calibration method, which applies
to all cameras of the introduced camera classes. It is capable
to model camera systems with a single center of projection, as
well as those with an incident angle dependent center of projec-
tion. Experiments have shown that the complexity rather than the
particular model is responsible for the applicability to a specific
camera system. It has been shown that the ideal models cannot
cope with camera geometries, without additional radial distor-
tion terms. With these additional terms, they have almost the
same complexity as the generic models. This fact motivates the
use of generic models because the radial projection component is
mandatory and it can therefore be included in the imaging model
itself. Generic mapping models, as polynomial or rational ap-
proximation, are universal and flexible and show an almost class-
independent accuracy. They also offer the possibility of camera
systems from different classes to be used transparently in a multi-
camera system and thus, allow a scene description, which conve-
niently combines the strengths of the respective camera systems.
In this paper we could not clarify why the method presented has
shown a relatively poor accuracy in the calibration of the two ex-
amined catadioptric camera systems. In (De Villiers et al., 2011)
it was shown, that elliptically shape point markers are not suitable
for the catadioptric projection, because the center of ellipses is
not invariant with respect to highly non-perspective projections.
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