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ABSTRACT: 
 
The paper presents some considerations on the estimation of rigid-body transformation which is the basis for registration and geo-
referencing in terrestrial laser scanning. Two main issues are afforded, which in the opinion of the author have been poorly 
investigated up until now. The first one concerns the analysis of the stochastic model of Least Squares estimation of the 
transformation. In standard practice, the control points used for parameter estimation are considered as equally precise. Here two 
different approaches for weighting observations in laser scan and ground control points are proposed and evaluated through a set of 
Monte Carlo simulations. The second aspect refers to the reliability analysis. In particular the estimation of a joint-adjustment 
including both geo-referencing parameters and geodetic network observations for the determination of ground control points is 
discussed and evaluated.  
 
 

1. INTRODUCTION 

1.1 Terrestrial Laser Scanning today 

Terrestrial laser scanning (TLS) is coming out from its pioneer 
epoch and nowadays is applied to many practical fields. In 
many of them it plays a paramount role today. On the other 
hand, in the first decade since its appearance, many tests and 
experimentations have been carried out in order to assess 
instruments and methods, to refine processes, and to explore 
new applications for engineering surveying, deformation 
measurements, topographic works, geology, architecture, 
archaeology and cultural heritage documentation, 3D 
visualization, and Virtual Reality.  
On the other hand, some open problems still exist. These could 
be summarized in the following items: 
 

• standardization of instrument metrological features 
and methods for their evaluation; 

• definition of standard procedures for geo-referencing, 
scan planning, automatic co-registration of multiple 
scans; and 

• definition of application domains where the use of 
TLS is really worth, and where other techniques can 
be more fruitful (e.g. photogrammetry). 

 
In the meantime, manufacturers have pushed up the diffusion of 
laser scanners, and purchasers have become familiar to the use 
of this technique for production work and research activity. 
Very often the way they used TLS are limited to procedures 
proposed in vendor reference guidelines, without any critical 
analysis. This fact should be considered with great care, 
considering the recent increase of the interest for high precision 
applications, such as modelling of industrial sites (see Rabbani, 
2006) and deformation measurement (see Vosselman and Maas, 
2010). Here any step of the acquisition and processing of TLS 
data must be operated with the highest carefulness. 

The basic geometric model implemented in laser scanning 
processing is the rigid-body transformation. A lot of work has 
been carried out so far on the estimation of the 6 parameters that 
are incorporated into this model (3 shifts and 3 rotations in 
space). Several aspects have been investigated, such as: 
evaluation of approximate values through linear or closed-form 
solutions, robust estimation, automatic labeling of 
corresponding points, integration of laser scans and images for 
mutual registration purpose. 
Such rigid-body transformation has been integrated by 
additional parameters to compensate for calibration errors (see 
Lichti, 2010). These solutions can be exploited to refine laser 
scanning measurements in applications where high accuracy is 
needed. Recently, different papers referred to a deeper analysis 
on the contribution of different error sources to the whole error 
budget of TLS measurement (Gordon and Lichti, 2005; Scaioni, 
2005). Indeed, inclination of incident laser beam, diverse 
material reflections and other effects can result in discrepancies 
from the standard geometric model. 
The paper mainly affords two main issues, which in the opinion 
of the author have been poorly investigated up until now.  
The first one concerns the Least Squares estimation of the rigid-
body transformation. In the standard practice, points used for 
parameter estimation are considered as equally precise. On the 
other hand, if a scan is registered to ground or to another scan 
taken as reference, only points in one scan are usually 
considered as stochastic observations. To consider both 
problems, a formulation of the Least Squares rigid-body 
transformation estimation including a pointwise weighting in 
both reference systems (scan to ground or scan 1 to scan 2) is 
applied in Section 2. Some considerations based on different 
point configurations are reported to show when this approach is 
worth to be used. 
The second aspect refers to the reliability analysis, i.e. the 
chance to detect gross errors in observations. Which are the 
factors that can improve this important property? In many close-
range applications, ground control points (GCP) are measured 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B5, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

601



 

within a local geodetic network. Errors in geodetic and laser 
scanning measurements can be at the same order. Consequently, 
a joint-adjustment of both sets of observations would be an 
option to increase the inner reliability. Some theoretical 
considerations about this solution and a simulated case are 
proposed in Subsection 3.4. 
 
 

2. RIGID-BODY TRANSFORMATION ESTIMATION 

2.1 Definitions 

In this paper the problem of two or more scan registration is 
focused. The term registration means the computation of the 
transformation(s) allowing all scans to be referred to the same 
reference system (RS). In the following, the instrumental RS of 
the scan i-th is termed Intrinsic RS (IRSi). If an external 
geodetic datum is established, this is referred to as Ground RS 
(GRS); in this case, the registration of one or more scans into 
the GRS is addressed to as the geo-referencing problem.  
The geometric model usually adopted for registration or geo-
referencing is a 3D rigid-body transformation, possibly 
integrated by a set of parameters for laser scanner calibration: 
 

ijj
AP

jiji
AP

i t)∆xx(∆xx ++=+ R ,                    (1) 

 
where:  xi : vector of 3D coordinates of a point in IRSi; 
 xj : vector of 3D coordinates of a point in IRSj (or in 

GRS); 
Rij : 3×3 rotation matrix parameterized through 3 
rotation angles; 

 tij : 3D shift vector; 
∆xi

AP : vector including additional parameters for 
calibration in IRSi; 
∆xj

AP : vector including additional parameter for 
calibration of points in IRSj (∆xj

AP=0 if IRSj≡GRS). 
 
The computation of unknown parameters is carried out on the 
basis of common features (usually points are used) in both RSs. 
On the other hand, in practical applications, the geometric 
model (1) is rarely integrated with further additional parameters 
to correct errors due to non-modelled systematic effects (∆xAP). 
However, when this happens (see e.g. Lichti, 2008), the 
calibration is performed at a preliminary stage by measuring a 
test-field made up of tens of GCPs or other kinds of features 
(e.g. planes), and the results applied to correct the x2

i vector in 
(1).  
The estimation of the unknown parameters of geometric model 
(1) is usually carried out by Ordinary Least Squares (OLS), 
after linearization (Wolf and Ghilani, 1997). This requires the 
computation of approximations for all parameters, which can be 
derived by a twofold strategy. The first one relies on the use of 
an algorithm which can perform the solution of Eq. (1) without 
any initial values. Three main approaches are adopted based on 
Procrustes analysis (Beinat et al., 2000), Hamilton’s 
Quaternions (Horn, 1987), Orthonormal transformations (Horn 
et al., 1998). At the first stage, often the automatic search for 
correspondent features in both IRSi and IRSj is applied (Bornaz 
et al., 2003). Furthermore, a high breakdown-point estimator 
(RANSAC or Least Median Squares, for instance – Rousseuw 
and Leroy, 1987) is often implemented to cope with gross 
errors. Finally the estimate with OLS is applied by using the 
linearized model (1). An automatic testing or manual check of 
remaining small outliers can be included at this stage. On the 
other hand, when a TLS is used along with direct geo-

referencing technique (Scaioni, 2005), approximations of 
parameters are already known.  
 
2.1.1 Functional model for Ordinary Least Squares 
 
The functional model for OLS defines the linear (or linearized) 
relation between observations and parameters to estimate. 
According to the formulation based on observation equations, 
points measured in scan i-th (xi) are organized in the vector y0. 
These are function of the points measured in scan j-th (xj) as 
well as the corrections to registration parameters (dβ1), to be 
estimated through eq. (1) after linearization. To consider also 
points in scan j-th as stochastic variables, they are introduced as 
further unknowns (dβ2). Consequently two groups of equations 
are setup. The first comprehends the observation equations:  
 

cdβdβyv 22110 ++=+ AA ,                     (2)                    

 
being A1 and A2 the design matrices corresponding to 
registration parameters (dβ1) and to points in scan 2 (dβ2); v is 
the vector of residuals which are minimized in OLS; c is the 
known term vector. To introduce uncertainty also on points in 
scan j-th, a second group of pseudo-observation equations 
should be included in the functional model: 
 

ddβw 22 += D .                             (3) 

 
To account for the uncertainty of observations, two weight 
matrices are adopted (Wi, Wj) for points observed in scans i-th 
and j-th, respectively. Three relevant options for the weight 
matrices are thoroughly analysed in Paragraph 2.1.2. 
 
2.1.2 Stochastic model  
 
In the most applications, only points in the scan i-th are 
considered as stochastic variables (cases ‘a’ and ‘b’). 
In the case ‘a’, all measured points have the same precision. The 
standard model for error distribution is the hysotropic Gaussian 
distribution, assumption that only approximately corresponds to 
reality. Indeed, the use of the same weights for all points is not 
correct. Indeed, measurement errors in laser observations 
(angles and ranges) are not hysotropic. Moreover, some error 
sources in laser measurements are not normally distributed (e.g. 
the effect of laser beamwidth and surface reflectivity – Lichti et 
al., 2005). Although the Central Theorem of Statistics supports 
the use of the Gaussian model, this is only an approximation. 
Indeed, the most error sources are neglected in the stochastic 
model because they are difficult to quantify. Some results have 
been published about the effects of surface orientation with 
respect to laser beam (Bae et al., 2009). However, this approach 
is difficult to follow in the practice. Here a simple solution for 
weighting points in a scan is used (case ‘b’), by adopting the 
‘positional’ model proposed in Alba et al. (2010). The precision 
of each point k in the scan can be expressed through the 
covariance matrix: 
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.  (4) 

 
The matrix Ck has been constructed by using the standard 
deviations of the laser scanner measurements (σρ,σα,σθ), 
including range ρ and both horizontal (α) and vertical angles 
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(θ). When an algorithm for automatic target measurement is 
adopted, a further contribute to the error budget can be added 
up by introducing related variances and covariances (indicated 
with sub-index ‘FM’). The matrix (4) in polar coordinates has 
to be propagated to obtain the one in Cartesian coordinates (C′k) 
needed for the estimation of parameters of Eq. (1). Then the 
covariance matrix (C) of all the observed points in the scan will 
result from the composition of all matrices C′k into a block-
diagonal structure. Consequently the weight matrix will be W= 
C-1. On the other hand, other more involved error models can be 
used, like that proposed in Bae et al. (2009). In any case, when 
operating with real datasets, the effectiveness of the adopted 
method depends upon how well the error model fits real 
observations. On the other hand, simulated data allows to 
understand which contribute can be achieved from the use of 
weighted observations.  
A third case (‘c’) takes into consideration also weighted 
observations in both scans i-th and j-th. Both weight matrices 
W1 and W2 can be defined as in case ‘b’. This formulation is 
adequate to describe the co-registration of two laser scans in the 
RS of one of them. If the RS of one scan is given by GCPs, 
these can be weighted by adopting the estimated precision 
obtained from the LS adjustment of the geodetic network.   
 
2.2 Monte Carlo analysis of stochastic models 

Five simulated datasets have been setup with various numbers 
of points and spatial distribution (Fig. 1). In each of them, a 
laser scan has been acquired from a central position with respect 
to a set of targets to be used as GCP for geo-referencing. 
Instrument precision is that typical of a medium range phase-
shift modern scanner (σρ=±5 mm; σα=σθ=±0.05 mrad). The 
‘positional’ error model (4) has been adopted to simulate 
measurement errors. The precision of target measurements or 
the presence of systematic errors has been neglected here. In the 
cases ‘a’ and ‘b’ the GCPs have been considered as error-free. 
In the case ‘c’ they have been weighted by using the estimated 
theoretical accuracies from geodetic network adjustment. 

A Monte Carlo simulation (Robert and Casella, 2004) has been 
applied to all datasets to compare diverse weighting strategies. 
The evaluation of results is possible because the true value of 
points is known here. This makes possible to analyse either 
residuals on error-free independent check points and 
parameters. This is obviously a great advantage to verify the 
adequacy of different stochastic models under investigation. On 
the other hand, simulations do not allow one to assess how the 
assumed models fit with real data. 
Monte Carlo simulation is based on the repetition of a high 
number of trials where input data are randomly extracted based 
on a probabilistic distribution. Here the simulated observations 
consist on a set of corresponding points which have been 
measured in both IRS and GRS. A set of preliminary 
experiments have been carried out to setup the minimum 
number of trials (ntr) giving enough stability to the results. Once 
a value ntr=10000 is decided, 10 sets of experiments with the 
same number of trials has been repeated to assess the 
repeatability of results. This assumption has been verified, 
considering that all outcomes differ less than the assumed data 
uncertainty. 
 
2.3 Results of simulations 

Configurations from A1 to A4 have been designed to 
progressively reduce stability. This result has been obtained by 
either decreasing the total number of points, and by weakening 
their spatial distribution. In configuration A5 a small set of 
points (#12) like in A4 has been setup, but with a stronger 
geometry. 
The quality of geo-referencing has been evaluated by computing 
residuals on error-free check points. Two groups of check 
points have been analysed. The first collects all points of dataset 
A1 and allows evaluating the global quality of the estimated 
geo-referencing. The second group comprehends only those 
points contained in the region internal to the GCPs. Indeed, best 
practices always suggest selecting GCPs around the area to 
survey.  
 

 

   

  
 

Figure 1. – GCP configurations adopted in Monte Carlo simulations to assess different stochastic models. 
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GCP configurations A1 A2 A3 A4 A5 
#GCPs/planes 60/4 35/2 20/1 12/1 12/2 
case a b c a b C a b c a b c a b c 

A
ll 

ch
ec

k 
po

in
ts

 

Mean 
[mm] 

X 1.8 1.0 0.6 -1.2 -0.3 1.7 -2.4 -3.9 2.0 -1.3 -7.2 -2.8 0.0 -5.5 4.5 

Y -0.1 -0.4 0.0 1.5 0.7 -0.8 1.6 0.3 3.8 -2.1 4.4 -3.4 -3.1 -4.5 0.9 

Z -2.0 2.6 0.8 0.7 -2.0 3.2 -15.5 -0.6 4.6 17.0 -7.7 3.6 5.8 -14.9 1.0 

RMS 
std.-devs 
[mm] 

X 1.8 1.3 0.7 1.0 1.1 0.8 1.5 4.0 2.7 3.3 3.3 3.3 3.3 9.9 4.3 

Y 1.9 1.4 1.2 0.7 0.6 1.0 4.6 3.8 2.8 5.7 3.9 4.8 3.4 10.7 4.3 

Z 1.8 2.7 3.7 2.7 2.9 2.4 12.9 5.5 3.9 15.1 9.1 11.8 4.3 13.1 3.6 

RMSE 
[mm] 

X 2.6 1.6 0.9 1.6 1.1 1.9 2.9 5.6 3.4 3.6 7.9 4.3 3.3 11.3 6.3 

Y 1.9 1.5 1.2 1.6 0.9 1.3 4.8 3.9 4.8 6.1 5.8 5.9 4.6 11.7 4.4 

Z 2.7 3.8 3.7 2.8 3.5 4.0 20.2 5.6 6.0 22.8 11.9 12.3 7.2 19.9 3.7 

O
nl

y 
ch

ec
k 

po
in

ts
 

bo
un

de
d 

by
 G

C
P

s 

Mean 
[mm] 

X - - - -1.4 -0.4 1.8 -1.3 0.3 -0.8 1.7 -4.1 0.3 1.9 3.1 1.5 

Y - - - 1.3 0.5 -0.6 1.6 0.3 3.8 -2.9 5.9 -3.7 -1.1 2.7 -2.3 

Z - - - -0.9 -0.5 1.8 -0.8 0.9 3.3 -0.8 -2.1 -10.0 4.8 -4.3 1.7 

RMS   
std.-devs  
[mm] 

X - - - 1.0 1.1 0.8 0.5 1.6 0.8 1.2 1.3 1.0 1.5 4.0 1.8 

Y - - - 0.7 0.6 0.9 4.6 3.5 2.6 4.5 2.9 3.7 1.6 5.3 1.8 

Z - - - 1.9 2.5 1.6 1.3 4.2 2.2 2.9 3.2 2.5 1.6 5.4 1.3 

RMSE 
[mm] 

X - - - 1.7 1.2 2.0 1.4 1.6 1.2 2.1 4.3 1.1 2.4 5.0 2.4 

Y - - - 1.5 0.8 1.1 4.9 3.5 4.6 5.3 6.6 5.3 1.9 5.9 2.9 

Z - - - 2.1 2.5 2.4 1.6 4.3 3.9 3.0 3.9 10.3 5.1 6.9 2.2 

Table 1. – Results of Monte Carlo simulations of a scan geo-referencing based on different GCP configurations and stochastic 
models (‘a’: uniform weighting of laser scanner observations only; ‘b’: weighting laser scanner observations based on the 
‘positional’ model; ‘c’: using also weights for GCPs). Results refer to the use of two different groups of check points. 

 
 
In general, computed residuals on check points have resulted 
smaller in the second subset than in the first group, as expected. 
Although there is not full evidence that a stochastic model is 
absolutely better than another, two conclusions can be drawn. In 
the most stable configurations (A1-A2) all stochastic models 
worked well. As far as the configuration becomes weaker, the 
case ‘c’ showed slightly better results than ‘b.’ 

2.4 Criterion matrix 

The simulations’ outcomes suggest checking the spatial 
distribution of points to detect possible weak configurations. 
Such kind of criteria is also important in estimation techniques 
(e.g. RANSAC or Least Median of Squares) based on random 
extraction of several minimal point datasets to be used for 
registration.  
Such assessment can be based on the comparison of the 
estimated covariance matrix of parameters (Cxx) with an ideal 
one called criterion matrix H (Baarda, 1973). This test allows 
one to establish if the current point configuration is better than 
expected, according to H. Here the approach proposed in 
Förstner (2001) has been modified to account for the different 
number of points in the real (nC) and the reference case  (nH): 
 

2

1

2

1

HCHK xx
H

C

n

n








= .      (5) 

 
The comparison is accepted depending upon the largest 
eigenvalue of matrix K: 
 

1)(max ≤Kλ .        (6) 

 
Both expressions in Eqs. (5) and (6) can be easily worked out 
when the number of parameters is small (6 in the case under 
study). The introduction of the weighting coefficient nC/nH is 
motivated by the observation that if H is setup based on an ideal 
configuration, the number of points in here might strongly 
affect the results with respect to their spatial distribution. 
Alternatively, Förstner (2001) suggests to compute H based on 

some theoretical considerations on variances and correlations 
between parameters. 
In Table 2 the results of test (6) for the 5 GCP configurations in 
Figure 1 are shown. In addition, some subsets of points have 
been derived from the largest dataset A1. While a homogenous 
spatial distribution of points has been kept, their number has 
been progressively reduced. 
 
 

case #points ||||ρρρρij||||>0.8 λλλλmax(K) 

A1-a 30 - 1.1 
A1-b 20 - 1.3 
A1-c 15 - 2.1 
A1-d 10 - 1.5 
A1-e 5 - 1.2 
A2 35 - 4.9 
A3 20 Y0-ω; Z0-ω  24.3 
A4 12 X0-κ; Y0-Z0; Y0-ω; Z0-ω 51.6 
A5 12 X0-κ; Y0-κ; 22.1 

Table 2. – Results of comparison of different point 
configurations with a criterion matrix from case A1. 

 
 

3. RELIABILITY ANALYSIS  

3.1 Basics concepts 

Reliability refers to the chance to detect gross errors in the 
target coordinates measured in the laser scan and adopted for 
geo-referencing purpose. The same concept could be extended 
to include also errors in GCP coordinates, but this case is not 
considered here. 
The problem is to evaluate how big can be the error on 
estimated geo-referencing parameters of a scan, according to the 
largest theoretical error in observations that cannot be 
theoretically detected by data snooping (Baarda, 1968). The 
inner reliability relates the expectation E(|vi|)≠0 (also called 
non-centrality parameter δ0) of the normalised correction 
corresponding to a gross error ∆li which is locatable with a 
given probability 1-β: 
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where ri is the local redundancy of the observation li, and σli the 
corresponding mean square error. If the gross error is smaller 
than the inner reliability E(|∆li|), the probability that it will not 
be detected in a test with normalised corrections is high. 
Consequently, this error will result in a deviation of the 
estimated parameters x from LS adjustment. The corresponding 
outer reliability is then given by the expression: 
 

( ) ( ) ( )lx T1T ∆=∆ −
EE WAWAA  .     (8) 

 
Vector E(|∆l|) is zero except on the element corresponding to 
the observation affected by gross error ∆li. 
 
3.2 Analysis of simulated configurations 

A reliability analysis of the configurations adopted in Section 2 
has been carried out. A non-centrality parameter δ0= E(|vi|)=4.0, 
a significance α=0.01 and a power β=0.93 have been setup. The 
corresponding rejection threshold for data snooping is k=2.56. 
In Table 3 some results on the inner reliabilities computed for 
points in configurations A1, A2, A3, A4, and A5 are reported. 
As can be seen, in the less stable configurations (A4-A3-A5) the 
largest inner reliabilities can reach some centimetres.  
Assuming that in the dataset is present only one gross error 
which is equal to the largest inner reliability value, this will lead 
to a bias in the estimated geo-referencing parameters. This can 
be computed based on Eq. (8). To better understand the effect 
of this error on the final point coordinates, each biased set of 
parameters has been used to compute the discrepancies on the 
check point coordinates. As can be seen in Table 3, the effect on 
check points of the largest undetectable error in observations is 
quite relevant for weak configurations. On the other hand, no 
significant effects can be noticed in the strongest ones (A1-A2). 
This outcome highlights the need of major care on reliability 
analysis during geo-referencing, especially in high-precision 
applications. 
 
3.3 Leverage points 

Leverage points in regression estimation are meant to be points 
which have a strong influence on the estimated result. This is 
due to their geometric position, especially in the case of non-
homogenous or unbalanced data. Such points are characterized 
by a low local redundancy, and the corresponding residuals can 
mask larger errors. The corresponding inner reliability will be 
larger, according to Eq. (7). 
Table 3 reports the inner reliabilities computed for all datasets 
in Section 2. It is evident how no leverage points appear in 
configurations A1 and A2, due to the large number of data and 
their good spatial distribution which result in quite even inner 
reliabilities. The result is different in smaller and asymmetric 
configurations like A3, A4 and A5. Here there are some points 
with higher inner reliabilities than average values. Two new 
small datasets (see Fig. 2) have been setup for the purpose of 
investigating the existence of leverage points (LEV1 and 
LEV2). The lower rows of Table 3 show how dramatic is the 
problem here. If in general the average inner reliabilities are 
large due to the poor data redundancy, some observations lead 
to undetectable errors up to several centimetres, as can be seen 
in the rightmost three columns of Table 3. Here the maximum 
residuals on check points depending on the error on the 

observation with the largest inner reliability have been 
computed based on Eq. (8). In reality, the situation can be also 
worse because observations in TLS are strongly correlated 
among them. Indeed, here the coordinates of targets in a scan 
have been considered as independently observed data, but in 
fact they are not. 
 
 

Conf. # 
points 

Inner reliabilities 
[mm] 

Max residuals on 
check points [mm] 

Mea
n 

max min X Y Z 

A1 60 7.8 10.7 5.7 0 0 0 
A2 35 9.9 15.2 7.1 0 0 0 
A3 20 15.2 26.4 10.7 3.9 5.2 10.8 
A4 12 20.5 34.9 14.0 13.0 14.3 33.9 
A5 12 19.5 23.4 15.4 7.2 10.4 9.1 
LEV1 6 36.1 69.6 22.5 6.0 7.1 48.2 
LEV2 6 29.6 57.1 18.7 6.1 6.0 38.3 

Table 3. – Results of reliability analysis. 
 

 

Figure 2. – GCP configurations with leverage points; red 
triangles are GCP, blue circle check points that are 
outside the bounding box of GCP to simulate a 
typical scenario in deformation measurements. 

 
 
3.4 Joint-adjustment of laser scan and geodetic data 

A further chance to increase the local redundancy of laser scan 
observations is to combine the adjustment for computing geo-
referencing parameters to the one of the geodetic network for 
the determination of GCP coordinates. The procedure is similar 
to joint-adjustment that was experienced in aerial 
photogrammetry. 
The design matrix A is made up of different sub-matrices. 
Observation equations coming from linearization of Eq. (1) 
contribute to both sub-matrix Ap (size 3n×6, where n is the 
number of points), containing the coefficients of geo-
referencing parameters, and to AGCP (size 3n×3n), with the 
coefficients of GCPs. Three different kinds of theodolite 
measurements can be adopted in a geodetic network for 
working out GCP coordinates: azimuth and zenith angles, slope 
distances. The geodetic datum can be setup thanks to the 
knowledge of the stations’ coordinates, or by arbitrarily fix 
them to establish a minimum constraint. This second group of 
observation equations gives rise to sub-matrix Ag (size h×3n, 
where h is the number of geodetic observations). The full design 
matrix A and the weight matrix W of joint-adjustment is then 
given by: 
 












=

g

GCPp

0 A

AA
A ,     



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
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=
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0

0TLS ,                   (9) 

 
where sub-matrices WTLS and Wg correspond to laser scanning 
and geodetic observations, respectfully. The redundancy matrix 
can be computed as follows: 
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Reckoning how much is the contribution of geodetic 
observations to local redundancies is not directly possible from 
Eq. (10). Conversely, an approach based on simulating a typical 
geodetic network for the determination of 10 GCPs has been 
followed. Coordinates of GCPs are measured thanks to geodetic 
measurements from 3 stations. These are considered known 
with superior accuracy. They also establish the GRS. 
Coordinates of GCPs are also observed in the laser scan. Table 
4 shows the number of equations and unknowns in both cases of 
joint-adjustment and independent adjustment of geodetic 
network and geo-referencing parameter estimation. 
Geodetic observations can be weighted with easy on the basis of 
instrumental precisions. On the other hand, TLS measurements 
of targets are more difficult to predict. The results can be 
divided in three groups, according to weights: 
  

1. homogeneous weights: the ‘positional’ model has been 
adopted to find reasonable values for weights in TLS. In 
this case, the joint-adjustment leads to an average 
decrease of the local redundancies of TLS observations (-
17%), while those of geodetic observations rise up of 
+6.7%; 

2. increasing weights of TLS data: if targets in the laser scan 
are measured with higher precision (5 times the previous 
case), they results in a significant average improvement of 
local redundancies of the geodetic observations (+33.2%). 
Conversely, the ones of TLS measurements dramatically 
drop down (-82.9%); and 

3. decreasing weights of TLS data: if targets in the laser scan 
have been measured with lower precision (5 times worse 
than in case 1), the average change of local redundancies 
is very small (+0.3% for TLS and  -0.8% for geodetic 
observations, respectively). 

 
The results tell that with better laser scan measurements it is 
possible to control geodetic observations, but not the contrary. 
However, all the intermediate cases strictly depend upon a 
proper evaluation of weights. Thus they do not seem useful in 
the practice. 
 
 

 Equations Unknowns Global 
redundancy  Geod. TLS Geod. TLS 

Geodetic 90 - 30 - 60 
TLS - 30 - 6 24 
Joint-adj. 90 30 30 6 84 

Table 4. - Features of independent and joint-adjustment for 
estimating geo-referencing parameters and GCP 
coordinates.  

 
 

4. CONCLUSIONS AND FUTURE DEVELOPMENTS 

In recent years terrestrial laser scanning (TLS) techniques have 
achieved a great success in many domains. For the most this is 
due to the straightforward acquisition of 3D data and to the 
simplification of the registration procedures with respect to 
photogrammetry. In many practical applications, today TLS 
allows users to accomplish projects that in the past required a 
much higher effort. On the other hand, a different approach 
should be followed in the case of high-precision applications, 
likewise deformation monitoring. 
Although much work has been carried out on modelling 
systematic errors, automation of laser scan registration, and 

point cloud segmentation, less attention has been put on design 
of data acquisition and quality assessment. In close-range 
photogrammetry, paramount work on these topics was carried 
out in the ‘80s and ‘90s. This paper is a short attempt to draw 
the attention of TLS researchers and practitioners on some of 
these concepts.  
The development of stochastic models that can be suitable to 
deal with real data is an important issue, especially when 
dealing with weak configurations in geo-referencing. The 
reliability analysis has been demonstrated to play a fundamental 
role in high-precision applications. Here the case of single scan 
registration to ground has been considered. The same analysis 
could be extended to the case of several scans to be registered in 
a common frame.     
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