The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XXXIX-B6
https://doi.org/10.5194/isprsarchives-XXXIX-B6-129-2012
https://doi.org/10.5194/isprsarchives-XXXIX-B6-129-2012
27 Jul 2012
 | 27 Jul 2012

A PRELIMINARY STUDY OF WEB-BASED SPATIAL DATA ANALYSIS FEASIBILITY – ONE OF POSSIBLE SOLUTIONS FOR DISASTER RESPONSE AND MANAGEMENT

C. C. Lim and K.-C. Chang

Keywords: Disaster Response and Management, Information Dissemination, Web-based Spatial Data Analysis, GIService, Knowledge Regularization, Land Cover Change Detection, Service Oriented Architecture

Abstract. As the massive tsunami that struck northeast Japan in 11 March 2011 after a magnitude 9.0 earthquake, it reveals that people are living in a critical environment. Although great improvement has been achieved in disaster prevention technologies, many natural disasters are still unpredictable. In addition to the prevention, rapid and effective responses to such disasters are also crucial. One of the key elements to success is the information dissemination of disaster, including both area and people living within that region. In the past decade, web-based spatial information system has become the major platform for both data sharing and displaying. What is coming next is the development of web-based spatial data analysis. A web-based service allows people to implement spatial analysis immediately as long as the internet connection among database and application servers is available. This useful and helpful spatial information is able to be accessed by all users around the world almost simultaneously. The main goal of this paper is to implement a spatial data analysis module based on service oriented architecture (SOA) concept. The main interest and focus of our study is based on the knowledge regularization processes of spatial data analysis to achieve the automated land cover change detection (LCCD) over internet. The proposed automated model is tested and verified by FORMOSAT-2 imageries taken in 2005 and in 2008. It will be published online for users around the world to maximize the add-on value and minimize the cost of the spatial data, moreover, to reveal the situations of disaster rapidly.