
 

RANDOM FORESTS-BASED FEATURE SELECTION 
FOR LAND-USE CLASSIFICATION USING LIDAR DATA AND ORTHOIMAGERY 

 
 

Haiyan Guana, Jun Yub, Jonathan Lia,b* , Lun Luoc 

 
aGeoSTARS Lab, Department of Geography and Environmental Management, University of Waterloo, 200 University 

Ave. West, Waterloo, ON, Canada N2L 3G1 
bGeoSTARS Group, School of Information Science and Engineering, Xiamen University, 422 Siming Road South, 

Xiamen, Fujian, China 361005 
cChina Transport Telecommunication & information Center, Beijing, China 

 
 

KEY WORDS:  Lidar, imagery, Random Forests, Classification, Feature selection 
 
 
ABSTRACT: 
 
The development of lidar system, especially incorporated with high-resolution camera components, has shown great potential for 
urban classification. However, how to automatically select the best features for land-use classification is challenging. Random 
Forests, a newly developed machine learning algorithm, is receiving considerable attention in the field of image classification and 
pattern recognition. Especially, it can provide the measure of variable importance. Thus, in this study the performance of the Random 
Forests-based feature selection for urban areas was explored. First, we extract features from lidar data, including height-based, 
intensity-based GLCM measures; other spectral features can be obtained from imagery, such as Red, Blue and Green three bands, 
and GLCM-based measures. Finally, Random Forests is used to automatically select the optimal and uncorrelated features for land-
use classification. 0.5-meter resolution lidar data and aerial imagery are used to assess the feature selection performance of Random 
Forests in the study area located in Mannheim, Germany. The results clearly demonstrate that the use of Random Forests-based 
feature selection can improve the classification performance by the selected features. 
 
 

1. INTRODUCTION 

Urban land cover classification has always been critical due to 
its ability to link many elements of human and physical 
environments. Timely, accurate, and detailed knowledge of the 
urban land cover information derived from remote sensing data 
is increasingly required among a wide variety of communities. 
This surge of interest has been predominately driven by the 
recent innovations in data, technologies, and theories in urban 
remote sensing. During the past decades, increasing advances in 
lidar technologies provide high-accuracy and point-density 3-
dimensional point clouds for land-use classification in 
combination with imagery. As lidar data is unstructured, 
irregular 3-D points and short of spectral information, 
classification confusion is often generated between man-made 
and natural objects. On the other hand, it is difficult to directly 
obtain land-use information only from remotely sensed data, 
owing to the complexity of landscapes, spectrally identical 
objects, as well as abundance of spatial and spectral information. 
Therefore, integrating lidar point clouds with imagery is being a 
preferred means for land-use classification. 
 
Although a plethora of features that can be extracted from both 
lidar point clouds and optical imagery, there is no rule or model 
for how to automatically and objectively select proper features 
for the desired classification results. Majority of existing 
research works are focusing on the development of 
classification methods, few attentions are paid on the feature 
selection using lidar data and imagery. The subjective selection 
of classification features causes the classification results 
unstable. To this end, Random Forests-based feature selection is 
proposed in this study. 
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Random Forests, one of ensemble classification family that are 
trained and their results combined through a voting process, can 
be considered as an improved version of bagging, a widely used 
ensemble classifier (Breiman, 1996). It is well known that 
Random Forests are characterised by notably computational 
efficiency. In the field of remote sensing, Random Forests has 
been achieved a promising classification accuracy for hyper-
spectral (Wang et al., 2009), multispectral (Stumpf and Kerle, 
2011), and multisource data (Gislason et al., 2006). Due to 
classification complexity of multisource data, commonly used 
parametrical classification methods are impropriate. Random 
Forests, as nonparametric classification algorithm, should be of 
great interest for multisource data by providing an estimate of 
individual variable importance index. Moreover, several studies 
have shown the advantages of Random Forests in land cover 
classification; the results indicate that the selected features agree 
the existing physiological knowledge. However, few is focus on 
urban areas by fusion of lidar data and aerial images. To this end, 
RF is applied to feature selection in this study. 
 
This paper is organized as follows. In section 2, we describe the 
basic principles of Random Forests, the lidar data and calibrated 
imagery used in the paper, features selected from the lidar data 
and imagery, respectively. Section 3 then discusses variable 
importance, one of the Random Forests’ measures, for all 
features, Random Forests-based feature selection and the 
corresponding classification results by Maximum Likelihood 
Classifier (MLC). Finally Section 4 concludes the proposed 
method. 
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2. METHOD 

2.1 Basic principle of Random Forests 

The Random Forests classifier developed by Breiman (2001) is 

a combination of decision trees   
1

,
T

k k=
DT x , where x is an 

input vector, and k  denotes a random vector which is sampled 

independently but with the same distribution as the past 

1 -1, ,  k . T bootstrap samples are first drawn from the 

training data, and then an no pruned classification and 
regression tree (CART) is grew from each bootstrap sample β  
where only one of M randomly selected features is chosen for 
the split at each node of CART. The chosen feature is the one 
that minimizes the Gini impurity which can be written as 
(Breiman et al., 1984): 

       Gini β ,β β ,β β i jf C f C
        

(1) 

where  ,β βif C  is the probability that the randomly selected 

pixel belongs to class iC . Finally, the output of the classifier is 

determined by a majority vote of all individually trained trees. 

 

There are two parameters: the number of variables (M) in the 
random subset at each node and the number of trees (T) in the 
forest. The selection of parameter M has influence on the final 
error rate. If M is increased, both the correlation between the 
trees and the strength (classification accuracy) of individual tree 
in the forest are increased. The error rate is proportional to the 
correlation, but inverse proportional to the strength (Joelsson et 
al., 2008). Usually, M is set to the square root of number of 
features (Gislason et al., 2006). Because Random Forests is fast 
and not overfit, the number of trees T can be as many as 
possible. However, due to the memory limit of the machine, T is 
usually several hundred (Horning, 2010), here is set to 100. The 
Random Forests also provides two additional measures: the 
variable importance and internal structure. Variable importance 
measures the importance of the predictor variables (features). To 
estimate a feature importance, the OOB samples are first run 
through the trees and count the votes for the correct 
classification. Then, the prediction accuracy is repeatedly 
obtained after randomly permuting all the values of this feature 
while all the other features stay the same. The importance score 
is the decrease of the correct class votes after the variable 
permutation, averaged over all the trees. The intuition is that a 
random variable permutation can simulates the absence of that 
variable from the forest (Guo et al., 2011). Thus the higher an 
average accuracy decrease is, the more important that feature is. 

 

Figure 1.  Study area of Mannheim, Germany 

 

2.2 Study Area and Datasets 

Laser scanning data covering Mannheim, Germany, were 
acquired in 2004 by a Falcon II sensor- a Fiber based system 
concept, TopoSys® GmbH. The airplane flew at an average 
height of 1,200 m above the mean sea level, with a camera on 
board for the 0.5m-resolution aerial photographs with RGB 
bands. The average point density and point spacing within the 
test site is about 4 points/m2 and 0.5 m, respectively. The lidar 
dataset records both range (first- and last- returns) and intensity 
information of the laser pulse. In this research Lidar data is 
considered in 2D geometry with optical image data. The 
experimental area is a typical urban region that contains 
variously sized buildings with different orientations, as well as 
trees and grass interspersed among buildings. Meanwhile, the 
study area and its vicinity are relative flat, with elevations 
ranging from approximately 89.83 m to 159.71 m. 

 

2.3 Training sample and reference data 

The training samples are chosen using the photo-interpretation 
method in the commercial software ENVI®. Table 1 lists the 
number of training samples. As a proportion of the full image to 
be analysed the number of training samples would represent less 
than 1% to 5%. For accuracy assessment, an adequate number 
of testing data is required per class of interest. Congalton and 
Green (2009) pointed out that it is necessary to have sufficient 
testing data for building a valid statistically error matrix to 
represent classification accuracy. Thus, the sample size N was 
determined by Equation (2) for the binomial probability theory: 

 2

2

100 -


Z p p
N

E
   (2) 

Where p is the expected percent accuracy, E is the allowable 
error, and Z = 1.96 from the standard normal deviant for the 95% 
two-sided confidence level. An expected accuracy of 95% was 
selected because the land-use classification system specifies that 
each class category should be mapped to at least 85% accuracy, 
and then the allowable error of 5% is chosen. For this study area, 
the sample size (N) of 996 meets the demand of Congalton and 
Green’s (2009) rule-of-thumb of a minimum of 50 samples per 
class. 

 

 

Categories Training samples  Test data 

ROI Pixels ROI Pixels

Buildings 103 927 50 569  

High vegetation 36 524 26 421  

Ground 60 934 44 685  

Grass 12 172 10  98 

Table 1. The training samples and test data. 

 

2.4 Features 

There are several groups of features, including lidar height-
based, lidar intensity-based features, and RGB aerial image-
based features. They are listed as follows. Relevant features are 
shown in Figures 2(a), (b) and (c). 
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Aerial Imagery-based (Figure 2(a)): 
Three bands (R, G, B): To remove noises in the RGB image, 
convolution operation must be operated. In this paper, we use 
median convolution, a technique aiming at reducing image 
noise without removing significant parts of the image content, 
typically edges, lines or other details that are important for the 
interpretation of the image (Perona and Malik, 1990). After 
mean convolution, bands red (R), green (G) and blue (B) are 
used as three individual spectral features. 
 
Grey-level Co-occurrence Matrix (GLCM); GLCM proposed by 
Julesz (1962) can be used to calculate several statistical 
measures, such as contrast (Cont.), dissimilarity (Diss.), 
homogeneity (Homo.), entropy (Ent.), mean (Mean), variance 
(Var.), second-moment(S-M) and correlation (Corr.) for 
representing specific textural characteristics of the processed 
image. 
 
Lidar Data 
 
Although a 2D lidar range image is used in the presented land-
use classification scheme, lidar height-based features are 
calculated by 3D original point clouds in a given spherical 
neighbourhood. Mainly determined by the point density, the 
radius of the given sphere is required to guarantee at least 6 
points to get involved in processing lidar features. As a result, 
height-based features can be computed. 

Height-based features (Figure 2(c)) 
o Height difference (Height-Diff): The distance is between 

the current point and the lowest point in a cyclone with 
radium of about 30m. 

o Normalized height ( nDSM=DSM-DTM): This feature will 
help distinguish elevated objects from the ground or near-
ground objects (Haala and Walter, 1999). 

o Local height variation (Local-Hei-Var, the absolute 

distance between the maximum and minimum height 
values in 3*3 pixels or 3*3 m): This feature will assist in 
discriminating ground and non-ground objects. 

o Height difference between echoes (FL-Diff= First echo - 
last echo): This feature will help distinguish high-rise 
penetrable vegetation. 

o Normalized Difference (FL-NDiff, a lidar-based vegetation 

index): It is calculated by 
ሺுಷ೔ೝೞ೟ ೐೎೓೚ି ுಽೌೞ೟ ೐೎೓೚ሻ

ሺுಷ೔ೝೞ೟ ೐೎೓೚ା ுಽೌೞ೟ ೐೎೓೚ሻ
. Similar to 

NDVI (Normalized Difference Vegetation Index) in 
multispectral image classification, FL-NDiff will highlight 
vegetation (Arefi et al., 2003). 

o Deviation angle of plane normal vector from the vertical 
direction (P-Deviation-Ang): This feature will assist in 
discriminating the ground with small values of deviation 
angles. 

o Distance from the current point to the local estimated plane 
(P-Normalized-Var): This feature reflects the local height 
variation that can be used for the discrimination of the 
ground and non-ground objects.  

o Eigen-based features (Anisotropy, Linearity, Planarity, 
Sphericity): The eigenvalue related features are defined as 
the spatial features of each point by calculating a variance-
covariance matrix of its neighbours. It is another auxiliary 
indicator for distinguishing planes, edges, corners and 
volumes (Chehata et al., 2009). 

Intensity-based features (Figure 2(b)): 
o Intensity image: Analogue to a grey image, GLCM related 

measures are calculated. 
o Lidar-TVI (Transformed vegetation index): It is calculated 

by ට
௅௜ௗ௔௥ ூ௡௧௘௡௦௜௧௬ିோா஽

௅௜ௗ௔௥ ூ௡௧௘௡௦௜௧௬ାோா஽
൅ 0.5 based on Red band of aerial 

imagery and intensity values of lidar data. 
 

Median Conv. GLCM-Mean GLCM-Homo GLCM-Vari GLCM-SM 

GLCM-Ent GLCM-Diss GLCM-Corr GLCM-Cont 

 
 

(a) RGB Image-based Features 

GLCM-Con  GLCM-Corr GLCM-Diss GLCM-Ent GLCM-Homo 
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GLCM-Mean GLCM-SM GLCM-Var  Lidar-TVI 

 
 

(b) Lidar Intensity Image-based Features 

Height-Diff nDSM Local-Height-Var FL-Diff P-Normalized-Var 

P-Deviation-Ang Sphericity Anistropy Linearity Planarity 

(c) Lidar Height-based Features 
Figure 2. Overview of features from lidar and orthoimagery 

 
 
 

3. EXPERIMENTS AND DISCUSSION 

To assess the effectiveness of Random Forests in feature 
selection, three experiments are conducted. First one is focusing 
on variable importance by importing all features into Random 
Forests; second, recursive feature selection with Random 
Forests is conducted to searching most important features for 
the satisfied classification results; finally, classification results 
using features selected by Random Forests is performed. 

 

3.1 Variable importance results 

The variable importance for training samples is displayed in 
Figure 3 for each feature when all features are put in the 
Random Forests. The variable importance is demonstrated by 
the mean decrease permutation accuracy. As can be seen in the 
figure, among those 48 features it appears that the most relevant 
features include nDSM, eigenvalue-based anisotropy, intensity 
GLCM measures, etc. For the aerial image-based features 
GLCM measures such as Ent., Corr., and Var. are not important 
for urban classification. 

 

3.2 Feature selection results 

To eliminate less important and more correlated features, 
iterative backward elimination scheme is used (Diaz-Uriarte and 
Alvarez de Andres, 2006). We first compute measures of feature 
importance to obtain an initial variable ranking and then 
proceed with an iterative backward elimination of the least 
important variables. In each iteration the least important 

features (by default, 20%) are eliminated, and a new RF is built 
by training with the remaining features for the assessment of 
OOB errors based on OOB samples. The iterative procedure 
proceeds until the final features with the lowest OOB errors are 
determined for the land-use classification. In this study the 
number of trees (T) is set up 100-200, and the number of split 
variables is 4.  Generally, the default setting of split variables is 
a good choice of OOB rate. Using OOB errors, the original 48 
features are gradually eliminated up to 15 features. Meanwhile, 
as can be seen in Figure 4,the mean decrease accuracy is 
increasing with the decrease of numbers of features. The left 
fifteen features includes Lidar-NDVI, lidar height-based 
measures eigenvalue-Anistropy, nDSM, P-Normalized-Var, 
Height-Diff; Lidar intensity-based GLCM-Var., -Mean, and -SM; 
and aerial image-based GLCM-Homo and -Diss. 

 

Based on these features from 48 to 15, maximum likelihood 
classifiers are used to get the classification results, as can be 
shown in The Figure 5. A classification error matrix (confusion 
matrix) is an effective way to quantitatively assess accuracy in 
that it compares the relationship between known reference data 
and the corresponding results of the classification (Congalton, 
1991). Kappa coefficient measures the accuracy between 
classification result and reference data using the major diagonal 
and the chance agreement (Jensen, 2005). From the Kappa 
coefficients, the classification accuracy is not improved with the 
increase of features. On the contrary, their classification 
accuracies are decreasing. The reason is that much more 
features are correlated than that of features with the significant 
important index. 
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Figure 3. Random Forests-based feature importance 

 

 

 
Figure 4. Iterative feature selection 

4. CONCLUSIONS 

In this study Random Forests is successfully applied to the 
feature selection for land-use classification. There are 48 
features extracted from lidar data and imagery. Making use of 
the Random Forests, an assembling classification tree, that 
provides feature importance index, we iteratively eliminate 
features with less important index until the mean decrease 
accuracy is stable. The extensive experiments are conducted to 
describe the Random Forests’ characteristics and prove its 
performance. Classification results suggest that much more 
feature cannot guarantee the improvement of classification 
accuracy, and confirms that the selected features can obtain the 
satisfied classification results. Overall, the classification results 
indicate that the selected features agree the existing 
physiological knowledge. 
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Figure 5. the Maximum Likelihood classification results based on feature selection of Random Forests 
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