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ABSTRACT: 

 

In order to improve the Tsai’s two-step camera calibration method, we present a camera model which accounts for major sources of 

lens distortion, namely: radial, decentering, and thin prism distortions. The coordinates of principle points will be calculated at the 

same time. In the camera calibration model, considering the errors existing both in the observation vector and the coefficient matrix, 

the Total Least-Squares (TLS) solution is preferred to be utilized. The Errors-In-Variables (EIV) model will be adjusted by the 

solution within the nonlinear Gauss-Helmert (GH) model here. At the end of the contribution, the real experiment is investigated to 

demonstrate the improved two-step camera calibration method proposed in this paper. The results show that using the iteratively 

linearized GH model to solve this proposed method, the camera calibration parameters will be more stable and accurate, and the 

calculation can be preceded regardless of whether the variance covariance matrices are full or diagonal. 

 

 

1. INTRODUCTION  

Because actual cameras are not perfect and sustain a variety of 

aberrations, the relationship between object space and image 

space cannot be described perfectly by a perspective 

transformation. Digital camera calibration is the process of 

determining the interior and/or the exterior orientation 

parameters of the camera frame relative to a certain world 

coordinate system. 

The techniques for camera calibration can be mainly classified 

into three categories (Juyang Wenig et al., 1992): 1) Direct 

Nonlinear Minimization (Brown, 1966; Wong, 1975; Faig, 

1975); 2) “Closed-Form Solution” (Wong, 1975; Ganapathy, 

1984; Faugeras and G. Toscani, 1986). 3) “The Two-step 

Method” (Tsai, 1987). 

The two-step method is suitable for most calibration problems, 

and the iterative convergence speed is fast, since the number of 

parameters to be estimated through iterations is relatively small. 

However, this method can only deal with radial distortion and 

cannot be extended to other types of distortion (Wenig et al., 

1992).  

The Least-Squares (LS) adjustment within the Gauss-Markov 

(GM) model is usually used to calculate the calibration 

parameters from a redundant set of equations (  yy e Ax ). LS 

estimation is the best linear unbiased estimation when the error 

vector ye in observation vector y is normally distributed, and the 

matrix of variables A is error-free.  

However, camera calibration, various random errors may bring 

inaccuracies into the matrix of variables A as well. The Total 

Least-Squares (TLS) approach provides a solution, when all the 

data are affected by random errors and can solve estimation 

problems in the so-called EIV model (Golub and Van Loan 

(1980), Van Huffel and Vandewalle (1991)). In recent years, the 

TLS method has been developed further. For example, Schaffrin 

(2006) investigated the Constrained TLS (CTLS) method; 

Schaffrin and Wieser (2008) analyzed the Weighted TLS 

(WTLS) adjustment for linear regression; Schaffrin and Felus 

(2009) developed the TLS problem with linear and quadratic 

constraints; Neitzel (2010) solved the TLS within the EIV 

model as a special case of the method of LS within the 

nonlinear Gauss-Helmert (GH) model. 

Only a few authors described estimation of parameters of 

camera calibration within the EIV model, and none have 

presented the straightforward algorithm as in the following 

sections. In this paper, we considers some of the following 

disadvantages of the two-step calibration method and LS 

adjustment, and then additionally makes some improvements in 

camera calibration 

 

2. IMPROVED TWO-STEP CAMERA CALIBRATION 

METHOD 

2.1 Classical two-step camera calibration method 

In classical two-step camera calibration method (Tsai, 1987), 

the camera model is a pinhole model with first order radial 

distortion. Generally, the classical two-step method consists of 

two steps: 

1) The first-step is based on a distortion-free camera model to 

compute the 3D orientation matrix R , two components of the 

translation vector
xT and yT , and the scale factor

xs .  

We let ( , , )w w wx y z  represent the coordinates of any visible point 

P in a 3D object world coordinate system, ( , )d dX Y
 
stand for the 

actual image coordinates of the same point in a camera-centered 

coordinate system, ( , , )x y zT T T delegate the three components of 

the translation vector T , and R presents the 3 3 rotation matrix. 

Then the rigid body transformation from the object world 

coordinate system to the image coordinate system can be 

displayed as: 

 

1 2 3

4 5 6

7 8 9

d w w x

d w w y

w w z

X x r r r x T

Y y r r r y T

f z r r r z T

         
         

            
                  

R T               (1) 

 

For each calibration point i ,a linear equation will be set up as 

follow: 
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Based on the orthogonality of the rotation matrix R, the nine 

elements of the orientation matrix R, two components of the 

translation vector
xT and yT , and the scale factor

xs  can be solved 

(Tsai, 1987). 

2) The second step is a nonlinear optimization using the 

solution of the first step as an initial guess. The aim of the 

second step is to compute the effective focal length f , the first 

order radial distortion coefficient
1k , and the z position

zT : 

a) Compute the approximate value of f and
zT by ignoring lens 

distortion. 

Considering formula (1), for each calibration point i , the linear 

equation with f  and 
zT  as unknowns can be presented as: 

 

4 5 6 0 7 8 9 0( )( )wi wi wi y di wi wi wi di

z

f
r x r y r z T Y y r x r y r z Y y

T

 
          

 
(3) 

 

With more than two calibration points, an overdetermined 

system of linear equations would be established and then be 

solved for the unknowns f and
zT . 

b) Compute the exact solution for f and
zT , and the first order 

radial distortion coefficient
1k iteratively by a nonlinear 

optimization search (Tsai, 1987). 

 

2.2 Improved two-step camera calibration method 

In Tsai (1987), the offsets of the principal point
0 0( , )x y are 

assumed to be known as zeros. Unfortunately, this assumption 

is frequently not true due to various types of error because of 

the imperfection in lens design and manufacturing process.  

So the first improvement of the two-step calibration method is 

to take the offsets of the principal point into account as the 

unknowns. Then the actual image coordinates of each 

calibration point in the camera-centered coordinate system 

( , )x y  are presented as: 

 

0

0

d

d

x X x

y Y y

 


 

                                        

(4) 

 

Another limitation in Tsai (1987) is that this method can only 

handle radial distortion and cannot be extended to other types of 

distortion. However, besides radial distortion, there are still 

many kinds of geometrical distortion which should not be 

ignored during the calibration.  

So the second improvement is to establish a camera model, 

which accounts for major sources of camera distortion, namely, 

radial, decentering, and thin prism distortions. 

If
1k represents the coefficient of first order of radial distortion;

1p and
2p stand for the coefficients of decentering distortion; 1s

and 2s delegate the coefficients of thin prism distortion; and O

stands for the neglected high-order terms, then the radial 

distortion ( , )xr yr  , the decentering distortion ( , )xd yd  , and the 

thin prism distortion ( , )xp yp   of a perfectly centered lens can 

be expressed as: 

 
2 2 5

1

2 2 5

1

( ) ( , )
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xr
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k x x y O x y

k y x y O x y




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(7) 

 

Based on the above three types of distortion, an effective total 

distortion can be modeled. Assuming that terms of order higher 

than 3 are negligible, the total distortion ( , )x y  is presented as: 

 
2 2 2 2 2

1 3 4 1

2 2 2 2 2

2 3 4 1

( ) ( )

( ) ( )

x

y

g x y g x g xy k x x y

g x y g xy g y k y x y





      


     

             (8) 

 

where 1 1 1g s p  , 2 2 2g s p  , 3 12g p , and 4 22g p . 

Taking into account the offsets of principle point and the total 

distortion, according to formula (1), the complete camera model 

can be displayed by the nonlinear equations: 

 

1 2 3 7 8 9

4 5 6 7 8 9

( ) / ( )

( ) / ( )

x w w w x w w w z

y w w w y w w w z

x f r x r y r z T r x r y r z T

y f r x r y r z T r x r y r z T





        


       

    (9) 

 

As we can see, there are 20 unknown parameters in formula (9). 

In the rotation matrix R , only three components are 

independent. According to the property of the orthonormal 

matrix ( 3 3

T T

 R R RR I , 3 3I  denotes the 3 3 identity matrix), 

six constrained equations organized by the nine elements can be 

expanded as: 
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
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                      (10) 

 

Then the calibration parameters can be estimated by the 

constrained adjustment as in formulas (9) and (10). In this paper, 

the constrained equations (10) will be converted into the 

pseudo-observation equations. In computation, the weights of 

these six pseudo-observation equations will be set much larger 

than others. So the unknown parameters will be estimated by 

the weighted adjustment. 

In Tsai (1987), the second step only iteratively computes parts 

of parameters that cannot be provided by the first step. So the 

third improvement is to optimize all 20 calibration parameters 

in the proposed second step. Then the fourth improvement is to 

use the corresponding approximate solution of the first step as 

an initial value of the second step. 

 

3. THE WTLS SOLUTION FOR IMPROVED TWO-

STEP CAMERA CALIBRATION METHOD 

In the improved camera calibration model, the number of 

unknown parameters is 20. If the number of corresponding 
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points is k, then the number of observation equations is n

( 2n k ). Combined with six constrained equations, at least 

seven points are required to determine the 20 parameters 

uniquely. However, in general, more corresponding points are 

measured, and an adjustment process is required for computing 

the best fitting parameters with the redundant data.  

The LS adjustment is employed for estimation of the unknown 

parameters in many cases. But there is a basic assumption that 

only observations are affected by random errors. This 

assumption implies that just the data in the target coordinate 

system include errors, but coordinates in the source system are 

true and error-free. In this case a GM model is suitable. 

However, the assumption that all the random errors are confined 

to the observation vector often is not true. In many cases, errors 

occur not only in the observation vector, but also in the 

coefficient data matrix. In this case, the TLS approach is the 

proper method for treating this EIV model. 

The starting point for the TLS adjustment is the definition of a 

quasi-linear model. However, the improved camera calibration 

model described in the last section is nonlinear. To calculate the 

nonlinear WTLS problem, the rigorous evaluation in a nonlinear 

GH model will be performed. 

Because ( , , )w w wx y z  and ( , )x y  are both observations, random 

errors
wxe ,

wye ,
wze and xe , ye have to be introduced, which 

result in the identities: 
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(12) 

 

Since formula (10) is converted into pseudo-observation 

equations, errors are also included in: 
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The correction vector would be: 
 

(2 3 6) 1

T

1 2 3 4 5 6

: [ , , ]

i i wi wi wi

T T T T

k k

x y x y z c c c c c ce e e e e e e e e e e
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2 1 3
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(14) 

 

where the subscript i denotes the number of corresponding 

points. As always, variances and covariance of the observations 

have to be taken into account. Then combined with the accuracy 

relations into corresponding weight matrix 2P , 1P and 3P , the 

objective function to be minimized obtains the form:  
 

3 3 3 minT T T T   2 2 2 1 1 1e Pe e P e e P e e P e              (15) 
 

The implicit form of the functional relation is established by 

formula (12) and (13). The solution of this EIV model can be 

obtained through an evaluation within the GH model.  

The nonlinear differentiable condition equations (12) and (13) 

can be combined and written as: 
 

(2 6) 1f( , ) f ( , ) , f ( , ) 0
T
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In nonlinear improved two-step calibration method ( , )f e x is: 
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where f ( , ) C 3e x 0
 
presents the six pseudo-observation 

equations, defined as formula (13). 

With appropriate initial values 0
e and 0

x , the linearized 

condition equations can be written as: 
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Involving the matrices of partial derivatives: 
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So in nonlinear improved two-step calibration 0( , )A e x can be 

built as: 
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where 0
1A  stands for the coefficient matrix of the error 

equations, which is linearized from formula (12). Let 
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So 0
1A  can be written as: 
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where the subscript i  is the number of corresponding points.  

0
2A  in formula (20) presents the coefficient matrix of the 

additional error equations, which is linearized from formula 

(13): 
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0( , )B e x  is decomposed as: 
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here, 0
2B , 0

1B and 0
3B respectively denote the matrices of partial 

derivatives of 2e , and 1e  and 3e .
 
According to formula (17), 

0( , )B e x
 
is: 

 

0 0
2 1 2 60

(2 6) (2 3 6) 0
6 2 6 3 3

k
k k k

k k


   

 

 
 
 
 

B B 0
B

0 0 B
         (27) 

 

with the vector of misclosures: 
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(28) 

 

and cofactor matrices of 1e , 2e and 3e : 
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(29) 

 

here,  is a sufficiently large constant which presents the 

weights of the six pseudo-observation equations. Considering 

the correlation between the coordinates in the image coordinate 

system and the object world coordinate system, the more 

general form of cofactor matrix is: 
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(30) 

 

where 21Q and 12Q denote the covariance matrix of 2e and 1e . So 

compared with the calculation process in Neitzel (2010), in 

which the weighted matrix is diagonal, the observations here 

can be correlated. 

The estimation for the unknown parameters from the solution of 

the linear equations system will be obtained as follows: 
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and the first error vector is: 

 

 1 0 1ˆ
T

e Q B λ
                                

(32) 

 

This is an iterative calculation process.  After stripping the 

randomness of the solution 1
e and 1

x̂ , they are used in the next 

iteration step as their approximations. 

 

4. EVALUATION 

The evaluation method used in this paper is the multi-image 

intersection method. Intersection refers to the determination of a 

point’s position in object-space by intersecting the image rays 

from two or more images. And it is the application of 

coilinearity equations which can be established as:  
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After the calibration parameters are solved, with more than two 

images, the 3D object world coordinates of the point can be 

calculated by the error equations: 
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               (34) 

 

So the observations in this intersection solution are the image 

coordinate measurements. Comparing the calculation results 

and the given coordinates of the control points, the correction 

and accuracy of the calibration results will be evaluated. 

 
5. CASE STUDY 

In the following section, a numerical example based on actual 

experiments will be used to examine the camera model and the 

parameter estimation strategy described in the previous sections. 

The setup used in our calibration experiments is shown in Fig. 1. 
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Fig 1 calibration setup 

In this calibration field, 58 mark points are mounted on the 

walls and steps. These points are measured by the total station, 

whose angle measurement accuracy and ranging accuracy are 1″ 

and 0.6mm+2ppm, respectively. To promise the accuracy of 

every point within the millimeter level, the measuring distance 

is less than 100 meters, and every point is measured 4 times. 

The weights for the 3D object coordinates are equal.  

These 58 mark points are divided into two groups, including 38 

control points and 20 check points. 

The images were taken by the consumer-grade camera: Nikon 

D200, in which the effective part of the CCD sensor array is 

3872 2592 pixels (23.6mm×15.8mm) and the focal length is 

about 50 mm.  

The corresponding image-point locations are estimated with 

sub-pixel accuracy. 

In the experiment, eight camera stations are set up, and one 

image is taken on every station. The shooting distance is 

between 15 and 20 meters. The sample is presented as Fig.2, 

and the 38 control points are remarked by red crosses. 

 
Fig 2 the sample of images taken by the camera 

After the initial values are calculated by formula (2) and (3) 

with LS adjustment, the improved two-step calibration method 

is proceeded to optimize all the calibration parameters by 

formula (9) and (10). In order to solve this adjustment problem, 

we compute this step by using the WLS and WTLS method, 

respectively. For the EIV model, we use the solution within the 

iteratively linearized GH model. The weights for the six pseudo-

observation equations are 1010. So the covariance matrix is: 
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(35) 

 

Repeat the iteration until ( ) ( 1)ˆ ˆk k  x x  (for a given 
 
, in 

general, 1010  ). Here the superscript ( )k  denotes the 

iteration count. 

The estimated calibration results are displayed in Table 1. 

The evaluation method is the multi-image intersection described 

in section 4. The precision and accuracy of the solution will be 

evaluated by control points and check points respectively.  

With the formula (34) and (35), the 3D object world coordinates 

of every point can be solved. Then the difference between the 

calculation results and the given coordinates of the control 

points and check points will be computed, respectively. If we 

use ( 2

-x GCP , 2

-y GCP ,
 

2

-z GCP ) and ( 2

-CPx , 2

-y CP ,
 

2

-z CP ) to 

represent the variance components of the ground control points 

and check points; 2

0-GCP and 2

0-CP to delegate the variance 

components of the control points and check points, then the 

evaluation results are shown in Table 2 and Table 3. 

Tab.1 Calibration results 

 
Classical two-step method Improved two-step method 

LS WLS WTLS 

0x (p)  0.01 0.00 

0y (p)  -0.00 -0.00 

f (p) 8624.53 8623.98 8623.11 

xS  1.000269 1.000269 1.000267 

1k (10
-10

p
-2

) 1.96 2.19 2.04 

1p (10
-8

p
-2

)  -0.6278 -0.6534 

2p (10
-8

p
-2

)  -0.3678 -0.8529 

1s (10
-8

p
-2

)  0.2213 0.2203 

2s (10
-8

p
-2

)  1.7280 1.5419 

Tab.2 Precision of the calibration results calculated by control points 

 
Classical two-step method Improved two-step method 

LS WLS WTLS 

2

-x GCP  (mm) 1.1510 0.7087 0.4754 

2

-y GCP  (mm) 0.6382 0.4604 0.1524 

2

-z GCP  (mm) 0.1505 0.0592 0.0110 

2

0-GCP  (mm) 1.9397 1.2283 0.6388 

Tab.3 Accuracy of the calibration results calculated by check points 

 
Classical two-step method Improved two-step method 

LS WLS WTLS 

2

-CPx  (mm) 2.3900 1.3029 0.9014 

2

-y CP  (mm) 1.0167 0.6091 0.2805 

2

-z CP  (mm) 0.1854 0.1170 0.1099 

2

0-CP  (mm) 3.5921 2.0290 1.2918 

Comparing the results for the calibration parameters from 

Tables 1 and the evaluation results in Tables 2 and Table 3, 

differences can be analyzed.  

1) As can be seen from the calibration results shown in Table 3, 

the offsets of the principle point and many kinds of parameters 

for camera distortion cannot be obtained by the classical two-

step calibration method. But for this lens, the decentering and 

thin prism distortions should not be neglected. 

2) As shown in Table 1, no matter which calculation procedure 

is chosen, the calibration results solved by the improved two-

step method are similar. 

3) From the evaluation results in Table 2, the variance 

component of the control points solved by improved two-step 

calibration method is less than 1.5 millimeters, which is smaller 

than the one calculated by the classical two-step method. And 

from Table 3, we can see that the accuracy of the calibration 

results calculated by the improved two-step calibration method 

is higher than the classical one. However, if the camera 

calibration model is the same, for example, as the improved 

two-step calibration method, with the EIV model, we can obtain 

higher accurate calibration results than with the GM model. 
4) Since the errors are obviously distributed in both the object 

world coordinate system and the image coordinate system, the 

EIV model is preferable for solving this calibration problem. 

This can be detected also from the evaluation results in Table 2 

and Table 3. The variance components calculated by the EIV 

model are much smaller than those calculated by the GM model. 
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6. CONCLUDING REMARKS 

This contribution investigates an improved calibration method 

for consumer-grade cameras. And to adjust this nonlinear 

improved model, the solution within the EIV model is used to 

compute the optimal calibration parameters. Then the multi-

image intersection is applied to evaluate accuracy of the camera 

calibration results. Finally, a real example is employed to 

demonstrate this improved two-step calibration model and 

process the solution within the iteratively linearized GH model. 

The conclusions are summarized as follows:  

1) Unlike the classical two-step method, which can only handle 

radial distortion, the improved method proposed here can 

synthetically establish a camera model that accounts for major 

sources of camera distortion, namely, radial, decentering, and 

thin prism distortions. Because the consumer-grade camera 

usually consists of more distortion than a metric camera, 

distortion correction is essential here.  So the correction of 

radial and tangential distortion simultaneously can result in a 

considerable improvement over just correcting radial distortion. 

2) Besides the more reasonable distortion correction, the 

improved method can also calculate the coordinates of principle 

points at the same time. And the last step is to optimize all of 

the calibration parameters with the initial value calculated by 

the classical two-step calibration method. So the reliability and 

accuracy is improved and the convergence is sped up. 

3) Based on the fact that random errors exist both in the object 

world coordinate system and the image coordinate system, an 

EIV model is preferable for solving this calibration problem. 

After evaluation by the multi-image intersection, accuracy 

results present that variance components of the control points 

which are calculated by the EIV model are much smaller than 

those calculated by the GM model. So the accuracy has been 

improved. 

4) During the calculation processing, a covariance matrix in a 

general form can be employed with different variance for every 

point and with correlation between coordinates. In other words, 

the nonlinear calibration model can be solved without any 

problems, no matter whether the weight matrix is diagonal or 

not. 

On all accounts, the presented improved two-step calibration 

method can solve the calibration problems more stably and 

reasonably. To solve this problem, the solution within the 

iteratively linearized GH model can be used as an alternative 

WTLS method for computing an exact solution, but is more 

general with respect to the possible weight matrices. 

 

7. ACKNOWLEDGEMENT 

The paper is substantially supported by The National Natural 

Science Fund Projects of China “Research On The 

Methodology And Application Of Robust Total Least Squares” 

(No. 41074017).  The author would like to thank Pro. Yi Chen 

for his substantial help. 

 

REFERENCES 

Brown, D. C., 1966.  Decentering distortion of lenses. 

Photometric Eng. Remote Sensing, 32 (3) , pp. 444-462. 

Faig, W., 1975. Calibration of close-range photogrammetric 

systems: Mathematical formulation. Photogrammetric Eng. 

Remote Sensing, 41 (12), pp. 1479-1486. 

Faugeras, O. D. and Toscani, G., 1986. Calibration problem for 

stereo. Proc. Int. Conf  Comput. Vision Putt. Recogn. (Miami 

Beach, FL), pp. 15-20. 

Ganapathy, S., 1984. Decomposition of transformation matrices 

for robot vision. Proc. IEEE Int. Conf Robotics Auromut. 

(Atlanta), pp. 130-139. 

Neitzel, F., 2010. Generalization of total least-squares on 

example of unweighted and weighted 2D similarity 

transformation. J Geodesy, 84 (12), pp. 751-762. 

Pope, A.J., 1972. Some pitfalls to be avoided in the iterative 

adjustment of nonlinear problems. Proceedings of the 38th 

Annual Meeting of the American Society of Photogrammetry, 

Washington, DC, pp. 449–477. 

Schaffrin, B., 2006. A Note on Constrained Total Least-Squares 

Estimation. Linear Algebra and its Applications, 417, pp. 245-

258. 

Schaffrin, B. and Felus, Y. A., 2008. On the Multivariate Total 

Least-Squares approach to empirical coordinate transformation: 

Three algorithms. J Geodesy, 82 (6), pp. 373-383. 

Schaffrin, B., and Wieser, A., 2008. On weighted Total Least-

Squares adjustment for linear regression, J Geodesy , 82(7), pp. 

415-421. 

Schaffrin, B. and Felus, Y. A., 2009. An algorithmic approach 

to the total least-squares problem with linear and  quadratic 

constraints, Stud. Geophys. Geod., 53, pp. 1-16. 

Schaffrin B., Neitzel F. and Uzum S., 2009. Empirical similarity 

transformation via TLS-adjustment: exact solution vs. 

Cadzow’s approximation, International Geomatics Forum, 

Qingdao, People’s Republic of China, pp. 28-30. 

Tsai, R. Y., 1987. A versatile camera calibration technique for 

high-accuracy 3D machine vision metrology using off-the-shelf 

TV cameras and lenses. IEEE J. Robotics Automat., RA-3 (4), 

pp. 323-344. 

Van Huffel, S. and Vandeualle, J., 1991. The total least squares 

problem. Computational Aspects and Analysis, Frontiers in 

Applied, Mathematics, SIAM, Philadelphia: 9, pp. 1-87. 

Wackrow, R., Chandler, J. H. and Bryan, P., 2007. Geometric 

consistency and stability of consumer-grade digital cameras for 

accurate spatial measurement. Photogrammetric Record, 

22(118), pp. 121–134. 

Wackrow, R. and Chandler, J. H., 2008. A convergent image 

configuration for DEM extraction that minimizes the systematic 

effects caused by an inaccurate lens model. Photogrammetric 

Record, 23(121), pp. 6–18. 

Weng, J., Cohen, P., and Herniou, M., 1992. Camera 

Calibration with Distortion Models and Accuracy Evaluation. 

IEEE Transactions on Patten Analysis and Machine Intelligence, 

14 (10), pp. 965-980.  

Wong, K. W., 1975. Mathematical formulation and digital 

analysis in close-range photogrammetry. Photogrammetric Eng. 

Remote Sensing, 41 (11), pp. 1355-1373. 

 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B6, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

146

http://www.springerlink.com/content/0949-7714/
http://www.springerlink.com/content/0949-7714/84/12/

