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ABSTRACT:

In the last decades the consumer and industrial market for non-projective cameras has been growing notably. This has led to the de-
velopment of camera description models other than the pinhole model and their employment in mostly homogeneous camera systems.
Heterogeneous camera systems (for instance, combine Fisheye and Catadioptric cameras) can also be easily thought of for real appli-
cations. However, it has not been quite clear, how accurate stereo vision with these cameras and models can be. In this paper, different
accuracy aspects are addressed by analytical inspection, numerical simulation as well as real image data evaluation. This analysis is
generic, for any camera projection model, although only polynomial and rational projection models are used for distortion free, Cata-
dioptric and Fisheye lenses. Note that this is different to polynomial and rational radial distortion models which have been addressed
extensively in literature.
For single camera analysis it turns out that point features towards the image sensor borders are significantly more accurate than in center
regions of the sensor. For heterogeneous two camera systems it turns out, that reconstruction accuracy decreases significantly towards
image borders as different projective distortions occur.

1 INTRODUCTION

Classical projective cameras have long been subject to stereo vi-
sion. Camera self-calibration, automated relative orientation, stereo
reconstruction and many more issues have been very successfully
worked on. With the introduction of panoramic or wide angle
cameras several models have been developed, which are able to
cope with the non-projective nature of many of these types of
cameras, some of which are several trigonometric models for
Fisheye lenses and catadioptric projection models. To prevent
having to use different camera models within one application of
heterogeneous cameras, generic camera models like the polyno-
mial model, division model, rational model and shifted sphere
model have been introduced. Furthermore, some approaches to
perform stereo reconstruction on different types of cameras have
been suggested, resulting in particular Epipolar models yielding
curves instead of Epipolar lines. The results of these contribu-
tions quite often lack comprehensive investigations into recon-
struction accuracy, as it is often required in photogrammetry. This
paper investigates the whole process of 3D reconstruction with
the above mentioned generic camera models. The main focus
here is the influence of the radial distance to the projection cen-
ter.
The next section will provide a short overview of existing ap-
proaches and camera models. This will be followed by a short
review on stereo computation used for this paper. Afterwards,
the results of analytical, numerical and real image data tests will
be presented and evaluated.
Throughout this paper two camera systems will be used. As for
the naming convention, lower case letters ~x will describe image
points, upper case letters ~X are used for three dimensional ob-
ject points and left-right image differentiation will be done with
or without a hyphen ~x′ for the left and right image, respectively.
The subscript d will describe an entity within the distorted do-
main. If not stated differently, units are measured in millimeters.

2 CAMERA MODELS OVERVIEW

There are different models for describing the imaging geometry
of a two camera system.
In Photogrammetry the imaging process can be modeled by means
of the collinearity equations, see (Kraus, 2004). A world point ~X
is mapped to an image point by subtracting the camera center ~C
first, followed by rotating with the orientation matrix R. This in-
cludes c, the focal length and x0, y0 are the camera center offset.
The resulting image vector ~x describes to location on the sensor.

2.1 Radial Distortion

This model describes the imaging process of distortion free cam-
eras very accurately. It is also known as the pinhole model. Un-
fortunately, most of the cameras come with significant distortion
towards the border regions of the image sensor. The effect of a
camera lens usually results in pincushion or barrel distortion.
To overcome the accuracy issues introduced with different types
of distortion, different models have been developed. In Pho-
togrammetry, the Brown model is a very famous one (Brown,
1971). Most importantly it handles affinity, shear and tangential
and radial distortion. The radial distortion is modeled by a poly-
nomial, which maps the incoming radius to a radius on the sensor,
which corresponds to the pinhole radius of the incoming ray.
Generally, a radial distortion functionL(rd) converts a measured,
real radius to a correct pinhole model radius r. Both mapping di-
rections exist in literature, distorted radius to undistorted and vice
versa. In both cases inversion of the function usually is not a triv-
ial task to perform.
Many camera models have been developed in the last decades.
Most of the models focus on improving the radial distortion as-
pect of the imaging process. It has turned out, that the division
models tend to have an good approximation ability (Fitzgibbon,
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2001). The follow-up were rational models (Ma et al., 2004)
where the function is a division of two polynomials. Lately,
(Ricolfe-Viala and Sanchez-Salmeron, 2010) have discussed and
analyzed the accuracy for modeling radius to radius mappings,
including any type of division, polynomial and rational model.
Refer to this paper for a comprehensive overview and description
of radial distortion models.

2.2 Varying the Projection Model

All of the above methods have one major disadvantage; they can-
not cope with wide-angle cameras with more than 180◦ view-
ing angle. In these cases, different camera projections have been
used. The work of Luber (Luber and Reulke, 2010) lists different
possible projection models.
The idea of these approaches is to model the mapping of the incli-
nation angle θ (between the connection of object point to camera
center and the optical axis), to the resulting radius:

r = f(θ). (1)

If, without loss of generality, for a non-rotated and zero translated
camera, an object point ~X is mapped to ~x, the projection is:

~x =

{
(0, 0)> , if ‖~̃x‖ < ε
~̃x

‖~̃x‖f(θ) , otherwise, (2)

where ~̃x =

(
X0

X1

)
, from ~X =

 X0

X1

X2


One generic projection model has been introduced by Luber and
Reulke (Luber and Reulke, 2010), namely polynomial mapping
of inclination angle θ to camera chip radius r. Generally any of
the above generic radius r to radius rd distortion models can also
be utilized as generic inclination angle θ to radius r projection
models. In (Luber and Reulke, 2010) and (Luber et al., 2012),
different of these models are used as projection models and eval-
uated. Also, a method of calibrating such models is presented.
Note, if generic projection models are introduced, the radial dis-
tortion component can be discarded, as the projection implicitly
involves the seeming distortion in the resulting images, see (Lu-
ber and Reulke, 2010) for more details.

2.3 Stereo Accuracy Evaluation with Generic Projection Mod-
els

Camera calibration data of four types of lenses will be evaluated,
including Fisheyes, Catadioptric cameras, weak and strong dis-
tortion regular lenses. With the use of generic camera models,
3D reconstruction for heterogeneous camera systems is possible
by using one single model and varying parameters for each cam-
era.
In general the inverse of a projection model has to be determined
numerically, as exact solutions are either expensive or analyti-
cally not possible. Also note that the calibration of the cameras
for this paper has been done in the fashion of (Luber et al., 2012),
refer to this paper for the details.

3 STEREO COMPUTATION OVERVIEW

Multi-camera systems can almost always be broken down to a set
of two different camera systems. For this reason we will stick to
the two camera case throughout this paper.
In Photogrammetry, 3D reconstruction is known as space resec-
tioning. The easiest case is to have a stereo normal situation

where two cameras look towards the same direction with an align-
ment such that object points are imaged to the same y coordinates
in both cameras.
In the case of generic cameras it may not be useful to assume
the normal case, as different types cameras may typically be po-
sitioned and aligned differently. Rectification may not be useful
either, as it discards many of the image border areas.
The more general case of reconstruction means to intersect two
skew lines or rays in three-dimensional space. In Kraus (Kraus,
2004), the general reconstruction case is based on a design matrix
obtained from the collinearity equations. Generally the recon-
structed point is the point of least distance to both rays. From
our generic models, we directly obtain a base and a direction
of the ray to the object. The base is the camera center ~C and
the ray direction ~d is obtained from the inverse projection model,
θ = f−1(r) and the angle of the object point on the camera chip.
Hence the ray τ~x is described with:

τ~x(λ) = ~C + λR−1 ~d, (3)

where ~d =



 0
0
−1

 , if r ≤ ε x · sin(θ)
r

y · sin(θ)
r

−cos(θ)

 , otherwise

and r =
√
x2 + y2.

The object point ~X , can be found with:

~X =
1

2

(
τ~x(λ) + τ ′~x(λ

′)
)
, (4)

with (λ, λ′) = argmin
λ,λ′

(∥∥τ~x(λ)− τ ′~x(λ′)∥∥) .
Notice the ε in equation 3, which is a threshold below which the
ray is supposed to be cast straight forward, from camera center to
the distortion center on the image plane. Mathematically, this can
be set to ε = 0. However, the incident angle to radius projection
model involves a removable discontinuity around the image point
(0, 0)>, where we set the ray to (0, 0, 1)>. Unfortunately, it may
behave numerically unstable around (0,0). We will test for nu-
merical inaccuracies in the simulation part of the results section,
also to determine a suitable ε.

4 ANALYSIS AND RESULTS

This section splits into three parts. First of all, some analytic ac-
curacy evaluations will be presented. These predictions will then
be compared to and inspected with some simulated data. Lastly,
there will be the result of some real texture based images.

4.1 Cameras Parameters

In this section examples, simulations and experiments are con-
ducted with the following cameras: 1.: Distortion free camera,
1280x1024 pixels resolution, 0.005 mm pixel size and a focal
length of 2.5 mm – This camera is an artificial one, for com-
parability; 2.: Catadioptric Camera, 1392x1040 pixels resolu-
tion, 0.0063 mm pixel size and 1.63 mm focal length; 3.: Fisheye
Camera, 1280x960 pixels resolution, 0.00645 mm pixel size and
3.3 mm focal length; 4.: Wide-angle camera, 640x480 pixels res-
olution, 0.0067 mm pixel size and a focal length of 2.62 mm.
For all results of this section, the remaining internal parameters
are discarded. From our experience, these parameters are not sig-
nificant for reconstruction accuracy; the main effect on accuracy
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is due to radial distortion or projection, respectively. Also we as-
sume calibration to be sufficiently accurate, such that this does
not evoke additional significant reconstruction inaccuracies.
We have chosen to evaluate the rational and polynomial projec-
tion model, whichever fits better to the data. A fixed number of
parameters for both projection models are used, here this is 5.
On the one hand, all cameras can be calibrated similarly accurate
with 5 parameters and on the other hand, due to the simulation
within all experiments, there is no deviation from the actual (sim-
ulated) projection.

4.2 Accuracy Analysis

The accuracy of a reconstructed 3D point is influenced by dif-
ferent quantities. For this paper the following reasons have been
identified: Baseline: Wider baselines allow for more accurate
reconstructions; Scene distance: Scenes with a larger camera
distance suffer from reconstruction inaccuracies. This correlates
with the baseline; Measurement noise: Image points, determined
automatically or manually, differ from correct projections; Reso-
lution and pixel size: The higher the resolution the more accurate
image points can be identified; Tangential distortion error: radi-
ally tangential localization errors will decrease the reconstruction
errors towards boundary regions of the image sensor (see below);
Radial distortion: If an optical system is subject to radial distor-
tion or non-pinhole projection, basic geometric shapes will not
transform to the same type of shape on the sensor; Calibration
accuracy: Uncertainties in camera calibration will lead to inac-
curacies in reconstruction.
From Computer Vision comes the notion of Epipolar lines, which
handles the arbitrarily oriented camera case (Hartley and Zisser-
man, 2004), containing the stereo normal case as a special case.
It is mostly used as a base for thresholds, i.e. for matching of
features, where a distance of at most x pixels from the Epipolar
line implies a possible match.
In this paper another method is utilized: probability distributions
of reprojected reconstructed 3D points. For this to be successful,
there is the need for a proper investigation of the radial projection
components. The projection function f will not be linear, in most
cases. But the fact that optical lenses have a very smooth sur-
face makes it easy to locally assume linearity. Assume a uniform

Figure 1: Image distribution; Illustrated Gaussian image distri-
bution (exaggerated). As it is circular, the axes can be chosen ar-
bitrarily, here perpendicular and tangential to the circle. Note that
for the radial axis, only the radius and hence, the angle θ changes.
For the tangential axis, the radius r increases to r2 (again: also θ)
as well as the angle α on the sensor.

normal 2D distribution σ of an interest point selection around the
correct image point. In this paper σ will always be measured in
pixel units, as this is the limiting factor for accuracy. This is a
reasonable assumption as in the image domain, the ability to lo-
calize a point feature only depends on the pixel sizes.
The following methods work well for equal pixel sizes as the co-
variance matrix of this distribution describes a circle. This is for

automated detection as well as for manual selection of interest
points, which both usually are sub-pixel accurate. In figure 1 you
can recognize two different axes of the distribution. At the re-
spective interest points, one is perpendicular to the circle around
the center of projection and the second one is tangential. As the
uniform distribution is a circle, one may choose the principal axis
arbitrarily (but still orthogonal).
Given the local assumption of linearity of f and the selected per-
pendicular axis of the uniform distribution, at a given interest
point ~p, with projection radius r, we obtain:

σθ(r) =
1

2
(f(r + σ)− f(r − σ)) . (5)

For small σ, this converges to the derivation of f :

σθ(r) = σ
df(r)

dr
= σf ′(r), (6)

hence the mapping of the perpendicular axis of the Gaussian can
be approximated with equation 6.
The mapping of the second axis σ 7→ σt, tangential to the circle
with radius r, can also be assumed linear for small σ. It is slightly
more difficult, as it involves increasing angles in the image plane
but also increasing angles due to locally increasing the radius.
Let ~xr be the point ~x translated radially, by σ times the pixel
size. Let further ~xt be the point ~x translated tangentially, by the
same amount.

σt = arccos
(
(τ ~xr (1)− ~C) · (τ ~xt(1)− ~C)

)
. (7)

For many cameras, the first axis with standard deviation σθ , will
produce larger errors to boundary regions, as the angular dif-
ference increases for most cameras, towards the imaging sensor
boundaries.
The second axis, σt will decrease with increasing radius. This is
because the angular difference of the inverse f−1(θ) decreases
with increasing radius.
To illustrate the different effects, we created a simulation setup
where the cameras are rotated such that a fixed object point cre-
ates a trace on the image plane, see figure 2. In figure 3 these two
different effects are plotted for σ = 0.1. Note, how the radial
error (solid lines) increases for the Fisheye and the wide-angle
lenses but decreases for the Catadioptric and the distortion free
cameras.
The tangential error decreases with increasing radius, for all of
the optical systems, roughly compensating the effect of the radial
error for Fisheye and wide-angle lenses. Which of the two ef-

Figure 2: Illustration of Rotation; The rotation is applied at
equidistant angle steps, such that a trace is created on the image
plane, diagonal within the sensor rectangle.

fects has a greater impact depends on the camera parameters, but
for our data, the overall error will usually decrease towards the
boundary regions of the image sensors.
To make sure, our assumption of local linearity is a good one, we
illustrate the predicted and measured mapping of the Gaussian
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Figure 3: Influence of Radial and Tangential Error Distribu-
tion; The graph shows the influence of the two axes identified
in the text: radial error distribution (dotted lines) and tangen-
tial error distribution (dashed lines). The solid line illustrates the
overall effect, by computing the volume for the respective ellipse.
σ = 0.1 in pixel units. Vertical dashed lines denote maximal pos-
sible sensor radius.

point error to an ellipse at 1000 mm distance. This can be found
in figure 4. The Gaussian distribution with axes σθ and σt can be

Figure 4: Predicted and Measured Error Ellipses; The top
graph shows the Fisheye lens, below is the Catadioptric cam-
era. Error Ellipses at 1000 mm distance, predicted (dashed lines)
by determining the perpendicular and tangential axis distances.
Measured (solid lines) by sampling in the image plane with
σ = 0.1 pixel units, followed by a projection to space. The lo-
cation of these samplings is illustrated in the blue area, which
represents the camera sensor. Location circles on sensor are ex-
aggerated for sake of visibility. All units in mm.

cast to 3D space, resulting in a cone shape with its apex at camera
center ~C and its base the elliptical standard deviation.

4.3 Simulation With Real Camera Parameters

In this part of the result section some simulation results are pre-
sented. These are mainly results of reconstruction with simulated
noise within the image interest point locations.

4.3.1 Center Point Discontinuity As mentioned above, imag-
ing of points may result in numerical instability, around image
point (0, 0)>. This can be seen for the projection and the recon-
struction case, see equation 2 and 3, respectively. The simulation
has shown that this concern is not confirmed, as all image points
converge to zero, for input radii down to 10−18. To (0, 0)>, ex-
actly. On the other hand, the inversion needs to be investigated.

Figure 5: Numerical Stability Test; When back-projected, the
lower graph shows the distance to the original points around zero.

Mapping radius to a direction vector/ray involves numerically in-
verting the projection model. In equation 3 a very similar ε oc-
curs. As you can see in figure 5, with our current implementation
of the inverse computation of f (the Python lib SciPy: fsolve),
there are some minor instabilities. However, these are very small,
neglectable.
These experiences may lead to set the thresholds to ε = 10−10,
for instance, to avoid division by zero in cases where object points
image exactly to (0, 0)> and vice versa.

4.3.2 Overall Error and Effect of different baselines Just
like the illustration in figure 2, we rotate all the cameras such
that the diagonal elements are imaged. We sample a given σ
Gaussian distribution around the currently project image point.
This image point was projected from a fixed object point ~X =
(0, 0,−1000)>. The second camera is an optimal, error free
camera, moved along the X-axis with a given baseline. This al-
lows for evaluation of the first camera, only. Figure 6 shows, that
indeed, the smallest baseline produces the largest error, though
this is not a surprise. More importantly, errors decrease with im-
age points towards the image sensor boundaries. This effect is
a very dramatic one for the Catadioptric and the distortion free
camera. Overall, this result confirms the earlier analytical predic-
tion, where tangential and perpendicular errors roughly add up to
the final error.

4.4 Real Image Data

The above analyses consider fixed σ positional noise, only. This
gives a very nice theoretical illustration of the problem. Without
changing any of the considerations, the points may have different
individual σ. This theory may be applied for (manual) point de-
tectors, for instance.
However, automated interest point detectors are actually slightly
more region based, due to scale-space detection and neighbor-
hood sampling. Probably, this results in a radius dependent posi-
tioning accuracy.

4.4.1 Automated Feature Detection and Matching Usually,
feature matching is done based on the feature descriptor distance
and the constraints of Epipolar geometry. This involves applying
the fundamental matrix F , see (Hartley and Zisserman, 2004),
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Figure 6: Different Baselines; This figure illustrates the effect
of different baselines on 3D reconstruction. The graph shows the
simulation for a σ = 0.1 pixel units. Plotted are the average
reconstruction error values for each radius.

for instance. The Epipolar geometry reduces the search domain
from a two dimensional space to a one-dimensional one.
However, here this involves numerically inverting the projection
and other difficulties such as finding the closest point on the pro-
jection curve. Hence, one might as well use a different approach,
which implicitly models the Epipolar constraint.
In the following, the approach is illustrated: First of all, potential
matches are obtained, utilizing an approximately nearest neigh-
bor search (ANN), based on feature distances. For all these po-
tential matches compute the reconstruction in space and reproject
to both cameras. Similar to the distance of both rays to the recon-
structed point, a score can be evaluated in the image based on the
given distribution σ.
Obviously, if both image points are subject to the Epipolar ge-
ometry, the reprojection will map to the original points, exactly.
If the Epipolar constraint is violated, the reprojection will move
away from the original point. Given the original image points ~x,
~x′, the reconstructed point ~X and the reprojected image points
~xp, ~x′p, a score can be defined as:

s( ~X) = G~x,σ( ~xp) ·G~x′,σ′( ~x′p), (8)

where G~x,σ is the Gaussian density with σ around ~X . The nor-
malized version of the score, here

sn( ~X) =
sn( ~X)

G~x,σ(~x) ·G~x′,σ′(~x′)
, (9)

can be used, together with a threshold t to decide, whether a
potential match fulfills Epipolar geometry. We have determined
σ = 0.5 and t = 0.01 to obtain matches with separation of just
more than 1 pixel from Epipolar geometry.
A SURF feature descriptor was used in combination with a Harris
corner detector, see (Mikolajczyk and Schmid, 2004) for a thor-
ough overview of interest point detectors. To obtain a high num-
ber of interest point, a low threshold was used for the detection
(i.e. Hessian was set to 50).

4.4.2 Evaluation Evaluating interest point detectors mainly
involves evaluating the completely automated feature detection,
matching and reconstruction process. Obviously there is a need
for accurate ground truth data. There are different possible ap-
proaches. On approach is a real scene, with depth is measured
with a second sensor, i.e. a laser. A different approach is to use
well known three dimensional shapes. We chose for a different
approach: Simulation. The cameras are placed in the center of a

cube with side length of 2000 mm. Different textures (wood, for-
est, urban, etc...) are used for different simulation iterations. The
resections of automatically detected features can now be evalu-
ated with perfectly known ground truth. This approach is illus-
trated in figure 7.

Figure 7: Illustration of Simulation; The top left image illus-
trates the camera placement. The top right image is the undis-
torted camera image. The lower row contains a Fisheye image
(left) and a Catadioptric image (right)

For each camera, different positions were sampled at: (0, 0, 0)>,
the position to be compared to; (10, 0, 0)>, a small baseline po-
sition, looking to negative Z axis; (100, 0, 0)>, a larger baseline
position looking to negative Z axis; (500, 500,−500)>, a wide
baseline position, looking to the center of the front cube face,
(0, 0,−1000)>.
Now different properties of the system can be evaluated: the qual-
ity of matching (i.e. number of correct matches), the accuracy of
reconstructed interest/feature points, the influence of the baseline
length, the influence of perspective distortion and possibly influ-
ence of radial distance to projection center. In table 1 and 2 some

Table 1: Reconstruction Statistics for Different Camera Sys-
tems: The table lists the results of reconstruction. Errors of
> 100mm were considered false matches. Displayed are me-
dian errors (mm), which gives a good indication of the overall
performance. Numbers are accumulated over different textures.

Baseline:
Constellation

Small
(10, 0, 0)

Larger
(100, 0, 0)

Wide
102 · (5, 5,−5)

Normal/Normal 0 0 3.7
Normal/Catad. 46.3 28.7 4.1

Normal/Fisheye 49.1 16.8 3.1
Catad./Catad. 27.7 14 9.4

Catad./Fisheye 49.8 32.3 9.3
Fisheye/Fisheye 29.7 11.8 6.6

of the answers are given. For Fisheye and Catadioptric cameras
a small baseline is too small, most likely due to the compressed
projection of object points at the image center. Fisheye and Cata-
dioptric cameras perform similarly well. They have the least error
in wide baseline situations. However, the number of matches as
well as the ratio of good/bad matches is best in the medium base-
line situation. This is likely due to a larger overlapping field of
view and similar distortion of corresponding features in these sit-
uations.
This same argument holds for the Normal/Normal case, were the
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Table 2: Number of Matches for Different Camera Systems:
This table lists the number of correct (error < 100mm) matches
vs the number of wrong matches.

Const/Base Small Larger Wide
Norm/Norm 79677/6321 84468/346 6004/4254
Norm/Catad 364/3103 2585/1211 5866/1440
Norm/Fish 3998/11387 12241/4078 8644/3131

Catad/Catad 56712/27514 61263/6147 5223/2634
Catad/Fish 1937/12889 10981/6710 7653/2858
Fish/Fish 50911/24410 59520/5775 10148/4053

error increases unexpectedly for wide baseline situations.
To answer the question of radial distortion and perspective influ-
ence on automatically detected features, we decided to evaluate
the three homogeneous and heterogeneous camera systems.
This means, at baseline distance of only 10 mm two cameras
of the same type will likely not cause projective problems and
follow the above mentioned theory for point features, whilst in
the case of heterogeneous camera systems, the effect of different
perspective distortion will arise and cause larger errors towards
larger radii.
These suppositions are roughly confirmed by the results presented
in figure 8. Especially for heterogeneous systems, the error in-
creases towards the sensor border, mainly due to different projec-
tive distortions.
For homogeneous systems, one can see the predicted decreasing
effect for Catadioptric cameras. For both other systems, it is dif-
ficult to recognize a specific pattern.

Figure 8: Error Evaluation of Two Camera Systems; The up-
per graph shows the error plot for homogeneous systems, which
reflects similar projective distortion at roughly the same radial
sensor distance (small base line). Below are heterogeneous sys-
tems, the maximum of both radii is used for plotting. Solid lines
represent smoothed least squares fit of the data (Splines). Dashed
parts are with little data. Not all of the data is plotted due to heavy
cluttering of the graph.

5 CONCLUSIONS AND FUTURE WORK

This article presents accuracy analysis for stereo processing with
generic camera projection models, with a main aspect on radially
induced errors.
It has been shown, that for point features errors tend to decrease
with larger radius from the projection center, for all types of cam-
eras. Additionally, for two camera systems, the main influence
for detectors like SURF is the differently distorted appearance of
corresponding features. For heterogeneous camera features this
means increase in reconstruction error for larger sensor radii. An-
other point to mention is the general decrease in accuracy for om-
nidirectional two camera systems, mainly because much more of
the scene is imaged to the same image resolution.
The simulation hasn’t considered additional error sources like
possible overlaps, lighting difference, point spread functions and
other influences. Fixed and exact camera parameters have been
assumed. But if the uncertainty parameters are known it is pos-
sible to adapt the above theory by means of error propagation.
Lastly, it might be useful to additionally compare different inter-
est point detectors/descriptors.
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