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Light Detection and Ranging (LiDAR) systems are used intensively in terrain surface modelling based on the range data determined 

by the LiDAR sensors. LiDAR sensors record the distance between the sensor and the targets (range data) with a capability to record 

the strength of the backscatter energy reflected from the targets (intensity data). The LiDAR sensors use the near-infrared spectrum 

range which has high separability in the reflected energy from different targets. This characteristic is investigated to implement the 

LiDAR intensity data in land-cover classification. The goal of this paper is to investigate and evaluates the use of LiDAR data only 

(range and intensity data) to extract land cover information. Different bands generated from the LiDAR data (Normal Heights, 

Intensity Texture, Surfaces Slopes, and PCA) are combined with the original data to study the influence of including these layers on 

the classification accuracy. The Maximum likelihood classifier is used to conduct the classification process for the LiDAR Data as 

one of the best classification techniques from literature. A study area covering an urban district in Burnaby, British Colombia, 

Canada, is selected to test the different band combinations to extract four information classes: buildings, roads and parking areas, 

trees, and low vegetation (grass) areas. The results show that an overall accuracy of more than 70% can be achieved using the 

intensity data,  and other auxiliary data generated from the range and intensity data. Bands of the Principle Component Analysis 

(PCA) are also created from the LiDAR original and auxiliary data. Similar overall accuracy of the results can be achieved using the 

four bands extracted from the Principal Component Analysis (PCA). 
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1. INTRODUCTION 

Light Detection and Ranging (LiDAR) is a remote sensing 

technique used mainly for 3D data acquisition of the Earth 

surface and its applications in the 3D City modelling and 

building extraction and recognition, (Haala & Brenner, 1999, 

Song et al, 2002, Brennan and Webster, 2006, Hui et al., 2008, 

and Yan & Shaker, 2010). LiDAR sensors transmit laser pulses 

in near infrared (NIR) spectrum range toward objects and record 

the reflected energy. The distances between the LiDAR sensor 

and the targets (range data) are calculated. The 3D coordinates 

of the collected points are calculated from the range data with 

the aid of other sensors (GPS, and IMU), (Ackerman, 1999). 

LiDAR is considered as highly precise and accurate vertical and 

horizontal data acquisition system (Brennan and Webster, 

2006). The high accurate data are used for generating digital 

elevation and/or surface models (DTM/DSM), Kraus & Pfeifer, 

(1998) used LiDAR data to create DTM in wooded areas. The 

accuracy of the DTM extracted was 25 cm for flat areas, which 

is improved to 10 cm by refining the data processing method.  

In the last decade, substantial work is done to combine the 

LiDAR data with other external data such as aerial photos and 

satellite images for information extraction. Haala & Brenner 

(1999) combined LiDAR elevation data and a multi-spectral 

aerial photo (Green, Red and NIR bands) for building extraction 

using unsupervised classification technique. It was found that 

combining the multi-spectral aerial photo with the LiDAR 

elevation data improved the classification results significantly. 

LiDAR sensors not only record the time difference between 

sending and receiving signals; but they also record the 

backscattered energy from the targets (intensity data) in NIR 

spectrum range. A NIR image can be generated by interpolating 

the intensity data collected by the LiDAR sensors. With the 

capability to record the intensity of the reflected energy, 

definition of the classification of LiDAR data is not only 

referring to the separation of terrain and non-terrain features, 

but it includes the use of the intensity data for the classification 

of land covers as well. Hence, intensity data is investigated to 

be used to distinguish different target materials using various 

image classification techniques.  

Recently, the use of the LiDAR intensity and range data has 

been studied for data classification and feature extraction. The 

intensity data were used primarily as a complementary data for 

data visualization and interpretation. LiDAR intensity data are 

advantageous over the multi-spectral remote sensing data in 

avoiding the shadows appear in the multi-spectral data. This is 

because LiDAR sensor is an active sensor. Hui et al., 2008, 

used the intensity and height LiDAR data for land-cover 

classification. Supervised classification technique was used to 

differentiate four classes: Tree, Building, Bare Earth and Low 

Vegetation. It was observed that combining the intensity data 

with the height data is an effective method for LiDAR data 

classification. However, quantitative accuracy assessment was 

not included in that research work. 
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Recent researchers combine the laser data with other auxiliary 

data such as multispectral aerial photos or satellite images, 

USGS DEM, texture data, normalized height, and multiple-

returns data. Charaniya et al, (2004) used LiDAR height and 

intensity data, height variation data, multiple-return data, USGS 

DEM, and luminance data of a panchromatic aerial imagery for 

land-cover classification. A supervised classifier was used to 

distinguish four classes: trees, grass, roads, and roofs. The effect 

of band combinations on the classification results was studied. 

It was observed that height variation affected positively the 

classification results of the high vegetation areas, Luminance 

and intensity data was useful for distinguishing the roads from 

the low vegetation areas, and the multiple-return differences 

slightly improved the classification of roads and buildings but 

reduced the accuracy of the other classes.   

Subsequently, researchers gave more attention to the intensity 

data and started to analyse the data and study different 

enhancing methods to remove the noise and improve the data 

interpretation. Song et al, (2002) examined different resampling 

techniques to convert LiDAR point data to grid image data 

which is filtered to remove the noise with minimum influence 

on the original data. The resampled grid is used to investigate 

the applicability of using the LiDAR intensity data for land-

cover classification. It is concluded that the LiDAR intensity 

data contain noise that is needed to be removed.  

Radiometric correction of the intensity data was suggested in 

some of the recent literatures (Coren and Sterzia, 2006; Höfle 

and Pfeifer, 2007). The process mainly relies on the use of the 

laser range equation to convert the intensity data into the 

spectral reflectance with consideration of the scanning 

geometry, the atmospheric attenuation, and the background 

backscattering effects. After the radiometric correction, the 

homogeneity of the land cover is improved and thus enhances 

the performance of feature extraction and surface classification. 

Yan et al. (2012) evaluated the accuracy of different land cover 

classification scenarios by using the airborne LiDAR intensity 

data before and after radiometric correction. An accuracy 

improvement of 8% to 12% was found after applying the 

radiometric correction. 

This research investigates the use of the intensity data for land-

cover information extraction. The Maximum Likelihood 

supervised classification technique is proposed and applied on 

two different study areas, and classification accuracy is assessed 

to recommend the most appropriate data combinations for such 

areas. The paper is divided into five sections. Section 1 is the 

introduction which highlights the previous work related to the 

use of LiDAR data in land cover information extraction. Section 

2 comprises the methodology used in this research work. 

Section 3 describes the study areas and the datasets used. 

Section 4 includes the results of the experimental work and the 

analysis. The paper is concluded by a summary of the work and 

the future work in Section 5. 

2. METHODOLOGY 

The work is conducted in two main steps; data preparation, and 

data classification and assessment. In the data preparation step, 

the point data recorded by the LiDAR sensor are converted into 

raster image data, prepared as bands, to be used for the 

classification step. The bands prepared are also combined and 

Principal Component Analysis (PCA) is used to produce 

principal component bands for more investigation.  

The second step is applying the classification algorithm on the 

different prepared datasets, and assessing the results. Four 

information classes are identified in this study area.  Details of 

the work procedure are discussed in the following sub-sections. 

2.1 Data Preparation 

 

Figure 1: Work Flow of Data Preparation 

The data sets are prepared by converting the data collected by 

the sensor (range and intensity data) into raster image data. 

Since the multi-returned data are not available, the terrain has 

been separated manually from object surface by selecting the 

point data that falls on the roads and the terrain. The Kriging 

interpolation algorithm is used for point data conversion into 

image data. New image data (bands) are created representing 

the followings: i) DSM, ii) DTM, iii) Intensity, iv) Normal 
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Heights (NH, calculated from the difference between the DSM 

and the DTM data). Other auxiliary image data (bands) are 

created to be used in the classification process. The auxiliary 

bands are: the texture from the intensity data, and the slope 

from both the DSM and the NH. 

Several images are produced by combining two or more of the 

created bands. The image band combinations can be 

summarized as follows: bands of a) intensity and elevation, b) 

intensity, elevation and texture, c) intensity, elevation, texture, 

and slop. 

The principal components are also created from the existing 

four bands to reduce the number of existing bands by 

eliminating the correlated ones. The classification analysis 

includes both datasets; the one created directly from the original 

LiDAR data (range and intensity), and the auxiliary datasets 

extracted from the original data. Figure 1 illustrates the work 

flow of the data preparation step. 

2.2 Data Classification and Evaluation 

The second part of the study work covers the classification 

process and the classification assessment of the results. The 

Maximum Likelihood classifier, as a supervised classification 

algorithm, is used with the bands created directly from the 

LiDAR data, and with the six band combinations mentioned 

above. The classification and evaluation is repeated for bands 

created from the PCA. The classification processes for all 

datasets (different band combinations) are summarized as 

follows:  

1) Training signatures are identified for four different classes 

(trees, grass, buildings, and roads). 

2) Statistical assessments of the training signatures are done and 

further enhancement to the selection of the training areas are 

taken place, if required. 

3) Maximum Likelihood algorithm is applied and the image 

data is classified into the corresponding classes. 

4) Assessment the results of the classification using ground 

truth data and by performing evaluation using error matrix. The 

classification process is evaluated using about 1000 reference 

points, for each study area, that are randomly selected from the 

original point cloud data to avoid the effect of the interpolation 

on the accuracy of the ground truth. The well-distributed points 

over the study area are randomly generated. The ground truth 

information is collected from the ortho-rectefied aerial photo 

provided with the LiDAR data. Finally, the accuracies achieved 

from classification results of the different band combinations 

are compared. 

3. STUDY AREA AND DATA SETS 

3.1 Study Area 

A study area is chosen, which covers  a part of the British 

Columbia Institute of Technology (BCIT) located in the 

Burnaby, British Columbia, Canada (122°59’W, 49°15’N). An 

area of 500 m x 400 m is selected for the experimental work 

because it contains a variety of the land cover features on the 

ground including; buildings, parking areas, trees and open 

spaces with grassy coverage, (Figure 2 ). 

 

 

Figure 2: Study Area (British Colombia Institute of Technology, 

Vancouver) 

3.2 Data Sets 

A Leica ALS50 sensor operating in 1.064 μm wavelength and 

0.33 mrad beam divergence is used for the LiDAR acquisition 

mission on July 17, 2009 at local time 14:55. The flying height 

for this mission was around 600m. The data acquired contains a 

3D point cloud (x, y, and z coordinates) and linearized intensity 

values (I) for each point.  

 

  
a b 

  
c d 

Figure 3: a) Geometrically Calibrated and Radiometrically 

corrected Intensity Image, b) DSM, c) NH, and d) Ortho-rectified 

Aerial Photo 

The provided dataset for this experimental work is: an Ortho-

rectified aerial photo for the study area, and geometrically 

calibrated and radiometrically corrected LiDAR data (including 

x, y, z and I), the aerial photo is acquired at the same time of the 

LiDAR data acquisition mission. The related geometrical 

calibration and radiometrical correction works are illustrated in 

Yan et. al. (2012). The LiDAR data (intensity and rang) are 

converted to raster image with pixel size equals to 20 cm to 

produce the intensity image and the DSM. The LiDAR points 

fell on the ground are separated, and a DTM is produced using 

these points with the same pixel size of 20 cm. The difference 
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between the DSM and the DTM is calculated to produce a 

normal heights raster image. Figure 3 a, b, and c illustrates the 

produced LiDAR raster image data (intensity, DSM, and 

Normal Height (NH), respectively). Figure 3d represents the 

ortho-rectified aerial photos for the study area. 

4. RESULTS AND DISCUSSION 

A close look to the data provided and the characteristics of the 

study area shows that the intensity values of the areas covered 

by vegetation (either trees or grass) are higher than those 

covered by man-made features (buildings and roads). This is 

expected from the reflectance characteristics of vegetation in 

Near Infra-Red range. It is also observed that the intensity of the 

areas covered by buildings and roads are more homogeneous 

than the intensity of trees and grass areas. Moreover, the tree 

areas have a larger variation in elevations compared to the 

buildings and road areas. Based on the previous observations, it 

is noted that intensity data can be effectively used for 

distinguishing man-mad features from vegetation fields. The 

texture of the intensity can be used for representing the 

homogeneity of the land covers, Figure 4 i. The slope of the 

elevation data can be used to represent the plane surfaces, such 

as buildings and roads, Figure 4 ii, and iii, for the DSM and NH 

respectively.  

 
i 

 
ii 

 
iii 

Figure 4: Bands created from range and intensity data  

i) Intensity Texture, ii) DSM slop, and iii) NH slope 

The prepared raster LiDAR data are used individually for the 

land cover classification process, Figure 5. The image data 

bands used individually are: a) Intensity, b) DSM, and c) 

Normal Height. Additionally, six combinations of image bands 

are developed to examine the use of the auxiliary data on the 

classification results. The auxiliary band combinations are: d) 

Intensity and DSM, e) Intensity and Normal Heights (NH), f) 

Intensity, DSM, and Intensity Texture, g) Intensity, NH, and 

Intensity Texture, h) Intensity, DSM, Intensity Texture, and 

DSM Slope, and i) Intensity, NH, Intensity Texture, and NH 

Slope. The results of land cover classification of all cases are 

shown in Figures 5, (cases a to i). 
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Figure 5: Results of Land Cover Classification 

The principal components from the 4-bands (Intensity, DSM, 

Intensity Texture, and DSM Slope) are generated and classified 

(case j). Other principle components from the Intensity, NH, 

Intensity Texture, and NH Slope are also generated in order to 

test the effect of using the normal height instead of the DSM on 
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the land cover classification accuracy. The results of land cover 

classification of the PCA cases are shown in Figures 5, cases j 

and k.  

The overall accuracy calculated based on the 1000 ground truth 

points for all the cases is listed in Table 1. The results obtained 

show that the overall accuracy by using the intensity and the 

DSM data individually are less than 45%, (Table 1, case a, and 

b). Combining both the intensity and the DSM data improves 

the results to 55% (Table 1, case d). Using the normal height 

band individually does not improve the accuracy. This is 

because of the similarity between the heights of the trees and 

the buildings, as well as due to the similarity in heights between 

the roads and the grass. Nevertheless, combining the normal 

heights data with the intensity data has a significant 

improvement in the overall accuracy of the classification results.  

An overall accuracy of about 70% can be achieved as it is seen 

in Table 1 (case e). It is also observed that the overall accuracy 

of the classification results is increased by combining the 

texture of the intensity data to the intensity and elevation data, 

(cases f and g using intensity texture comparing to cases d and e 

without using texture, respectively). Yet, combining the slope of 

the elevation data with the intensity, the elevation, and the 

texture data does not improve the overall classification 

accuracy. For the principle component analysis the accuracy of 

results comparable to the classification results combined 

images. Further work are planned to investigate more bands 

created from the LiDAR data.  

Table 1: Accuracy assessments of the land cover classification 

Case Band Combination Area1 

a Intensity  43.7% 

b DSM  43.1% 

c NH  52.5% 

d Intensity, DSM  55.1% 

e Intensity, NH  72.2% 

f Intensity DSM, Texture  57.9% 

g Intensity NH, Texture  77.2% 

h Intensity, DSM, Texture, Slope  59.8% 

i Intensity NH, Texture, Slope 73.3% 

j PCA of (Intensity, DSM, Texture, DSM Slope) 62.6% 

k PCA of (Intensity, NH, Texture, NH Slope) 70.9% 

5. CONCLUSIONS 

This research work examines the use of the LiDAR data only 

(range and intensity data) for Land-Cover information 

extraction. Different image bands (Intensity, DSM, Normal 

Height, Intensity Texture, DSM Slope, and Normal Height 

Slope) are created from the LiDAR points recorded by  Leica 

ALS50 sensor.  In addition, components of the principle 

component analysis are generated to be used for the land cover 

classification process. LiDAR dataset covering an area of the 

British Columbia Institute of Technology (BCIT) is classified 

using the Maximum likelihood classifier, and around 1000 

ground truth points were used for the accuracy assessment.  

From the results obtained, it is observed that using the LiDAR 

original data (range and intensity) individually in the 

classification process introduce an overall accuracy of less than 

45%.  However, using both the range and the intensity data 

improves the results accuracy by approximately 10%. Adding 

auxiliary data, such as Texture of the intensity data and surfaces 

slope, slightly improves the accuracy of the land cover 

classification. Using the normal heights as elevation data 

instead of the DSM, improves the accuracy of the classification 

results significantly, (from 55% to more than 72%). 

Components of the Principle Component Analysis (PCA) 

created from the LiDAR original and auxiliary data can also be 

used. Similar overall accuracy to the results achieved by using 

the original and the auxiliary data can be achieved (about 70%). 

Further research work is underway to further investigate the 

PCA using more bands extracted from the LiDAR and other 

sensor data to improve the classification accuracy. 
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