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ABSTRACT: 

 

Mapping of surface materials in urban areas using aerial imagery is a challenging task. This is because there are numerous materials 
present in relatively small regions. Hyperspectral data features a fine spectral resolution and thus has a significant capability for 
automatic identification and mapping of urban surface materials. In this study an approach for identification of roof surface materials 
using hyperspectral data is presented. The study is based on an urban area in Ludwigsburg, Germany, using a HyMap data set recorded 
during the HyMap campaign in August, 2010. Automatisierte Liegenschaftskarte (ALK) vector data with a building layer is combined 
with the HyMap data to limit the analysis to roofs. A spectral library for roofs is compiled based on field and image measurements. In the 
roof material identification process, supervised classification methods, namely spectral angle mapper and spectral information divergence 
and the object oriented ECHO (extraction and classification of homogeneous objects) approach are compared. In addition to the overall 
shape of spectral curves, position and strength of absorptions features are used to enhance material identification. The discriminant 
analysis feature extraction method is applied to the HyMap data in order to identify features (band combinations) suitable for 
discriminating between the target classes. The identified optimal features are used to create a new data set which is later classified using 
the ECHO classifier. The classification results with respect to material types of roofs are presented in this study. The most important 
results are evaluated using orthophotos, probability maps and field visits. 
 
 

1. INTRODUCTION AND RELATED RESEARCH 

Urban environments are characterized by many different artificial 
and natural surface materials which reflect and influence 
ecological, climatic and energetic conditions of cities. They 
include mixtures of materials ranging from concrete, wood, tiles, 
bitumen, metal, sand and stone. Complete inventories based on 
analog mapping are very expensive and time consuming. 
Hyperspectral data has a high spectral resolution. Therefore, it has 
a high potential for material oriented mapping of urban surfaces 
and enables the recognition of characteristic features of urban 
surface materials. Thus it can be expected that surface materials 
can be detected on a very detailed level from the hyperspectral 
imagery. However, the development of optimal methods for 
analysing hyperspectral data is still a challenge. So far there is no 
standard approach to material classification. Problems are the 
high within-class variability of many materials and the presence 
of numerous materials in relatively small regions. A hyperspectral 
pixel in an urban scene features most frequently a mixture of 
different material components; the classification therefore 
requires a decomposition of the corresponding spectral signature 
into its “pure” constituents (Bhaskaran and Datt, 2000). 
 
Most of the research done on hyperspectral data in the past 
focused on mineral detection rather than urban surface materials 
such as roofs. This has changed recently due to the high pace of 
city development and the increase in the need to find efficient 
methods for mapping urban surface cover types. (Roessner et al., 
2001) develop an automated method for hyperspectral image 
analysis exploiting the spectral and spatial information content of 
data in order to differentiate urban surface cover types. To 
achieve this, a hierarchical structure of categories is developed. 
The main categories are defined as sealed (buildings, roads etc.) 

and non-sealed surfaces (vegetation, bare soil). Similar research is 
carried out by (Segl et al., 2003). They analyse urban surfaces 
taking into account their spectral and shape characteristics in the 
reflective and thermal wavelength range. A new algorithm for an 
improved detection of pure pixels is incorporated in an approach 
developed for automated identification of urban surface cover 
types, which combines spectral classification and unmixing 
techniques to facilitate sensible endmember detection. 
(Dell'Acqua et al., 2004) investigate spatial reclassification and 
mathematical morphology approaches. Spectral and spatial 
classifiers are combined in a multiclassification framework. The 
use of morphological approaches gives high overall accuracies. 
The approach taken by (Powell et al., 2007) is similar to that 
adopted in the present study. They build a regionally specific 
(Manaus, Brazil) spectral library of urban materials based on 
generalized categories of urban land cover components such as 
vegetation and impervious surfaces. Almost 97% of the image 
pixels are modeled within 2.5% RMS error constraint. The RMS 
error indicates the overall fit of the linear unmixing. (Heiden et 
al., 2007) propose a new approach for the determination and 
evaluation of spectral features that are robust against spectral 
overlap between material classes and within-class variability. The 
approach is divided into two parts. In the first part, spectral 
features for each material of interest are defined that allow an 
optimal identification and separation based on the reference 
spectra contained in the spectral library. For the second part, the 
robustness of these features is evaluated by a separability 
analysis. The results show that urban materials need to be 
described by more than one type of feature. Materials 
characterized by distinct absorption bands and/or reflectance 
peaks can be well detected using functions such as ratio, area, 
absorption depth and position. Additionally, the idea of 
integrating ancillary data in the analysis used by (Heldens et al., 
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2008) is also adopted in this research. The goal of the research by 
(Heldens et al., 2008) is to identify urban surface materials in 
Munich from HyMap data. They use an unmixing approach to 
identify surface materials. The unmixing approach is performed 
with and without a building mask. The quality of the co-
registration of the hyperspectral data and the building mask has a 
large impact on the results.  
 
For a more comprehensive review of related work please refer to 
Chisense (2011).  
 
In the present study, a material classification is performed for 
roofs only. The corresponding areas are identified by means of 
ALK vector data; hereby the confusion between roofs and roads 
with similar spectral properties is avoided. Information is 
extracted from the hyperspectral data using the “Discriminant 

Analysis Feature Extraction” method (DAFE). This method is 
used to determine an optimal set of features for further analysis, 
where in this particular case the term “feature” means “spectral 

band”. Those linear combinations of bands are considered as 

optimal, for which the ratio of between-class variability and 
within-class variability is a maximum, see e.g. (Kuo and 
Landgrebe, 2001). The just stated variational problem leads to a 
generalized eigenvalue problem. A subset of transformed bands is 
selected depending on their corresponding eigenvalues. The new 
data set is classified using a spatial-spectral classifier (object-
based) known as “Extraction and Classification of Homogenous 

Objects” (ECHO). This method provides for a good 

discrimination of spectrally similar materials belonging to 
spatially different objects. Orthophotos, classification probability 
maps and field visits are used in order to evaluate the 
classification results. For the classification of roofs using 
hyperspectral data various methods have been investigated, but 
only those which give the most successful experimental results 
are discussed.  
 
 

2. STUDY AREA, HYPERSPECTRAL IMAGE DATA 

AND PREPROCESSING 

The hyperspectral data used in this study was acquired by German 
Aerospace Center (DLR) on 20th August, 2010 in the course of 
its annual HyMap campaign. The data covers the city of 
Ludwigsburg, Germany, which is located close to Stuttgart in the 
Neckar basin. The scene comprises six strips and extends also 
over adjacent rural areas, apart from Ludwigsburg city itself. The 
total area amounts to 11 km x 16 km. The data include a variety 
of typical urban structures such as residential and industrial zones, 
railway stations and different roads. We restricted our tests to a 
smaller area of approximately 2.0 x 1.1 km2. The data consists of 
125 bands (ranging from 0.4 µm to 2.5 µm) and has a ground 
sample distance of 4 m. ALK vector data with a building layer is 
provided by Fachbereich Stadtplanung und Vermessung der Stadt 
Ludwigsburg. This vector data is used for limiting the analysis to 
roofs. The preprocessing of the hyperspectral data was done by 
DLR; in particular the data was corrected for radiometric, 
geometric and atmospheric effects. A high resolution LiDAR 
surface model of Ludwigsburg with 2 m raster size was made 
available for this purpose. An overlay of the HyMap and vector 
data reveals a shift between the two data sets in the order of 10 m. 
The vector layer for roofs is selected as the source of ground 
control points. The GCPs are used to georeference the HyMap 

data. It is observed that an overall RMS error of about 0.7 pixels 
is obtained after carrying out an affine transformation. 
 
 

3. METHODS AND RESULTS 

In order to determine a suitable approach, the roof material 
investigation is carried out in the test area before extending to the 
whole research area. 

3.1 Roof surface material identification 

A first look in a shop for a dealer of roofing materials already 
points out that a great variety of roof surface materials has to be 
faced in roof surface material identification. Roof tiles made from 
materials like clay and slate are on the market as well as those 
made from concrete and plastic. The widely used clay tiles are 
manufactured again in different ways for instance some clay tiles 
have waterproof glaze.  
 
In the initial stage of the research work, 10 materials are selected 
for roof material identification. Three materials, namely bitumen, 
red roof chipping and zinc plated sheet out of the ten are 
identified by name from previous field visits. The remaining 
seven are assigned arbitrary names for identification purposes and 
include roof material for Kaufland shopping centre 
(Ludwigsburg), roof material 1, 2, 3, 4, 5 and 6. In order to map 
the distribution of the ten roof materials in the scene, the 
discriminant analysis feature extraction (DAFE) available in 
MultiSpec Software is applied and this is followed by 
classification of the data set created from the optimal features 
(band combinations) resulting from the feature extraction. 
MultiSpec is a data analysis software intended for analysis of 
multispectral image data or hyperspectral data. The following 
steps are used in order to accomplish the analysis tasks:  
 
Selection of classes and their training sets: In order to identify 
and define suitable training regions, the Hymap data is classified 
using an unsupervised classification algorithm. The ISODATA 
algorithm is used for this purpose. With the aid of the output map, 
training regions for the 10 classes of material are defined. A class 
for vegetation (eleventh class) is added after it is observed that 
certain building parts include vegetation. Additionally, a class for 
the masked out area (background) is also defined. 
 

 

Figure 1: Output map of unsupervised classification process. 

Feature extraction and classification: After designating a set of 
training regions, a class conditional preprocessing algorithm 
based on a method known as projection pursuit is performed. This 
algorithm does the necessary calculations in projected space 
rather than the original, high dimensional space thus reducing the 
dimensionality of the data. This is followed by the discriminant 
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analysis feature extraction (determines a feature subspace that is 
optimal for discriminating between defined classes). The output 
of the extraction is a linear combination of the 125 original bands 
to form new bands (features) that automatically occur in 
descending order of their value for producing an effective 
discrimination. Twenty two (22) features are obtained from the 
feature extraction process. However, only the 11 features obtained 
in the final feature extraction transformation matrix (DAFE) are 
used to form a new data set since these provide most of the 
available separability and this is confirmed by the magnitude of 
the corresponding eigenvalues (high values). The new data is 
classified using the ECHO classifier. The output classification 
map is overlaid with an orthophoto covering the same area as 
shown in Figure 2. 

 

Figure 2: Overlay of classification map and orthoimage. 

The classification map fits well with the orthophoto and this gives 
an indication of the accuracy of the classification in terms of 
geometry. In order to identify areas in the classification map 
which require improvement, the corresponding classification 
probability map is inspected (see Figure 3). The pixels 
represented by yellow to red colours in the probability map 
indicate a high probability of being correct. These pixels are very 
close to the training pixels for the classified pixels. Dark blue 
colours represent a low probability of being correct. The pixels 
represented by these colours are very far from the training pixels 
for all the classes and are candidates for definition of additional 
training regions.  

 

Figure 3: Classification probability map. 

Defining additional training regions for areas with a low 
probability helps to improve the result. Most of the roofs in the 
probability map with a low likelihood of being correct consist of 
heterogeneous surface materials. For instance, the material of the 
roof in a white circle is not homogeneous. Therefore, additional 
training regions are required for areas where a surface material 
varies in terms of spectral properties. Defining training regions 
for areas requiring improvement is sufficient for achieving a 

classification result that represents ground features accurately. 
However, the required number of additional training regions 
depends on the scene, the material classes of interest and the 
accuracy requirements. The discriminant analysis feature 
extraction and the ECHO classifier are applied to the whole 
research area. The processing and analysis is done for each strip. 
The result obtained for each strip is shown in Figure 4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Classification results of the strips covering the research 
area. 

The output classification maps (Figure 4) fit well with 
orthophotos covering the research area in terms of geometry. 
Inspection of the corresponding classification probability maps 
shown in Figure 5 indicates that most of the classified building 

Strip 3 

 
(a) Strip 1 

 

 
(b) Strip 2 

 

 
(c) Strip 3 
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roofs especially in strip 1 and 2 have a high probability of being 
correct (red and yellow colours by default). Some of the classified 
building roofs especially in strip 3 have a low probability of being 
correct (dark blue colour by default). These building roofs mostly 
consist of heterogeneous surface materials. Therefore, depending 
on the scene, accuracy requirements and material classes of 
interest, more training regions should be defined for these areas 
and the classification process should be performed again to 
achieve results that represent ground features more accurately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Classification probability maps 

The average likelihood probability of each of the strips is shown 
in Table 1. This indicates the degree of membership for each pixel 
to a particular roof material class. 

Strip Average likelihood probability 

1 91.4% 

2 85.9% 

3 88.5% 
 

Table 1: Average likelihood probability 
 
 

4. CONCLUSION 

This paper focuses on the development of an approach for 
classification of roofs using hyperspectral data. The application of 
feature extraction methods such as the discriminant analysis in the 
identification of roofs using hyperspectral data shows good 
potential. In the investigation, the DAFE is combined with a 
spatial-spectral classifier (ECHO) to classify 10 roof materials. 
The ECHO classifier segments the scene into statistically 
homogeneous regions and then classifies the data based upon the 
maximum likelihood object classification scheme. The probability 
maps of the classification results for the test and research area 
show that the output classification maps have very few errors and 
thus confirm the success of the approach. In addition, the 
integration of ALK vector data for roofs in the classification 
process results in better discrimination of spectrally similar 
materials belonging to spatially different objects. This work will 
be continued by involving a specialist on roof surfaces (future 
ground truthing). 
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