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ABSTRACT:

The objective of this analysis is to provide a quantitative estimate of the fluctuations of land surface temperature (LST) with varying
near surface soil moisture (SM) on different land-cover (LC) types. The study area is located in the Canterbury Plains in the South
Island of New Zealand. Time series of LST from the MODerate resolution Imaging Spectro-radiometer (MODIS) have been analysed
statistically to study the relationship between the surface skin temperature and near-surface SM. In-situ measurements of the skin
temperature and surface SM with a quasi-experimental design over multiple LC types are used for validation. Correlations between
MODIS LST and in-situ SM, as well as in-situ surface temperature and SM are calculated. The in-situ measurements and MODIS data
are collected from various LC types. Pearson’s r correlation coefficient and linear regression are used to fit the MODIS LST and surface
skin temperature with near-surface SM. There was no significant correlation between time-series of MODIS LST and near-surface SM
from the initial analysis, however, careful analysis of the data showed significant correlation between the two parameters. Night-time
series of the in-situ surface temperature and SM from a 12 hour period over Irrigated-Crop, Mixed-Grass, Forest, Barren and Open-
Grass showed inverse correlations of -0.47, -0.68, -0.74, -0.88 and -0.93, respectively. These results indicated that the relationship
between near-surface SM and LST in short-terms (12 to 24 hours) is strong, however, remotely sensed LST with higher temporal
resolution is required to establish this relationship in such time-scales. This method can be used to study near-surface SM using more
frequent LST observations from a geostationary satellite over the study area.

1 INTRODUCTION

Near surface soil moisture (SM), defined as the water content of
the upper 10 cm of the soil (Wang and Qu, 2009), is measured by
remote sensing satellites using the electromagnetic radiation in
three distinct ranges: the visible and near-infrared region, thermal
region and the microwave region. Image analysis and interpreta-
tion techniques such as soil wetness indexes, directly (Bhagat,
2009) or indirectly (Sørensen et al., 2005, Grabs et al., 2009) us-
ing remotely sensed data in the visible and near-infrared region
are applied to estimate wetness of the near-surface soil layer. The
algorithms used in the thermal region are based on the surface
energy balance. These algorithms are based on the partition-
ing of the net surface energy to the sensible, latent and ground
heat fluxes. With the knowledge on the sensible and ground heat
fluxes (QH and QG), which is based on the land surface temper-
ature (LST) and the ancillary data about the surface types under
consideration, the latent heat flux (QE) is estimated (see Eq. 1
and 2). QE is used as an indicator of the amount of water con-
tent in the near surface soil layer. Microwave remote sensing
techniques in SM analysis rely on known dielectric properties of
the soil and water (Jackson et al., 1996). The advantage of mi-
crowave sensors is the availability of the observations in almost
all-weather conditions, which enables more frequent data acquisi-
tion; however, compared to the moderate resolution thermal sen-
sors, the spatial resolution of these sensors is coarse (Hain et al.,
2011). Other works have used a combination of optical, thermal
and microwave remote sensing data (Wang et al., 2004, Hassan
et al., 2007, Gruhier et al., 2010, Hain et al., 2011). More com-
plex methods such as the Soil-Vegetation-Atmosphere-Transfer

(SVAT) model (Carlson et al., 1994) exploit combination of the
remotely sensed data to establish a relationship between surface
SM, surface temperature and vegetation cover. Considering the
objective of the current research, thermal remote sensing algo-
rithms are of interest in this paper.

LST product is one of many datasets derived from day and night
observations of the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) twin sensors on-board Terra and Aqua satellites,
which is a wealth of data covering most of the land masses of
the globe over the last 10 years. With a more frequent overpass
than Landsat (near-daily) and higher spatial resolution (250, 500
and 1000 m) than some of its predecessors such as the Advanced
Very High Resolution Radiometer (AVHRR), MODIS provides
a comprehensive series of land, ocean, and atmosphere obser-
vations (LPDAAC, 2010). The LST product is suitable for use
in a variety of research including soil and water resources, agri-
culture, climate and atmospheric modelling and research. Infor-
mation on LST is necessary for parameterization of land surface
processes in numerical models (Sun and Pinker, 2004). LST is
dependent on the incoming shortwave and longwave radiation,
but also landcover (LC) type and the amount of near surface SM.
Surface SM affects diurnal change of surface temperature, and it
is a key variable in computing several parameters of the land en-
ergy and water budget (Zhang et al., 2007). LST is used for SM
assessment using rigorous physical models, such as Surface En-
ergy Balance Algorithm for Land (SEBAL), which estimates SM
based on parameterization of surface heat fluxes (Bastiaanssen,
2000). MODIS LST product archived for more than 10 years is a
valuable data source which can be used in these algorithms. The
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issue with these models, however, is the complexity and the risk
of compromise in accuracy if good quality data for all the impor-
tant parameters in the model are not available. To overcome this
issue, an assessment of the relationship between the near surface
SM and LST can help to understand the complexity of these two
parameters over various LC types in a particular region. Such a
relationship can be helpful for approximation of one parameter
(SM or LST) with the availability of the other.

This paper is aimed to analyse the correlation between LST using
MODIS product with the measured near-surface SM based on
geostatistical methods. Daily rainfall data is used to detect the
interfering effects of a sudden rainfall on the surface SM, and to
discover the time-scale for the best correlation with LST.

2 DATA AND STUDY AREA

2.1 Data

Two distinct datasets, one from the remotely sensed MODIS LST
and the second from the in-situ SM measurements provide the
inputs for this analysis. The LST product is a scientific dataset
derived from MODIS morning and afternoon thermal observa-
tions on-board Terra and Aqua satellites. Since the observations
in thermal bands of the sensor are also available at night, the prod-
uct contain night-time values for evening and midnight, which are
collected upon the overpasses of Terra and Aqua satellites on the
night side of the planet. The product is derived from bands 31 &
32 (spectral range 10.78-11.28 µm & 11.77-12.27 µm range, re-
spectively). Theoretical background and technical details of the
algorithms and procedure for the extraction of LST from MODIS
thermal bands is available in the literature (Wan and Dozier, 1996,
Wan, 1999, Wan et al., 2004, Wan, 2008). The dataset is available
in hierarchical data format (HDF) and can be accessed online via
Reverb tool.

The in-situ near-surface (<5 cm depth) SM data used in this
paper have been collected in five sites with various land-cover
types. These data have been recorded using MadgeTech R© digital
soil volumetric moisture data loggers known as SMR110 R©. Fre-
quency rate of the logged data had been set to every 30 minute.
These measurements have been collected from 1st October 2011
till 7th January 2012, however, for consistency with the other
datasets only Nov. and Dec. data are used in the analysis.

2.2 Study Area

The study area is located in Canterbury Plains in South Island
of New Zealand (Fig. 1), at approximate geographic coordinates
43.54 S and 172.31 E in the central point. The in-situ sites were
selected in the area for the measurement of the near-surface SM.
Criteria for selection of the measurement sites included the area
percentage of the dominant LC types, accessibility of the site and
finally, a minimum of 1x1 km homogeneous extent of the dom-
inant LC type in the area so that at least one pixel from that LC
type to be distinguished in the LST satellite dataset.

3 METHODS

3.1 Empirical relationship between near-surface SM and LST

The principle assumption in derivation of SM from LST data in
physical models used in thermal remote sensing of SM, such as
SEBAL, is partitioning of surface energy to latent and sensible
heat fluxes (Eq. 1 and 2), and to relate the latent heat to the
amount of moisture content in the near-surface layer. LST from

Figure 1: In-situ soil moisture measurement points overlaid on
Landsat image (TM5, 28 March 2011)

the thermal remote sensing observations is accounted for the sen-
sible heat part of the energy balance in these models. However,
time-lag between the maximum LST on the surface and the max-
imum solar insolation (Wang and Qu, 2009) can also be related
to the amount of surface SM which contribute to the escaping of
heat from the surface via latent heat. Without allocation of the
heat energy to the QE by the near-surface SM, the two maxima
(maximum solar insolation and maximum LST) would coincide
or be closer in time. To assess this hypothesis, statistical analy-
sis of the relationship between the measured surface SM and the
remotely sensed LST is implemented in this paper.

Q∗ = QG +QE +QH (1)

where Q∗ is the net radiation, QG is the ground or storage heat
flux, QE is the turbulent latent heat flux, and QH is the convec-
tive sensible heat flux (Rigo and Parlow, 2005, Rigo and Parlow,
2007). Based on Eq. 1, QE can be calculated as:

QE = Q∗ −QG −QH (2)

3.2 Land-cover analysis

To identify dominant land-cover classes in the study area, un-
supervised classification method has been used. Iterative clas-
sification process was carried out using a Landsat TM-5 image
acquired on 28 March 2011 over the study area. Eight dominant
LC classes were extracted in the region. With the order of high-
est to the lowest percentage these classes included grass, water,
irrigated crop/grass, bush, baresoil/fallow, water, fallow/exposed
soil, and forest. The in-situ sites were chosen only on five LC
classes due to the issues in finding suitable sites for some of the
LC types (Table 1).

3.3 Construction of LST Time-series

Inside LST scientific datasets (SDSs) derived from MODIS-Terra
and MODIS-Aqua, data for each day or night are stored in sepa-
rate data fields. To extract correlations between the in-situ SM
data and LST from MODIS, time-series of LST product were
constructed. Regarding the number of datasets involved in the
analysis, reading day and night values for every day during the
analysis period was a cumbersome task, therefore, Matlab R© codes
were written for reading and construction of time-series from
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Sitename LC type Description
Birdlings Flat Open grass non-irrigated seasonal

grassland
Bottlelake Forest dense forest with spo-

radic logged patches
Rangiora Irrigated crop crop under continuous

irrigation
Rolleston Mixed grass grass mixed with tree,

periodic irrigation
Waimak Gorge Barren bare soil in the

Waimakariri river
basin

Table 1: In-situ measurement sites and their LC types

each of the sites. These codes are meant to read data from the
entire list of LST HDF files for the analysis period based on the
coordinates of each test-site and arrange data-fields alongside the
related fields (i.e., LST for day and night fields, quality control
field, view-angle and overpass-time fields). Afterwards, dates
based on HDF filenames and overpass-time field from the LST
SDSs were used in the code to produce sequentially ordered val-
ues as time-series from each test-site. It should be mentioned
that these time-series are restricted to the available MODIS ob-
servations (four times daily in ideal conditions), which is further
restricted to those times when cloudless data were available. An-
other code was written to match dates and times from LST time-
series with the in-situ SM data; this code appends matching data,
alongside with the in-situ SM date-time, as extra columns in the
time-series of each test-site.

3.4 Statistical methods

Pearson’s r coefficient of correlation (Eq. 3) is used to calculate
correlations between LST and SM in this paper. Besides Pear-
son’s r, squared form of r indicated as R2 is usually used in
regression analysis, which is known as the regression coefficient
of determination. In this paper R2 is used alongside r in order to
provide an absolute measure of agreement between the two vari-
ables under consideration. It must be clarified that R2 as used in
regression analysis is more common when prediction of one vari-
able based on regressor(s) or explanatory variable(s) and accord-
ing to the regression model is the objective of the analysis, while
in correlation analysisR2 is only used to express the absolute de-
gree of agreement between only two variables. If the direction of
the correlation is not of interest, R2 is easier to use as it provides
a dimensionless scale (ranged between 0 to 1). Besides, R2 can
be used to express the magnitude of dependence between the two
variable, and for this end often a percent form of the coefficient
is used. As an example, an R2 value of 0.35 from correlation of
SM with LST implies that 35 percent of the variations in SM is
dependent on LST. However, if the direction or sign (i.e., nega-
tive or positive) of the correlation is of interest, such as the case
of SM and LST where an inverse (or negative) correlation is as-
sumed, Pearson’s r would contain more information, and easily
can be squared to get the R2 value if necessary.

r =

∑n

i=1

(
Xi − X̄

) (
Yi − Ȳ

)√∑n

i=1

(
Xi − X̄

)2√∑n

i=1

(
Yi − Ȳ

)2 (3)

where n is the number of observations, X̄ and Ȳ are the mean
values of X and Y variables.

4 RESULTS AND DISCUSSION

4.1 Near-surface SM variations based on LC type

Comparison of the in-situ measurements revealed significant dif-
ferences in the volumetric soil moisture over various LC types.
Greatest anisotropy from the dominant trend is seen on the irri-
gated site, while the other LC types have relatively similar trends
over the field measurement period (Fig. 2(a)). Spikes in the SM
visible in most of the sites are due to rainfall events. This can be
interpreted from the rainfall data. Although the rainfall data were
only available in Birdlings Flat site (with LC type ‘Open grass’),
the spikes in SM correspond to the rainfall events in most of the
sites (e.g., 9th, 20th and 21st of November, see Fig. 3). During
the few hours after the rainfall events moisture levels drop signif-
icantly. However, temperature trends dominantly follow day and
night maximum and minimums, respectively (Fig. 2(b)). Apart
from the visual comparison, statistical analysis of the correlations
between the two parameters was necessary to ensure if any long-
term relationship exists between LST and SM in the area, which
is discussed in the next section.
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Figure 2: a. Variations of the near-surface (<5 cm depth) volu-
metric soil moisture, and b. variations of surface skin temperature
over different LC types during the field measurements (Nov-Dec.
2011)

4.2 Correlations between LST and SM time-series

Regression analysis was used to discover any long-term relation-
ship between MODIS LST and the in-situ measured SM in the
study area. However, time-series of LST for the month of Novem-
ber showed no significant agreement when correlated against the
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Figure 3: daily rainfall in Birdlings Flat site during Nov. 2011

time-series of SM for the same period. To reveal the suspected
non-linearity in the relationsship between the two parameter, non-
linear regression analysis also used in the calculation, which did
not provide any improvement in the results. This indicated that
the relationship between LST and SM is more complicated and
needs more careful data analysis. The same complication is vis-
ible when the single time-series of SM are considered (Fig. 2).
Therefore, time-series of SM were divided into two series namely
day and night series to capture the unique variations of SM in
warmer and often drier daylight hours compared to cooler con-
ditions of the night. Nevertheless, no significant improvement
achieved from the correlation of day or night series save few cases
(e.g., Barren LC type both day and night). As a consequence,
time-series were broken into smaller periods.

4.3 Correlations between subsets of LST and SM time-series
following rainfall events

Considering time-series of SM, break-points were chosen based
on the higher points visible in the trends to overcome the sud-
den effects of rainfall events. These higher points, as discussed
earlier, correspond to rainfall events (see figures 2(a) and 2(b)),
therefore, the expected normal SM and surface temperature trend
is significantly interfered by these events. The challenge in this
method was the limited available observations from MODIS LST,
which is limited to four observations in clear and cloudless days.
No significant improvement was observed in the correlations be-
tween combined daily time-series, however, separate time-series
of day and night showed considerable improvements (see Ta-
ble 2). In this case the inverse correlations can be interpreted
from the negative Pearson’s r values. Except for the daily time-
series of ‘Irrigated Crop’, all the cases have shown an inverse cor-
relation between MODIS LST and the in-situ SM data. The dif-
ference between day and night series correlation with that of the
combined daily time-series is significant. As a result, it seems the
relationship between LST and near surface SM varies from day
to night, and a change in the direction of the correlation cannot be
ruled out. This lead to an assumption of a nonlinear correlation
between the two parameters. Hence, a non-linear (or curvilinear)
correlation (NLC) fit with a quadratic model was used to calcu-
late correlations between the two parameters. However, except
for few cases, there was no considerable change in the correla-
tion results (see Table 2, second column). Even though corre-
lations for the separate day and night series have increased, the
results still are not substantial. This means the variations in the
two variable happen even in smaller time-frames. Considering
time-series of LST (Fig. 2(b)), largest variations in surface tem-
perature happen about every 12 hours. This can be a clue to look
for a higher inverse correlation between LST and SM from the

LC Type r-daily NLC r-daily r-day r-night
Open Grass −0.12 −0.12 −0.51 −0.25
Forest −0.17 −0.18 −0.54 −0.11
Irrigated Crop 0.01 0.01 −0.22 −0.37
Mixed Grass −0.05 −0.06 −0.33 −0.29
Barren −0.05 −0.04 −0.10 −0.37

Table 2: Pearson’s r values from correlation of LST vs. in-situ
SM after rainfall event on 21st Nov. to 1st Dec. 2011 over vari-
ous LC types

LC Type r-daily r-day r-night
Open Grass −0.70 0.31 −0.93
Forest −0.27 0.68 −0.74
Irrigated Crop −0.58 0.43 −0.48
Mixed Grass −0.67 −0.54 −0.68
Barren −0.59 −0.52 −0.88

Table 3: Pearson’s r values from correlation of in-situ surface
temperature vs. in-situ SM based on data from 21st of Nov. 2011
over various LC types

time-series of a single day. Therefore, breaking down the time-
series to even smaller intervals could be one option to further
increase the correlations, however, as mentioned before, there are
not enough observations from the MODIS LST for a single day
(or even a few days). As a consequence, correlations calculated
using the in-situ measured surface temperature and SM data for a
single day is discussed in the next section.

4.4 Correlations between in-situ surface temperature and
SM for a single day

In this section correlations between surface temperature and near-
surface SM in-situ data, both with 30 minute rate, from a sin-
gle day are presented. As the previous sections, correlations are
based on the combined daily time-series as well as the separated
day and night series. Combined daily time-series from all the LC
types showed significant improvement in the correlations (see Ta-
ble 3, first column). Day series correlations are ambiguous, some
of the LC types showed positive while the other LC types showed
relatively strong inverse correlations. Finally, the night series
showed strong inverse correlations for all the LC types. Some of
the LC types, such as forest and the irrigated site, showed lower
correlations which seems is due to the unusual distribution of heat
or moisture on the soil under the effects of the canopy.

5 CONCLUSIONS AND FUTURE WORK

In this paper time-series of MODIS LST product, which is a ther-
mal remote sensing dataset, was compared with the in-situ SM
data over various LC types in Canterbury Plains in New Zealand.
Correlations between time-series of the two parameter for the
month of November (2011) showed insignificant agreement. There-
fore, time-series were broken down to day and night series to
capture possible trends from cool and warmer hours separately.
Nonetheless, correlations were not significant even with data from
smaller time-frames. Lack of continuous observations for a day
from the MODIS product restricted a diurnal analysis using this
dataset, therefore, only in-situ data were used for a single day (as
well as two 12 hours periods for day and night). The agreements
between a single day time-series were significant. These results
indicated that patterns of the relationship between SM and LST
vary during a 12 to 24 hours period, and cannot be captured using
longer time-series of the two variable. Similar results have been
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reported by other works in the literature (Wilson et al., 2003).
This implies that the study of SM based on remotely sensed LST
using a statistical method can be possible if there is higher num-
ber of observations available for a single day. Currently such
a dataset is only available from the geostationary satellites such
as the Spinning Enhanced Visible and Infrared Imager (SEVIRI)
on-board the Meteosat Second Generation (MSG) satellite. How-
ever, limitations with geostationary sensors include poor spatial
resolution and high view angles for parts of the globe such as
New Zealand. Nevertheless, considering the results from this pa-
per, the authors look forward to the possibility of using a geosta-
tionary satellite data for a further analysis similar to the objective
of this paper.
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