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ABSTRACT: 
 
POS, integrated by GPS / INS (Inertial Navigation Systems), has allowed rapid and accurate determination of position and attitude of 
remote sensing equipment for MMS (Mobile Mapping Systems). However, not only does INS have system error, but also it is very 
expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS 
in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the 
traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line 
clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC 
(Random Sample Consensus) and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to 
estimate nonlinear error equations of two vanishing points (VX, VY). How to set initial weights for the adjustment solution of single 
image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with 
variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing 
points (VX, VY) and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third 
vanishing point (VZ) is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte 
Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate 
and their error distributions are shown and analyzed. 
 
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

1.1 Mobile Mapping Systems (MMS) 

Mobile Mapping System (MMS) is a new technology emerging 
in the 1990s for rapid and efficient mapping without ground 
control (El-Sheimy, 2005), (Graham, 2010). From the 1990s to 
the beginning of the 21st century, many commercial MMS have 
been developed, such as GPS VisionTM, GI-EYETM, LD2000TM, 
ONSIGHTTM, POS/LVTM. Navteq and TeleAtlas also use land-
based mobile mapping for navigation database update (El-
Sheimy and Schwarz, 1999), (Sullivan D, 2002) and (LI et al., 
2009; Scherzinger, 2002).  
GPS and Inertial Navigation Systems (INS), have allowed rapid 
and accurate determination of position and attitude of remote 
sensing equipment, effectively leading to direct mapping of 
features of interest without the need for complex post-
processing of observed data (Graham, 2010). However, not only 
does INS have system error, but also it is very expensive. 
Therefore, in this paper, a low-cost method based on vanishing 
points is studied and tested in order to substitute INS for MMS 
in some special land-based scene, such as ground façade where 
usually only two vanishing points can be detected. 
1.2 Vanishing Point 

The vanishing point is defined as the convergence point of lines 
in an image plane that is produced by the projection of the 
infinite point in real space, which can be used to get three 
interior parameters (x0, y0, f) and three exterior direction 

parameters (φ,ω,κ), (Alantari et al., 2009; Caprile and Torre, 
1990; Heuvel, 2003; Lazaros et al., 2007; LI et al., 2011; 
MAHZAD and FRANCK, 2009; SCHUSTER et al., 1993; XIE 
and ZHANG, 2004). It is well known that camera parameters 
can be recovered by the vanishing points of three orthogonal 
directions. But, three reliable and well-distributed vanishing 
points are not always available. Even, sometimes only two 
vanishing points can be gotten (Figure 1). Also, in the scene of 
ground façade, often only two vanishing points (horizontal 
orientation VX, plumb line orientation VY) can be detected for 
façade image, but the vanishing point of depth orientation VZ is 
difficult to be acquired directly. Thus, the traditional approach 
based on three vanishing points is being challenged. 

 
Figure 1. Some two vanishing points images (Lazaros et al., 2007)   

 
Furthermore, the related researches of vanishing point have 
been focusing on its automatic detection and camera calibration 
for a long time (Caprile and Torre, 1990; Heuvel, 2003; Lazaros 
et al., 2007; XIE and ZHANG, 2004), however there were few 
researches on its error distribution. How to estimate the error of 
the third vanishing point (VZ) on the basis of two vanishing 
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points (VX,, VY), has important theoretical significance, and also 
can help to improve the precision of camera calibration. Thus, 
under the condition of known error ellipses of two vanishing 
points (VX, VY) and on the basis of the triangle geometric 
relationship of three vanishing points, the error distribution of 
third vanishing point (VZ) is discussed and studied. 
 

2. VANISHING POINT MATHEMATICAL MODEL 

2.1 Vanishing Point Initial Value Detection 

Barnard (Barnard, 1983) introduced the most popular algorithm 
for the detection of vanishing points based on the construction 
of the Gaussian sphere. Shufelt (Shufelt, 1999) tries to find 
vanishing point on the oblique aerial images using Gaussian 
sphere. Heuvel (Heuvel, 2003) introduced a detection method 
based on geometric constraints. In 2003, Almansa (Almansa et 
al., 2003)  developed a new method of vanishing point detection 
without priori information, through using complex probabilistic 
models. And MAHZAD (MAHZAD and FRANCK, 2009)  
presented an approach for vanishing point detection based on 
the theorem of Thales. 
In this article, vanishing points are detected to provide initial 
values for their final adjustment. The steps of detection method 
are described as follows: 
1) Line extraction by Wallis filtering and the LSTM (Least 
Square Template Matching) algorithm (LI et al., 2009);  
2) Angle histogram clustering, that is, linear angle statistics due 
to aggregation a large number of straight lines in vanishing 
point direction; 
3) RANSAC, which is an iterative method to estimate 
parameters of a vanishing point approximate coordinate by 
sampling from a set of observed data containing outliers; 
4) Parallelism constraint (Heuvel, 2003), which can be written 
as the determinant of the mixed product from the normal vectors 
to the three interpretation planes so as to eliminate straight line 
dissatisfying the condition of group in vanishing point direction; 
5) Calculation the vanishing point coordinates initial value: 
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Where ( , )x x y∞ ∞= is vanishing point coordinates; m is the 

number of max support in RANSAC step; kx is a intersection 
coordinate between two straight lines in above support set.   
 
2.2 Adjustment Model 

Each straight line grouped into vanishing point direction, e.g., 
line ij, belonging to this set should pass through the vanishing 
point V, which can be seen in Figure 2.  

 
Figure 2. Geometric relationships between observational line and vanishing 

point 
 
Ideally, i, j and V is collinear, so observational equation is: 

( )( ) ( )( ) 0V i j i V i j iy y x x x x y y− − − − − =     (2) 

Where: (xi, yi), (xj, yj) and (xv, yv) are the coordinates of i, j and 
V. Eq.2 is linearized by Taylor formula as: 
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Where: 
0

0 ( )( ) ( )( ) |V i j i V i j id y y x x x x y y= − − − − −         (4) 

The matrix form of Eq. (3) and Eq. (4) is 

4 4 1 2 2 1 1ˆn n n n n× × × × ×⋅ ⋅ 0A V + B x +W =              (5) 
This is a model of Condition Adjustment with Parameters. 
Where n is the number of lines grouped by vanishing point 
direction, V=(vxi vyi vxj vyj)T, x=(vx vy) T, A is an observation 
coefficient matrix, B is unknown parameter coefficient matrix 
and W is a closing error vector. The solution of Eq. (5) is: 
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Because Eq. (2) is nonlinear equation, linearized Eq. (5) must 
be solved by iterative method. And the iteration method with 
variable weights is as follow (LI and YUAN, 2002): 
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Where p(v+1) and p(v) are the weights at the (v+1)-th and the v-th 
iteration; variance estimation are:  
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Where, 2 is the number of necessary observation for Eq. (5). In 
order to ensure the reliability of adjustment, initial weights 
should be taken into account. As we know, the angles between 
straight lines and the lengths of straight line segments affect the 
accuracy of vanishing point; therefore, prior weight should be 
determined by these two factors: 

Min

Max Min

1 (1 )i
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i
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−
= +

−
                          (9)  

Where Li is the number of lines in unit grid, which means 
angles; Dminis the longest and Dmax is the shortest line of all.  
 
2.3 Error Ellipse of Vanishing Point 

Caprile (Caprile and Torre, 1990)  presented a method to 
evaluate the accuracy of vanishing point, but arbitrary direction 
point error can’t be known by this method. Therefore, error 
ellipse is introduced. According to co-factor matrix propagation 
law and Eq. (5), the accuracy of vanishing point is estimated by: 
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Then, error in point measurement is: 
2 2 2 2

0ˆ ˆ ˆ ˆ ( )P x y xx yyσ σ σ σ= + = +Q Q               (11) 

Error ellipse parameters can be calculated (School Of Geodesy 
and Geomatics, 2003) :  
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Where E and F are error ellipse major axis and minor axis 
respectively; φE is a angle between major axis E and x axis.  
 

3. VANISHING POINT GEOMETRY AND ITS 
DISTRIBUTION  

3.1 Geometric Relationship among Vanishing Points 

According to (ZHANG et al., 2001) , in Figure 3, where S is the 
projection centre, f the camera focal length and O(x0, y0) the 
principal point, with X∞, Y∞, Z∞ being the respective 
vanishing points of the three orthogonal space directions X, Y, Z. 
The principal point O, namely the projection of S onto the 
image plane, is actually the orthocenter of the triangle △X∞ 
Y∞Z∞. Of course, the directions of the lines SX∞, SY∞, SZ∞ 
are respectively parallel to the X, Y, Z space axes. 

 
Figure 3. Image geometry with three vanishing points. 

 
3.2 The Solution of the Third Vanishing Point  

This section, under the condition of known two vanishing 
points (VX, VY) and the principal point O (x0, y0), how to solve 
the third vanishing point (VZ) is illustrated as figure 4.  

 
Figure 4. Vanishing points geometry and error ellipse. 

 
VX, VY are the centre of two known error ellipses. And O (x0, y0), 
which can be set as a coordinate origin, also is the orthocenter 
of the triangle △VX VY VZ.In figure 4, OZo⊥VXVY,  VX OXo⊥
VZVY, thus, VZ is a point of intersection by OZo and VYXo. Let 
VX(x1, y1), VY(x2, y2) and VZ(x3, y3) be error distributions of three 
vanishing points. Exactly, (x1, y1) and (x2, y2) are arbitrary 
points in error ellipses of VX and VY. (x3, y3) is an unknown 
distribution set about VZ which can be calculated: 
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Error ellipse equation can be written: 
2 2 2 2/ / 1x E y F′ ′+ =                            (15) 
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So, under the right-handed coordinate system XOY (Figure 4): 
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Where i=1, 2. The parameters in Eq. ( 16 ) have the same 
meaning in Eq. (12). 
 
3.3 VZ Error Estimation by Random Statistical Simulation 

3.3.1 Generating pseudo-random error points 
In order to estimate the error distribution of the third vanishing 
point VZ, firstly, random points of uniform distribution included 
in error ellipse should be generated. E.g. Figure 5 a) shows a 
number of random points in error ellipse, which obey uniform 
distribution (with parameters VX (10, 10), E=10, F=5, φ=π/ 6). 

  
a) Error ellipse filled with points          b) Error ellipse filled with circles 

Figure 5. Generating random points 
 

3.3.2 VZ error distribution pseudo-random simulation  
On and in the error ellipse VX called set: 

2
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On and in the error ellipse VY called set:  
2
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Traverse all the points in set RAND_VX and RAND_VY. Then, 
compute VZ based on Eq. (14) so that discrete points of VZ error 
distribution can be acquired.  
3.3.3 VZ error estimation based on Monte Carlo    
In this section, how to estimate the area size of VZ error 
distribution is discussed. Suppose the nV small circles thrown 
into an enclosed area by uniform distribution can be aggregated 
as S_Area, in Figure 5 b). When the N is the larger and the 
circle is the smaller, S_Area is the much closer to the measure 
of area. Three algorithms of estimating the area of VZ error 
distribution are presented as follows respectively. 
1) Set the radius of small circle filled in RAND_VX and 
RAND_VY all as r (in Figure 5 b)). How many total random 

VX VY 

VZ 

O 

Zo 

Xo 

(x1, y1) (x2, y2) 

(x3, y3) 

(x0, y0) 
 

X 
Y 
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numbers should be produced? The error ellipse area must be 
equal with the sum of n circles areas, thus: 

2 0Vn r E Fπ π∆ = ⋅ ⋅ − ⋅ ⋅ =                     (19) 
Then:  

2/Vn E F r= ⋅                               (20) 
nV also means frequency of random circles on and in the error 
ellipse. Suppose N is a total random number in circumscribing 
rectangle of error ellipse (in Figure 5). According to geometric 
probability model that can be called Monte Carlo method here, 
we have:  

Rect Rect
VnE Fp

X Y N
π ⋅ ⋅

= =
⋅

                      (21) 
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Here, p is a probability; RectX and RectY are rectangular two 
sides. So N is: 

2

Rect RectX YN
rπ
⋅

=
⋅

                           (22) 

If we set radius of circle r that must be smaller enough, N that is 
a total random number can be determined by formula (22). Then, 
input r and N so that random circles uniformly covering error 
ellipse VX and VY can be generated. After that, discrete points of 
VZ error distribution can be gotten by formula (14). Here, we 
can hypothesis that discrete points VZ are centres of circle with 
radius r the same as random circles in VX and VY. Thus, area size 
of VZ should be evaluated as: 

± ± 2_ Z VX VYS AreaV n n rπ= ⋅ ⋅ ⋅                  (23) 
Where ±

VXn and ±
VYn , which are stochastic output results by 

inputting a total random numbers; NVX and NVY are still 
stochastic frequencies in sets of RAND_VX and RAND_VY. It's 
worth noting that probability is not equivalent to the frequency, 
so usually ±VX VXn n≠ , ±VY VYn n≠ ( nVX and nVY mean nV). With 

nV changed into ±
Vn , it is easy to know that initial r is not the 

best approximation, which can be revised as: 
 ±ˆ / Vr E F n= ⋅                                 (24) 

So the precision of formula (23) can be evaluated by: 
± ± 2

1 2ˆ ˆ_ ( ( ) ( ))Z VX VY VX VYError SV n n r r r rπ λ λ= ⋅ ⋅ ⋅ ⋅ − + ⋅ −   (25) 

Where ± ± ± ± ± ±
1 2/ ( ),    / ( )VX VX VY VY VX VYn n n n n nλ λ= + = + . 

V̂Xr and V̂Yr can be calculated by formula (24). 
2) Set the total random numbers of circle filled in RAND_VX 
and RAND_VY as N (in Figure 5 b)). How long the radius of 
small circle is? Calculation process is similar to 1). So: 
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(29) 
3) In order to avoid error caused by stochastic factor (like 
above mentioned two methods), we set radius r only as an 
initial value. After ±

Vn  appears, r is modified by formula 
(27). Therefore: 

± ± 2
1 2ˆ ˆ_ ( )Z VX VY VX VYS AreaV n n r rπ λ λ= ⋅ ⋅ ⋅ ⋅ + ⋅       (30) 

² ± 2
1 2ˆ ˆ_ | | | | ( ( ) ( ))Z VX VX VY VY VX VX VY VYError SV n n n n r r r rπ λ λ= − ⋅ − ⋅ ⋅ ⋅ − + ⋅ −

(31) 
This likes a posterior estimation, because in formula (30) ±

VXn , 

±
VYn , V̂Xr , V̂Yr are all posterior values. 

 
4. EXPERIMENT AND FURTHER WORK 

4.1 VZ error estimation based on simulation data  

Suppose error ellipse parameters are as below table 1. On the 
basis of those two error ellipses, the distribution of VZ can be 
evaluated by formula (14). Moreover, its graph is drawn in 
Figure 6. As we can see, VZ distribution has certain regularity 
and likes two connected leaves.  
 

Table 1.  The error ellipse parameters of VX and VY 
V(x, y)  E(pixel) F(pixel) φE(°) 

VX (20, -20) 15 6 30° 
VY (20, 20) 18 8 45° 

 
Figure 6. VZ error graph under the condition of error ellipses Vx and Vy 

 
4.2 VZ error estimation based on image data  

The input land-based data used in this experiment were shot by 
a KODAR (PROFESSIONAL DCS Pro SLR/n) non-metric 
camera with the size of 1000*1500 pixels (compressed), focal 
length 24mm and the pixel size 0.025mm. Figure 7 b) is the 
results of line segments extracted and grouped by the directions 
vanishing points. Furthermore, it is difficult to detect VZ directly. 

 
 
With camera distortion ignored, two error ellipses of VX and VY 
can be acquired by the adjustment approaches mentioned above, 

VX 

VY 

VZ VZ O 

a) Original image  b) Extracted and grouped 
Figure 7. Image data 
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whose results can be seen in Table 2.  ˆPσ  is a position error and 

0σ̂ is a standard deviation. 
 

Table 2.  The error ellipse parameters of VX and VY for Figure 7 

V(x, y)  E(pixel) F(pixel) φE(°) ˆPσ  0σ̂  

VX (239750, 
-2339) 762.1 6.8 179.3° 762.1 0.38 

VY (393, 
30219) 14.0 1.8 91.3° 14.1 0.30 

VZ (105.8, 
777.6) 32540.7±0.0054 

The coordinate of the third vanishing point (VZ) is (105.8, 777.6) 
and its area (32540.7) and error (0.0054) is evaluated by 
formula (30) and (31) respectively. 
 
4.3 Conclusion and future work 

This paper suggests solving vanishing points based on 
RANSAC and Condition Adjustment with Parameters, which 
has rigorous theoretical foundation and can greatly eliminate the 
gross error by RANSAC and iteration method with variable 
weights. Furthermore, error ellipse, which is calculated by co-
factor matrix, is presented to estimate the accuracy of vanishing 
point. Especially, how to calculate and estimate the third 
vanishing point (VZ) ant its error distribution is presented based 
on geometric relationship of vanishing points and random 
statistical method (Monte-Carlo). A few preliminary theories 
and methods of evaluation VZ are proposed.  
Through the experiment, VZ error graph is drawn by random 
simulation. Vanishing point (VZ) area and its error is also 
estimated. The conclusion is that usually the precision of 
vanishing point is not very high. Moreover, VZ area estimation, 
in this article, is only simply discussed, so more rigorous 
solution, such as numerical solution, simulation solution and 
analytical solution, should be studied deeply in future. This 
research may expand basic theory, as well as improve or test the 
universality for the application of vanishing point in order to 
find a novel and economical way for MMS.  
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