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ABSTRACT: 
 
In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China 
Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator 
parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator 
variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial 
structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scale-
fitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating 
probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial 
sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and 
optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis 
and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an 
adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys. 
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

For a long time, cropland area estimate using remote sensing 
technique is an important research topic of accurately estimating 
large-area crop yields by remote sensing approaches (Wang et al., 
2008). It is very important for macro-economic decision-making 
departments of governments to timely know the related crop 
production and make scientific and sound decisions, etc. Spatial 
sampling technology is used to be able to effectively resolve this 
problem that a balance is realized between the cropland area 
accurate estimation and limited investigation budget (Li et al., 2004). 
 
It is essential for spatial sampling that the basic principles and 
methods of statistical sampling are applied to the regionalized 
attributes of geographical objects. Therefore, there are the 
probability spatial sampling techniques, based on traditional 
statistics, (such as simple random, systematic, stratified, and cluster 
spatial sampling) and model spatial sampling that are tied to spatial 
variability theory (Stevens Jr. and Olsen, 2004; Li et al., 2004; 
Dobbie and Henderson, 2008; Jia et al., 2008; Jiang et al., 2009). 
 
Due to the complexity of geographical features in a region, the 
traditional large-scale spatial sampling of resources or 
environmental investigation (especially on agricultural monitoring 
with remote sensing) are operated not well to use the a priori  
knowledge or information of spatial structure characteristics of 
some research region, but, relied on a certain sampling schema, 

more often to use common probability sampling models and 
methods, such that they cannot meet actual requirements of spatial 
sampling investigation because their sampling efficiencies are not 
very high and ranges of sampling application are not large (Jiao et 
al., 2002, 2006; Wu et al., 2004). 
 
In this paper, founded upon an idea of rationally integrating 
probability-based and model-based sampling techniques and 
properly using the relevant sampling models and methods, the 
valid spatial sampling design was developed in the North China 
Plain (NCP) as a study region, which is associated with remote 
sensing a priori knowledge or information, and the existing spatial 
sampling schemes were suggested to improve and optimize in 
better order to service the large-scale cropland remote sensing 
monitoring in the NCP. In short, this study can further effectively 
enhance the level of spatial sampling survey and decision-making 
analysis of the related departments of national and local 
governments. 
 
 

2. METHODOLOGY 

2.1 Models of a priori information acquisition 

Geographical spatial structure characteristics are represented 
with the spatially correlated and heterogeneous properties of 
regionalized geographical elements (of surface things or 
phenomena) (Feng, 2010).  
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A fundamental approach of quantitatively describing spatial 
correlation makes use of the global and local spatial 
autocorrelation statistics (Anselin, 1988) that present the spatial 
dependencies of regionalized proximity objects with their 
indicator parameter(s)/variable(s) (RIP(s)/RIV(s)) in geographic 
space, which leads to the corresponding spatial two order 
effects of the RIP(s)/RIV(s). The former measures an overall 
spatial dependency of objects in a geographic space and the 
latter probes into the relational heterogeneous characteristics 
(variations) of geographic objects. Since the RIP/RIV (i.e., 
percentage of winter wheat planting area in each pixel), 
extracted from remote sensing images, of spatial sampling in 
this study was a variable, i.e., function of distances between 
spatial locations, the three statistics of Moran’s I, Geary’s C 
(Cliff and Ord, 1981) and General G (Getis and Ord,1992) were 
used to serve as available statistics of describing global/local 
spatial autocorrelation of the geographic RIP/RIV.  
 
Given that variability and direction of stability of spatial 
correlations cannot effectively be explored using global and 
local autocorrelation measures, semivariance function and 
semivariogram, being concerned with a technique of 
exploratory spatial data analysis, are often used to clarify 
spatial heterogeneous properties,  and they can obviously show 
spatial structure characters of geographic RIP(s)/RIV(s) (i.e., 
dependencies of which are dominantly described) and are thus 
very important tools of geographic spatial analysis (Zhuang, 
2005; Wang et al., 2005; Ma et al., 2007). Regionalized 
variation function analysis is implemented under the second 
order (pseudo-)stationary hypothesis and/or the (pseudo-) 
intrinsic hypothesis, which easily results in having the 
experimental semivariance function below: 
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where ( )iZ x  and ( )iZ x h  are values of variable ( )Z x  at spatial 

locations ix  and ix h , respectively; ( )N h  is number of pairs 

of locations separated by a vector h (also called lag distance). a 
theoretical semivariance ( )h  can be fitted using a set of values 
of an experimental semivariance and the relative models such as 
a linear, spherical, exponential and/or Gaussian model and its 
associated semivariogram be obtained, a shape of which 
represents spatial structuring (or correlation properties ) of 
variable ( )Z x . There are three key parameters of sill ( 0C C ), 

rang (a) and nugget 0( )C with respect to a ( )h  

(semivariogram) that is generally a function of lag h. At a large 
separation distance (a) of h, the semivariogram reaches a 
plateau sill and the related values of ( )Z x , separated by more 
than h, are considered spatially independent, i.e., uncorrelated. 
Those are greatly significant for spatial sampling plan 
(including sample size design and sample-point separated 
distance determination, etc.) and its optimization because of 
collecting non-redundant samples being separated with at least 
the range of correlation apart. A 0C  is connected with the 

discontinuity behaviour of a semivariogram near the origin. It 
reflects the continuity of ( )Z x , which is related to either 
uncorrelated noise (measurement error) or to spatial structures 
at spatial scales smaller than the pixel size, and therefore, the 
pertinent nugget effects in this study were neglected. 

2.2 Spatial Sampling Design Optimization 

There is a general spatial-sampling paradigm for a regional 
space (or subspace) that in the first place we should analyze its 
spatial structure characteristics (i.e., the correlation and 
variation of RIP(s)/RIV(s) of a sampling (sub-)population) as a 
priori knowledge/information of spatial sampling, and then 
decide a sample size, allocate sample-point locations, and 
estimate the total values of and means of and variances of 
sample and (sub-) population and so on, in order to obtain a 
optimal sampling solution. 
 
Using the RIP(s)/RIV(s) of remotely sensed satellite imagery to 
carry out gridded spatial sampling, we considered resolution-
level based gridding cells as sampling population units. There is 
a basic principle to find out the unstationary of and influencing 
ranges of local spatial procedures for the RIP(s)/RIV(s) 
betaking the local spatial autocorrelation statistics (such as 

’ iMoran s I 、 ’ iGeary s C  and iG  or *
iG ) so as to explore the 

sample-point sizes (scales) of sampling space (or subspace). 
Hence, this could avoid the local spatial dependency 
(correlation) to a certain extent and (approximately) suit the 
independent principles of sampling objects in classical statistic 
sampling theory, and then offer a series of selective schemes of 
designing a minimum sample-point size of spatial sampling 
plan. Subsequently, we were able to obtain a relatively optimal 
design of sample-point size by comparing them. 
 
A global spatial autocorrelation measure is often founded under 
the spatial stationary condition, that is, the expectation and 
variance of the RIP(s)/RIV(s) of spatial objects in a geographic 
space are constant. Although the stationary of global spatial 
procedures does not exist in the real world (i.e., unstationary) 
and even more the hypothesis of spatial stationary is really very 
impossible, especially when the data of population being very 
huge (Ord and Getis, 1995; Anselin, 1995), the global spatial 
autocorrelation can approximatively display the spatial 
distribution of and trend characteristics of a whole population 
space (or subpopulation) with the RIP(s)/RIV(s). Thus the 
regionalized spatial structure characteristics are represented in 
terms of different perspectives of global spatial autocorrelation 
and regionalized spatial variation measures, respectively, which 
present the basis of application for sample-point allocation 
design of spatial sampling. 
 
It is essential for the Kriging methodology (Atkinson et al., 
1999a; Atkinson et al., 1999b; Journel, 1978) that an unknown 
value 0( )vZ x  of a continuous variable is unbiasedly estimated 

by the known values ( )v iZ x ( 1, 2,...,i n ) of a variable in object 

space using linear model, accuracy of which is determined by 
the variogram function of Kriging (Hou and Huang, 1990; Wang 
et al., 1990; Zhuang, 2005). Ordinary Kriging technique is an 
important type of the Kriging technology, a basic idea of which is 
to employ Kriging blocks (that is, values of local ranges) to 
estimate values of a bigger range. So, based on its principles and 
methods, a set of valid Kriging optimizing models and algorithms 
of regionalized spatial sampling is easily built (Li et al., 2004). 
 
2.3 Adaptive Analysis and Decision Strategy 

In this study, using the RIP/RIV (fraction/percentage of winter 
wheat planting area in each pixel) of remote sensing images and 
analyzing its spatial structure characteristics (spatial correlation 
and variation) as a priori knowledge/information, the spatial 
sampling was performed, depending on the multi-stratified 
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model mentioned above and the grid cells (i.e., pixels or 
multiplied pixels) as sampling objects of population. The 
sampling results (e.g., the total estimation and mean of 
sample/population) were gridded for different levels of 
administrative report units (such as province, county and 
township) to adaptively report in order to make scientific, 
helpful related decision (Wang et al, 2002; Feng, 2010). 
 
To estimate the total value, related mean and variance of 
regionalized population space (or its each subarea) and obtain 
adaptive inference, a set of valid Kriging optimizing models and 
algorithms of regionalized spatial sampling (Li et al., 2004; Feng, 
2010) may be employed to predict the locally optimal RIP/RIV 
of spatial locations. There is a basic equation, as shows below: 
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a unbiased estimation (namely the expectation of prediction 
error ˆ[ ] 0

k kz zE Z Z  ). We can calculate all the unknown 

RIP/RIV’s values in kz  using the least-squares method and 

draw out their associated spatial distribution plot through which 
the total value (or mean) of sampling population space is 
obtained by an accumulation approach. By betaking the 
Lagrange multiplier method, the minimum (Kriging) variance is 
able to obtain making use of the previous Kriging optimizing 
technique, which is related to the semivariogram of sampling 
space and distribution of sampling locations, but not to the 
RIP/RIV’s values of sample locations, and these are greatly 
merited and significant for the design of spatial sampling and its 
optimization. 
 
 

3. DATA AND REGION OF STUDY 

3.1 Region of Study 

The North China Plain, also called Huang-Huai-Hai Plain, 
being the second plain (accounting for about one third of the 
whole plain area) in China, is situated with a range of about 32-
40˚N, 114-121˚E. The plain covers an area of more than 
380,000Km2, most of which is less than 50m above sea level, 
and it can, generally, be divided into three type units of the 
piedmont sloping plain, alluvial plain and coastal plain and is 
one of the most main regions for grain production in China. 
From an administrative district perspective, it includes the 
municipalities of Beijing and Tianjin, the provinces of Henan, 
Hebei, and Shandong provinces, merging with the Yangtze delta 
in northern Jiangsu and Anhui provinces, in which there are 
more than 320 counties (Gong, 1985; Huang et al., 1999; Liu et 
al, 2009; http://baike.baidu.com/view/416642.htm). Its 
dominant land-use type is cropland wherein more than 10 kinds 
of crops are grown, such as winter wheat, maize, millet, rice, 
peanut, sugar beets, and cotton. 
 

3.2 Data and Processing 

In this study, a scene CBERS-02 (China-Brazil Earth Resources 
Satellite program, the second satellite) CCD (Charge-coupled 
Device) image in spatial resolution of 19.5m, which covered a 
extent (35.07-36.29˚N, 114.3-115.82˚E) of original 7270 x 6930 
pixels centered at 35.6905˚N, 115.068˚E on 2005-04-04 was 
obtained from the site (http://www.cresda. com/index.php) of 
China Centre for Resources Satellite Data and Application 
(CRESDA). Its corresponding surface area was located in the 
central part of North China Plain (CNP), which was one of main 
producing areas of winter wheat, and given a geographic 
representativeness of this area, its landscape features could 
appropriately represent the geographic characteristics of the whole 
CNP. After the chosen image was pre-processed (e.g., geometric 
calibration, cloud clearing, atmospheric corrections), it was 
aggregated into a expedient modeling image with a spatial 
resolution of 253.5m (about 250m) as a datum source of the 
following mixed-pixel spectral decomposition. Comparing the 
results of mixed-pixel spectral decomposition using the linear 
decomposition, fuzzy C-means clustering, BP (back 
propagation) neural network and support vector machine 
models, their most optimal model and method had been chosen. 
 
We selected the MODIS (Moderate Resolution Imaging 
Spectroradiometer) data including the ESWIR 8-day and EVI, 
Red, NIR and Blue 16-day composite Level 3 products from 
2003-10 to 2004-06 over the CNP. Then, they were processed 
using the image-mosaicking, data phase-matching, and second 
order principal component analysis (PCA) (based on 
corresponding-time and multi-temporal data) techniques, 
wherein the spatial resolution of 250m was regarded as a 
baseline resolution, and were consequently incorporated into a 
scene as the available datum source in order to retrieve the 
fraction/percentage (as the spatial sampling RIP/RIV) of crop 
(i.e., winter wheat) planting area in its each pixel by betaking 
the above most optimal model and method of mixed-pixel 
spectral decomposition (See Table 1 and Appendix: Figure 1). 
 
 

4. RESULTS AND ANALYSIS 

4.1 Determining Sample Point Size 

In this study, the RIP/RIV (i.e., percentage of winter wheat 
planting area in each pixel) distributing maps were the basic 
operated data in spatial resolution of 250m×250m used to 
determine a sample-point (i.e., sample-grain) minimum 
(baseline) scale. According to a series of sample-grain scales 
from 250m×250m to 2500m×2500m (where each scale-step 
difference was 250m), we analyzed the correlation 
characteristics of the NCP with the three local spatial 
autocorrelation statistics of ’  iMoran s I , ’  iGeary s C  and  Getis 

ord iG  (Genearal G: iG 或 *
iG ) and then calculated their means, 

respectively. The corresponding increments (first order 
differences, namely differences of two adjacent statistic means) 
of the three means are shown in Figure 2. 
 
We can find out the two difference sequences of ’ iMoran s I  and 

Getis ord iG  monotonously increasing in contrast to that of 

’Geary s iC  monotonously decreasing, and there are three 

principal turning points nearby at the sample-grain scale of 
750m, which indicate that there was evident variation as to the 
autocorrelation mean characteristics in this study region, and  
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Table 1.  Accuracy evaluation of mixed-pixel spectral decomposition of the CNP MODIS imagery 
 

Sensor Name 
Spatial resolution 

（m） 
Mean 
(%) 

Variance 
((%)2) 

absolute error
(%) 

Relative Error 
(%) 

EOS-MODIS 250 24.1295 59.1619 
0.1543 0.6436 

CBERS02-CCD 19.5 23.9752 29.8883 
 

 

Figure 2. First order differences of means of local spatial 
autocorrelation  (Getis ord Gi, Moran's Ii, Geary's Ci) under 
difference spatial-sampling grains in the CNP, based on the 

fraction of winter-wheat planting area in each pixel (RIP/RIV) 
 
that is an important reference factor for sample point size 
design of spatial sampling. In addition, it was thinking of the 
spatial structuring and resolution of available MODIS images of 
the CNP and real feasibility of spatial sampling that the scale 
750m×750 was determined as an optimal (optimum) sample-
point size in spatial sampling of winter wheat area estimation of 
this study. This is consistent with the sample-point size of 
500m×500m that is adopted currently in the actual cropland 
area remote sensing operation monitoring of winter wheat in 
North China plain. Given the research results, we may 
appropriately improve the existing sampling designs and 
implementing solutions so as to reduce the cost of spatial 
sampling for crop remote sensing monitoring and improve the 
spatial sampling efficiencies. 
 
4.2 Determining Sample Point Distances 

Distances between sample points (namely, sample-point distances) 
are important elements of spatial sampling design and can set up a 
set of sample points in all sampling space to a certain extent to be 
characterized and determine the implementation characteristics of 
corresponding spatial sampling. For example, distances of sample 
points, if too small, are likely to present the strong spatial 
correlations and then lower the adequately random characteristics 
of samples which are necessary of probability spatial sampling; 
being under certain sample size conditions, if too large, there are 
some difficulties to lay sample points in a sampling space, or, 
deficiencies that aren’t able to effectively use a priori knowledge or 
information (e.g., its spatial structuring) or fully represent the entire 
population features with samples (even though only using simple 
probability sampling methods). Hence, there are inevitably larges 
deviations between the sampling results and real populations and 
they further lower the efficiencies of spatial sampling. As a result, 
we should not only settle rational sample-point sizes but also 
arrange them being divided with reasonable intervals (i.e., sample-
point distances), especially based on the minimum optimum 
intervals that are derived from spatial structuring in a sampling 
population space and the most foundational control requirement of 
implementing spatial sampling. 
 
Therefore, global spatial autocorrelation analysis of the 
RIP(s)/RIV(s) of objects of sampling space is an useful method 
to explore the total spatial structure characteristics (including 
average correlation of and spatial distribution pattern of objects, 

and significant degree of correlation, etc.) of a study region, 
based on the Moran's I and Geary's C and semivariogram 
analysis. In this study, the corresponding absolute change rates 
of the Moran's I, Geary's C and semivariogram representing the 
CNP’s spatial structure characteristics have the decreasing trend 
along a horizontal axis direction (See Figure 3), whereas there 
exists a greatly distinct turning point nearby at a lag of 7.5km 
and then their changes in size is very small, which indicates that 
sensitivities of this change trend are falling down along with 
increasing lags (i.e., separating distances among spatial objects). 
 
Besides, another distinct turning point appears at a lag of 
22.5km, whereafter this trends to a more random stationary 
status. Consequently, we could settle the separating distances 
(from about 7.5 to 22.5km) as the sample-point distances 
because they were able to reach the pre-requisite minimum 
distances among sample points to reduce their spatial 
correlations to enough small degree and satisfy probability-
sample random of and meanwhile, simultaneity certain 
accuracy requirements of spatial sampling. The results are 
consistent with the set sample-point distances (about 20~30km) 
of the current large-area operating spatial sampling survey of 
crop remote sensing monitoring in China North. 

 

 
 (a)  

 
 (b) 

Figure 3. First order differences of (a) global spatial 
autocorrelation (Moran's I, Geary's C) and (b) semivariance 

with sample-point separating distances, respectively 
 
4.3 Spatial Sampling by Stratifying Spatial Autocor-
relation Statistics 

Given that we determined 750m×750m as an optimum pre-
sample-point scale in the CNP, now the RIP/RIV (i.e., 
percentage of winter wheat planting area in each pixel) 
distributing maps in spatial resolution of 750m×750m served as 
the basic operated data by aggregating the baseline MODIS 
images (with spatial resolution of 250m×250m). Through local 
spatial autocorrelation analysis with the Moran’s Ii, Geary’s Ci 
and Getis ord Gi (or Gi

*), the results were obtained and 
appropriately stratified, respectively. We could thus determine 
the corresponding average minimum sample-point distances of 
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each stratum subpopulation in light of one’s own spatial 
variability of each stratum. 
 
As Appendix: Figure 4 is shown, the total population was 
divided into six strata in terms of the Getis ord Gi, and a 
proportion (percentage) of winter wheat planting area in this 
study region obtained by spatial sampling (computation) is 
42.98 (%) and its relative error of -1%. Additionally, the result 
of integrating the sample point distributions in all the strata 
subpopulations by overlay operation shows that the total 
sample-point distances are not less than the corresponding 
average minimum sample-point distances of each stratum 
subpopulation and the previous obtained optimum synthetic 
sample-point distances (7.5km~22.5km). This could obtain a 
random sample and meet the requirement of probability random 
spatial sampling, so the sample point layout didn’t need to be 
readjusted and optimized. 
 
Appendix: Figure 5 shows that, based on the Moran’s Ii, the 
total population was also divided into six strata, and a 
proportion (percentage) of winter wheat planting area in this 
study region is 50.78 (%) and its relative error of 3.9%. 
Nevertheless, the result of integrating the sample point 
distributions in all the strata subpopulations by overlay 
operation illustrate that parts (which had 14 sample-point pairs 
checked as for the six strata) of the total sample-point distances 
are less than the above optimum synthetic sample-point 
distances (7.5km~22.5km) (See Appendix: Figure 6). Thus they 
didn’t meet the requirement of probability random spatial 
sampling and the sample point layout needed to be readjusted 
and optimized in order to make them not less than the optimal 
synthetic distances. Appendix: Figure 7 shows the results of the 
readjusted and optimized sample point distribution, and through 
computation a proportion (percentage) of winter wheat planting 
area in this study region is 50.897(%) and its relative error of 
4.1%. Although its relative accuracy was reduced somewhat, 
still in an actually acceptable scope had it considerably well 
accuracy falling within more than 95%, and even more 
importantly, it made the sample-point spatial layout more 
reasonable and more geographically representative for 
probability random spatial sampling. 
 
Using the Geary’s Ci, Appendix: Figure 8 shows that the total 
population was divided into four strata, and a proportion 
(percentage) of winter wheat planting area in this study region 
is 42.05 (%) and its relative error of -14%. As is the same as that 
above of the Getis ord Gi, its sample point spatial distribution 
could meet the requirement of probability random spatial 
sampling and didn’t thus need to readjust and optimized. 
 
 

5. DISCUSSION 

In order to provide adaptive analysis and reporting according to 
report units (such as province, county, township), based upon 
spatial structuring a priori knowledge/information, the Kriging 
spatial sampling technique(Feng, 2010) can be used to 
implement optimal local spatial prediction (i.e., extrapolation) 
and infer regionalized element population, whereafter inference 
result is gridded on basis of sampling grid basic cells and a data 
field map of regionalized elements of spatial sampling of study 
areas (that is, called a data field of spatial elements) is thus 
obtained. According to practical reporting needs, adaptive 
reporting patterns are able easily to perform using the obtained 
data fields and selected reporting units, depending on map 

algebra of GIS (Geographical information systems, such as 
ARCGIS and MAPINFO). 
 
Additionally, it is greatly important that remote sensing a priori 
knowledge/information (e.g., spatial structuring features) 
collaboratively associating with other pertinent helpful (a priori) 
knowledge or information (such as the relevant historical data 
of, spatial probability distribution mode of sampling objects of 
and traffic accessibility of study areas) is used in a spatial 
sampling procedure, which can more effectively improve 
efficiency, effectiveness and accuracy of spatial sampling. This 
is a research direction of our follow-up work. 
 
 

6. CONCLUSIONS 

In this paper, the MODIS remote sensing data, featured with 
low-cost, high-timely and moderate/low spatial resolutions, in 
the NCP as a study region were firstly used to carry out mixed-
pixel spectral decomposition to extract an useful RIP/RIV from 
the initial selected indicators. Then, the RIV values were 
spatially analyzed, and the spatial structure characteristics (i.e., 
spatial correlation and variation) of the NCP were achieved, 
which were further processed to obtain the scale-fitting, valid a 
priori knowledge or information of spatial sampling. 
Subsequently, founded upon an idea of rationally integrating 
probability-based and model-based sampling techniques and 
effectively utilizing the obtained a priori knowledge or information, 
the spatial sampling models and design schemes and their 
optimization and optimal selection were developed, as is a 
scientific basis of improving and optimizing the existing spatial 
sampling schemes of large-scale cropland remote sensing 
monitoring. In addition, in terms of the adaptive analysis and 
decision strategy, the optimal local spatial prediction and 
gridded system of extrapolation results were able to excellently 
implement an adaptive reporting pattern of spatial sampling in 
accordance with report-covering units in order to satisfy the 
actual needs of researches or running operation of sampling 
surveys. This study can further effectively enhance the level of 
spatial sampling survey and decision-making analysis of the 
pertinent departments of national and local governments. 
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APPENDIX: RELATED FIGURES 

   
Figure 1. Fraction (i.e., RIP/ RIP) 
of winter wheat planting area in 

each pixel of 250m×250m of the 
CNP 

Figure 4. sample-point allocation of 
spatial sampling in the CNP, based 

on Getis Order Gi stratification 
Figure 5. Sample-point 

allocation of spatial sampling 
in the CNP, based on Moran’s 

Ii stratification 

Figure 6. Sample points needed 
to readjust for optimized spatial 
sampling in the CNP, based on 

Moran’s Ii stratification 

Figure 7. sample-point 
readjusted allocation of spatial 
sampling in the CNP, based on 

Moran’s Ii stratification 

Figure 8. Sample-point 
allocation of spatial sampling 

in the CNP, based on 
 Geary’s Ci stratification 
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