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ABSTRACT:

Accurate classification of hyperspectral data is still a petitive task and new classification methods are develapadhieve desired
tasks of hyperspectral data use. The objective of this pagerdevelop a new method for hyperspectral data classdicansuring
the classification model properties like transferabiliggneralization, probabilistic interpretation, etc. héctor graphs (undirected
graphical models) are unfortunately not widely employedeimote sensing tasks, these models possess importanttseich as
representation of complex systems to model estimatioigibecmaking tasks.

In this paper we present a new method for hyperspectral tesification using factor graphs. Factor graph (a bigagtiaph consisting
of variables and factor vertices) allows factorization ehare complex function leading to definition of variables fdoyed to store
input data), latent variables (allow to bridge abstracs€lo data), and factors (defining prior probabilities foectpal features and
abstract classes; input data mapping to spectral featupaarsnand further bridging of the mixture to an abstractss)a Latent
variables play an important role by defining two-level maygpof the input spectral features to a class. Configuratiearling) on
training data of the model allows calculating a parametefasehe model to bridge the input data to a class.

The classification algorithm is as follows. Spectral bandssgparately pre-processed (unsupervised clusterirepd) to be defined
on a finite domain (alphabet) leading to a representatiohefdata on multinomial distribution. The represented hsgjpectral data
is used as input evidence (evidence vector is selectednpse) in a configured factor graph and an inference is runltiagun the
posterior probability. Variational inference (Mean fieldlows to obtain plausible results with a low calculatioméi. Calculating the
posterior probability for each class and comparison of tiobgbilities leads to classification. Since the factor pgapperate on input
data represented on an alphabet (the represented dafetradsnto multinomial distribution) the number of traigi samples can be
relatively low.

Classification assessment on Salinas hyperspectral datarbark allowed to obtain a competitive accuracy of clasifon. Employ-
ment of training data consisting of 20 randomly selecteahtsdior a class allowed to obtain the overall classificatiocusacy equal
to 85.32% and Kappa equal to 0.8358. Representation of ohgiaton a finite domain discards the curse of dimensionatiilpm
allowing to use large hyperspectral data with a moderatelly humber of bands.

1 INTRODUCTION graphical model type is not so wide for remotely sensed data i
terpretation.

Development of new methods for single/multisensory daaa-cl
sification leads to an improvement of the data classificadimh  In this paper a new approach for hyperspectral imagery super
a more precise identification of land-cover classes. Neetass,  Vvised classification using factor graph is proposed. Thesgire
requirements on the methods such as transferability, riatieg of the factor graph is defined in order to define prior prohtéd
into complex systems, or augmenting ability motivate anlesap  for input data, to map the input data to a latent variable ¢aumé
ment of probabilistic graphical models [Bishop, 2006]. Apg- of the input features) and bridge the mixture to a semanéiscl
tion of probabilistic graphical models becomes more andemor A configuration of the factor graph on training data allowse
popular and efficient solution for image annotation, clisaiion,  timate the parameter set of the graph (probabilistic fmstiin
for definition of semantic link between data and a high lemel | the factors) and an employment of a fast inference methodMe
bels [Lienou et al., 2010], [Bratasanu et al., 2011], [Wanglg  field [Frey and Jojic, 2005]) allows to obtain a competitivea
2009]. racy of the hyperspectral data classification.

Factor graphs (FG) were proposed in 1997 [Kschischang et al.

2001] and since then the application of FGs for signaliimage 2 FACTOR GRAPH MODEL FOR CLASSIFICATION
processing and recognition is gradually emerging. B. Fiey e

al. [Frey and Jojic, 2005] performed a work on a comparison ofFactor graph (undirected probabilistic model) is a moreegain
learning and inference methods for probabilistic graphicad- graphical model than a Bayesian network or a Markov random
els (Bayesian networks, Markov random fields, factor graphs field. An FG possesses properties of Bayesian network ankdvar
Factor graph is a convenient tool to define complex systems forandom field and allows to describe complex relationshipsregn
data processing/interpretation, to expand the systertsy &b parts of a modeled system. A factor graph is a bipartite graph
model complex interactions among a system parts (e.g. naap fe containing two types of nodes: variable nodes { = 1..n) and
tures/properties from low to high level), to perform appnoate  function nodes (factors)f{(z1, z2,...,zn),j = 1..m), where
inference on data, or use non full data for plausible degisiak-  a variable node:; takes value on a finite domain (alphabgf)

ing. Nevertheless, application of factor graphs as a manergé  [Kschischang et al., 2001]. Figure 1 presents an example of
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a factor graph with three variablas, x2, z3 and two function
nodesf; andf» with factorization:g(z1, 2, z3) = fi(z1,x2) *

fa(z2, x3).

Figure 1: An illustrative example of simple factor graph hwit
three variables 1, z2, zs and two function nodeg; (z1, z2) and

fa(wa, x3).

The task of classification consists of determining the plodia
of a particular hypothesis given some observed evidencis.iTh
solved by calculation of marginal probability of a latentiedle,
or by calculating of the maximum likelihood probability (x¥a

imum likelihood on the configured factor graph given the evi-

dence). The likelihood of the evidence (the features vican
be written as follows:

K N
p(x, c|sk) = H H (zn|cx)p(ck|sk), 1)
wherex is the input evidencesy, is the classyy, is the features
mixture (a latent variable)k is the number of classe® is the
number of features in the input evidence vector. Here, thrife
is assumed to be a spectral band value.

The following factor graph structure can be defined for foiamu

(2):

Figure 2: Factor graph model (independent model; a mixane |
tent variable is employed) for hyperspectral data clasgifio

The factor graph is described as:

e

n=1

N
)T )

n=1

fc—s(clw Sk)ZS(Sk)7

g(x1, 22, ..., TN, Ck, 55) =

@)

wherez,, is then-th input featureyy, is the features mixture (a
latent variable) for thek-th class;sy. is the k-th class number;
z1,...,2N, 2s are normalizing factors in the graph model [Frey
and Jojic, 2005] (define prior probabilities)i, ..., fn are the
factors mapping the input features to the feature mixtgire; is
the factor bridging the latent variable to the semanticxias

The structure of a factor graph defines a dependency of caiss v
able node on input features. Use of training data allows limuea
late a configuration (parameter gHt)) for a factor graph for
each clasé.

A configured factor graph with the configurati@(k) is expected
to have a maximum likelihood probability (a low energy state

September 2012, Melbourne, Australia

the evidence which most likely (similar) to the employedirtirsg
data. Expectation maximization method with gradient asopn
timizer are employed for learning the graph configuratioreakl
field inference method [Frey and Jojic, 2005] is employedtier
inference. Comparison of the classes probability maps itmax
mum principle) allows to produce label map.

2.1 Employed data

Salinas hyperspectral data benchmark (AVIRIS sensor cafer S
nas Valley, California; 3.7 m pixel size) was selected farssi-
fication accuracy evaluation. The data cube size is 512 liges
217 samples, 224 bands. 19 water absorption bands were dis-
carded (bands [108-112] and [154-167]) This image is abkila

as at-sensor radiance data. Ground truth classes and thenum
of samples are given in Table 1.

Minimum noise fraction (MNF) [Green et al., 1988, Boardman
and Kruse, 194] was employed to reduce the number of input
features, reduce computational time, and separate naisetfre
data. The MNF consists of two Principal Components (PCktran
formations. The first PC transformation decorrelates asdales
noise in the data, the second PC transformation performeigeon
noise-cleared data.

Since factor graphs are discrete graphical models, therieit to

be represented on a predefined finite domain (alphabet). The fi
nite domain refers to the unique values (or a list of values)é¢a-
ture can have. Here we use a finite domain consisting of datura
numbers. To represent an input feature on the finite domtaén, t
feature is proposed to be processed separately by an uasguer
clustering. A cluster's number is assumed as the value fhem t
defined domaink-means procedure is employed and the number
of clusters for feature representation on finite set waslequ#0
(used for representation of all features). In an additi@xgleri-
ment, the features before representation are processeeédigm
filtering.

20 points were randomly selected for each class in orderre co
figure the factor graph. Expectation maximization with adgzat
ascent method were employed for the factor graph configurati

Table 1. Salinas hyperspectral benchmark classes (alailab
ground truth samples)

[ Number] Class [ Sampleg
1 Brocoli_.greenweedsl 2009
2 Brocoli_greenweeds2 3726
3 Fallow 1976
4 Fallow_rough.plow 1394
5 Stubble 3959
6 Celery 3579
7 Grapesuntrained 11271
8 Soil_vinyard.develop 6203
9 Cornsenescedreenweeds| 3278

10 Lettuceromaine4wk 1068
11 Lettuceromaine5wk 1927
12 Lettuceromaine6wk 916
13 Lettuceromaine7wk 1070
14 Vinyard_untrained 7268
15 Fallow_smooth 2678
16 Vinyard_verticaltrellis 1807

3 RESULTS AND DISCUSSION

Table 2 presents the overall accuracy and Kappa coeffictent f
the classification. The additional experiment with feameslian
filtering allowed to obtain a better classification accureesults
(overall accuracy=85.3217 and Kappa=0.8358 versus 82.860
0.7921, respectively; compare confusion Tables 3 and 4)stMo
of the classes were labeled with an accuracy more than 90%,
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except several most difficult classes (these classes aadlyusu structure of the FG allows to reach a competitive accuracy of
hard to label and are mainly confused, see Tables 3 and 4). Thdassification even on data with decreased radiometricerfneg-
classes 7 (Grapamtrained) and 14 (Vinyardntrained) illus-  resented on the alphabet). An important property of factaply
trate the highest confusion with classification accuraeigsal  classification is that the method requires a relatively lasmnber
to 68.79% and 65.05% (Table 4), respectively. Classes 1t (Leof training samples (only 20 points for a class). Separaiegss-
tuceromainebwk) and 8 (Soilvinyard develop), also class 13 ing of input features (spectral bands) and employment opthe
(Lettuceromaine7wk) and 12 (Lettucegomaine6wk) and 11 (Let- sented data fusion and classification model is not influeged
tuceromaine5wk) are less confused. the limitations of data dimensionality (i.e. there is no tese of
dimensionality). Classification on full data (all spectrahds) is
Median filtering reduced the influence of the outlier samjites possible to run (comparing to MNF features) and will take enor
the input data for classification. Confusion among classesra-  computational time.
duced and a better labeling was reached. MNF data prepingess
allows to reduce the time of calculation with a competitilese
sification accuracy. On full bands set data a better claatiic
accuracy is expected to be obtained.
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Figure 3: Classification maps for Salinas benchmark usicipfa
graphs: (a) MNF, 20 features, alphabet size: 100, (b) MNF, 20
features, median filtering x 5, alphabet size: 100, (c) ground
truth label map

4 CONCLUSIONS

The paper presents another successful area of factor gagphs
plication: multispectral data classification. A relativedimple
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Table 3: Confusion matrix of the FG classification on Salibaschmark (MNF 20 features, alphabet size:

racy=81.3692, Kappa=0.7921 Percentages are given forsier @aterpretation.

Ground truth, see Table 1
Class| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 [98.36] 0.48] 0.00| 0.00 | 0.03] 0.06 | 0.13| 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
2 1.14 | 96.54| 0.00 | 0.00 | 0.00 | 0.00 | 0.15| 0.00 | 0.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00
3 0.00 | 0.05[87.96] 1.51] 0.38| 0.11| 0.90 | 0.56 | 1.07] 0.28 | 1.19| 0.00 | 0.00 | 0.34 | 0.78
4 0.00 | 0.00 | 0.35[94.62] 0.03| 0.00| 0.20 | 0.02| 0.12] 0.19| 0.42| 0.00 | 0.00 | 0.07 | 2.43
5 0.20 | 0.03| 0.00| 0.00|96.36] 0.00| 0.09| 0.02| 0.15] 0.09 | 0.47 | 0.00 | 0.00 | 0.01 | 0.15
6 0.05] 1.58| 0.00| 0.14 | 0.08 [ 99.58] 0.52 | 0.10 | 0.12] 0.28 | 0.05| 0.00 | 0.47 | 0.26 | 0.11
7 0.15] 0.03| 0.30| 0.00 | 0.20 | 0.03|58.73] 0.32| 0.24] 0.28 | 0.99 | 0.00 | 0.09 | 35.84] 0.00
8 0.05] 0.05| 0.46] 0.22] 0.33| 0.06 | 1.61[95.70] 2.10 | 3.56 | 14.58] 0.33 | 0.09 | 1.33 | 0.07
9 0.00 | 0.03| 0.15| 0.22| 0.20 | 0.03 | 2.32 | 0.55 | 91.00| 2.06 | 3.94| 0.00| 1.31| 1.31 | 0.11
10 | 0.00| 0.21| 0.10 | 0.00 | 0.00 | 0.03 | 0.02 | 0.05| 1.80 | 91.29| 3.79 | 0.00 | 0.37 | 0.01 | 0.04
11 [ 0.05] 0.05] 0.05| 0.00| 051 0.00 | 1.54] 1.79| 0.98 | 1.31[70.37| 3.93 | 2.06 | 0.39 | 0.00
12 [ 0.00] 021 0.00| 0.00] 0.03| 0.00| 0.31] 0.03] 0.18| 0.28 | 1.76 [ 93.45] 7.57 | 0.03 | 0.00
13 [ 0.00] 0.30| 0.00 | 0.00] 0.08| 0.00 | 0.03] 0.00| 0.46 | 0.00 | 0.05| 1.97 | 86.54| 0.00 | 0.22
14 [ 0.00] 0.38] 0.71] 0.07] 0.91] 0.11[32.80] 0.77 | 1.19| 0.37] 2.18 ] 0.33 | 1.31 [ 59.87| 0.37
15 [ 0.00| 0.05] 9.92| 3.23| 0.88| 0.00| 0.64] 0.10| 0.21| 0.00| 0.21 | 0.00 | 0.19 | 0.52 | 95.71

100). Overali-ac

Table 4: Confusion matrix of the FG classification on Salineschmark (MNF 20 features, alphabet size: 100, featureamédx 5
filtering). Overall accuracy=85.3217, Kappa=0.8358 Patages are given for an easier interpretation.

Ground truth, see Table 1
Class| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 [98.90] 0.81] 0.00| 0.00| 0.10] 0.00 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.00 | 0.00
2 0.25[96.81| 0.00| 0.00| 0.10| 0.00| 0.31| 0.02| 0.85] 0.00 | 0.00 | 0.00 | 0.09 | 0.11 | 0.00
3 0.00 | 0.05[98.38] 0.43] 0.66| 0.14] 048] 0.16 | 1.34] 0.19| 0.16 | 0.00 | 0.09 | 0.15 | 0.56
4 0.00 | 0.03 | 0.00|96.99| 0.00 | 0.06 | 0.07 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 2.05
5 0.40 | 0.43| 0.00| 0.00 [94.04] 0.00] 0.02] 0.19| 0.09] 0.37| 1.19| 0.00 | 0.09 | 0.04 | 0.00
6 0.05] 0.56 | 0.00[ 0.00 | 0.05[99.66] 0.78 | 0.34| 0.18] 0.00 | 0.10 | 0.00 | 1.03| 0.37 | 0.34
7 0.30| 0.59] 0.05| 0.36 | 1.11| 0.00 | 68.79] 0.77] 0.49] 0.19| 1.09 [ 0.00 | 0.37 | 32.47] 0.04
8 0.00] 0.16 | 0.10| 0.50| 0.48| 0.03| 1.46 [ 96.08] 0.92 | 1.31[10.33| 0.00 | 0.28 | 1.28 | 0.00
9 0.00] 0.00| 0.10]| 0.00| 0.08 | 0.03] 1.49| 0.11 [ 91.79] 0.37 | 0.62 | 0.00 | 0.65 | 0.00 | 0.00
10 [ 0.00] 0.00| 0.00 | 0.00] 0.00 | 0.00 | 0.04] 0.00 | 0.58 [ 96.25] 1.19 | 0.00 | 0.00 | 0.00 | 0.00
11 | 0.00| 0.21| 0.00 | 0.00| 0.91| 0.03| 0.83] 0.98 | 1.37 | 0.47 | 83.60| 3.38 | 4.86 | 0.14 | 0.00
12 | 0.00| 0.21| 0.00 | 0.00 | 0.03 | 0.00 | 0.03 | 0.00 | 0.03 | 0.00 | 0.00 | 96.07| 7.66 | 0.00 | 0.00
13 [ 0.00| 0.08] 0.00| 0.00 0.00] 0.00 | 0.01] 0.00 | 0.00 | 0.00 | 0.05| 0.55 | 84.49] 0.00 | 0.26
14 [ 0.10] 0.05] 0.05| 0.29] 1.67 | 0.06 | 25.24] 1.34 | 2.23 | 0.84] 1.66 | 0.00 | 0.09 | 65.05| 0.07
15 [ 0.00] 0.00| 1.32| 1.43] 0.78| 0.00 | 0.24] 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.09 | 0.29 | 96.68
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