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ABSTRACT: 

 
With an increase in the rate of species extinction, we should choose right methods that are sustainable on the basis of appropriate 

science and human needs to conserve ecosystems and rare species.  Species distribution modeling (SDM) uses 3S technology and 

statistics and becomes increasingly important in ecology.  Brainea insignis (cycad-fern, CF) has been categorized a rare, endangered 

plant species, and thus was chosen as a target for the study.  Five sampling schemes were created with different combinations of CF 

samples collected from three sites in Huisun forest station and one site, 10 km farther north from Huisun.  Four models, MAXENT, 

GARP, generalized linear models (GLM), and discriminant analysis (DA), were developed based on topographic variables, and were 

evaluated by five sampling schemes.  The accuracy of MAXENT was the highest, followed by GLM and GARP, and DA was the 

lowest.  More importantly, they can identify the potential habitat less than 10% of the study area in the first round of SDM, thereby 

prioritizing either the field-survey area where microclimatic, edaphic or biotic data can be collected for refining predictions of 

potential habitat in the later rounds of SDM or search areas for new population discovery.  However, it was shown unlikely to 

extend spatial patterns of CFs from one area to another with a big separation or to a larger area by predictive models merely based on 

topographic variables.  Follow-up studies will attempt to incorporate proxy indicators that can be extracted from hyperspectral 

images or LIDAR DEM and substitute for direct parameters to make predictive models applicable on a broader scale. 

 

 

1. INTRODUCTION 

 
Biodiversity is very important for humans and all other species 

on the Earth.  Without the diversity of species, ecosystems are 

more fragile to natural disasters and climatic change.  With an 

increase in the rate of species extinction, we must conserve 

ecosystems and rare species by choosing right methods that are 

sustainable on the basis of appropriate science and human 

needs.  Forest resources in Taiwan are very abundant, but 

environmental carrying capacity of the island is vulnerable, 

thus when using them we must think of conservation at the 

same time. 

 

Species distribution modeling (SDM) could apply in 

conservation and protection rare species, ecology, 

epidemiology, disaster and management in forestry (Pearson et 

al., 2007; Asner et al., 2008; Cayuela et al., 2009).  SDM 

needs to utilize the combination of 3S technology and statistics, 

and has become increasingly important in ecology (Côté and 

Reynolds, 2002; Guisan and Thuiller, 2005).  Nowadays a 

variety of statistical methods have been used to model 

ecological niches and predict the geographical distributions of 

species, such as BIOCLIM, maximum entropy (MAXENT), 

DOMAIN, genetic algorithm for rule-set prediction (GARP), 

generalized linear models (GLM), generalized additive model 

(GAM) and discriminant analysis (DA) (Elith et. al., 2006; 

Hernandez et al., 2006; Guisan et al., 2007; Peterson et al., 

2007; Wisz et al., 2008; Ke et al., 2010). 

 

SDM is based on the environmental conditions of known sites 

to predict unknown area, and also to identify the relationship 

between the species and environment.  The distribution 

pattern of natural vegetation is associated with four types of 

environmental factors, including climatic, physiographic, 

edaphic, and biotic factors (Su, 1987).  For SDM, it is 

desirable to predict a species distribution on the basis of 

ecological (direct) parameters (i.e. climate, soil, and biotic 

factor) that are to be the causal, driving forces for its 

distribution.  Data for such direct parameters, however, are 

generally difficult or expensive to measure, soil data are even 

more difficult to derive, and they tend to be less accurate than 

pure topographic characteristics (Guisan and Zimmermann, 

2000).  Moreover, biotic factor is extremely difficult to 

estimate due to the fine spatiotemporal resolution and 

potentially complex nature of biotic dimensions (Barve et. al., 

2011).  On the other hand, indirect parameters (e.g. 

topographic variables: elevation, slope, aspect) are most easily 

measured by remote sensing and are often used because of their 

good correlation with observed species patterns (Guisan and 

Zimmermann, 2000).  Hence, SDM should be run on an 

iterative basis with topographic data in initial rounds and 

climatic data, soil data, or biotic data, when available, in later 

rounds since not all the data needed by SDM for the four types 

of factors aforementioned are readily available at one time. 

 

In this study, we used four methods: MAXENT, GARP, GLM, 

and DA to build models and to predict the potential habitat of a 

rare plant together with five different sampling schemes.  Our 

study area falls within a homogeneous climatic zone with one 

degree of latitude; therefore, we took account of the area’s 

microclimate, which in turn affects species’ distribution.  

Indeed, the topography of an area influneces the microclimate 

of that area (Su, 1987).  Furthermore, fine spatial-resolution 

soil data and biotic data were not available up to the present.  

Hence, we did run the four aforementioned SDM models on an 

iterative basis by incorporating elevation, slope, aspect, terrain 

position, and vegetation index derived from SPOT images in 

the first round.  We designed five sampling schemes from two 

areas: 1) a small range with the distance of 0.7 km between 

sampling sites and 2) a large range with the distance of about 

10 km between sampling sites.  We evaluated these models in 
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terms of accuracy and implementation efficiency and 

determined the optimum for predicting the habitat of a rare 

plant.  The predictive outcome from SDM would be used to 

prioritize field-survey areas for collecting fine resolution 

microclimatic, edaphic or biotic data for refining predictions of 

potential habitat in the later rounds of SDM or search areas for 

new population discovery. 

 

2. STUDY AREA 

 
The study area consists of two parts, one part is Huisun 

Experimental Forest Station (HEFS), and the other is 

Tong-Mao Mountain, as shown in Figure 1.  HEFS is in 

central Taiwan, and situated within 24◦2´–24◦5´ N latitude and 

121◦3´–121◦7´ E longitude.  This station is the property of 

Chung-Hsing University, and has a total area of 7, 477 ha.  

This station ranges in elevation from 454 m to 3, 419 m, and its 

climate is temperate and humid.  Hence, this area has 

nourished about 1,100 plant species and is a representative 

forest in central Taiwan.  This study took the samples from 

Sihwufongshan (Pine-breeze Mountain), Duhchuanling 

(Cuckoo Ridge) and Kuandaushan (Big-knife Mountain) trail in 

Huisun, Sihwufongshan elevation from 680 m to 840 m, the 

highest elevation of Duhchuanling approximately 810 m, and 

Kuandaushan elevation approximately 760 m.  According to 

the climate record of this study area, the annual mean 

temperature is 21.0 ; the monthly mean ℃ temperature highest is 

30.6  in July, lowest is 20.5 in January; mean annual ℃ ℃
precipitation 2453.5 mm, the average relative humidity is 85%. 

Tong-Mao Mountain is situated at geographic coordinate 

24°11'N latitude and 120°57' E longitude, near the Ta-chia 

River and Tong-Mao River, 10 km farther north from Huisun 

area.  The elevation of Tong-Mao Mountain rises to 1690 m 

above sea level.  According to the climate record of forest 

district office website, the annual mean temperature is 22.6℃; 

mean temperature highest is 29℃ in July, lowest is 15℃ in 

January; mean annual precipitation 2580 mm.  The mountain 

has rich ecological resources cycad-fern (CF), Blechnaceae 

family, is only found in mountains in central Taiwan, such as 

Huisun and Tong-Mao Mountain areas, and Huisun is the main 

habitat.  Because of its limited ecological range, cycad-fern 

has been categorized as one of the rare, endangered species (Lu 

et al, 1986). 

 

 
Figure 1 Location map of the study area. 

 

3. MATERIALS AND METHODS 

 

3.1 Data Collection 

 

We collected digital elevation model (DEM) with grid size 5 × 

5 m, orthophoto base maps (1:10,000), and nine-date SPOT 

images (SPOT Image Copyright 2004 and 2005, CNES).  In 

situ data (cycad-fern samples) were also acquired by using a 

GPS linked with an expandable antenna rod of 5m in length 

and a laser range finder, the error was usually below one meter 

after post-processing differential correction.  Two-date SPOT 

images (07/10/2004 and 11/11/2005) were chosen because they 

have the best quality with the least amount of clouds among the 

nine-date SPOT images. 

 

3.2 Data Processing 

 

Slope and aspect data layers were generated from 5 × 5 m 

DEM.  The ridges and valleys in the study area were used 

together with DEM to generate terrain position layer.  The 

main ridges and valleys were directly interpreted from the 

contour lines shown on the orthophoto base maps; these lines 

were then digitized to establish the data layer by using 

ARC/INFO software for later use.  The relative position (Pij) 

of the test cell in the terrain is expressed as follows: 

 

 

Pij = PV / (PV + PR)             (1) 

 

 

PV = Euclidean distance from P to the nearest valley line. 

PR = Euclidean distance from P to the nearest ridge line. 

Pij = 0.0 , terrain position is assigned to be “valley”. 

Pij = 1.0 , terrain position is assigned to be “ridge”. 

 

The data layer in a vector format was converted into a new data 

layer in a raster format by ERDAS Imagine software, and then 

combined with DEM to generate terrain position layer 

(Skidmore, 1990).  Vegetation indices were derived from the 

two-date SPOT-5 images, one in autumn, the other in summer, 

by using Spatial Modeler of ERDAS Imagine.  CF samples 

obtained by GPS were converted into ArcView shapefile format 

for later use. 

 

There were 221 CF samples collected from Sihwufongshan, 

Duhchuanling and Kuandaushan-trail in Huisun forest station 

and one site at Tong-Mao Mountain by GPS in this study, but a 

part of these samples remained after data integration because 

some cycad-ferns fall within the same pixels with others, 

respectively.  Five sampling schemes (SS), from SS-1 to SS-5, 

were created with different combinations of cycad-fern samples 

collected from the four sites.  (A) SS-1, use two-thirds (2/3) of 

Sihwufongshan and Duhchuanling dataset for base model 

construction and the remaining (1/3) for model validation 

(evaluation).  (B) SS-2, use the same base model built in SS-1 

and only use independent samples taken from 

Kuandaushan-trail for base model evaluation.  (C) SS-3, 

merge the samples from three sites in Huisun and then separate 

the dataset into two subsets, subset-1 containing two-thirds of 

the dataset for first data-merged model construction and 

subset-2 containing the remaining (1/3) for model evaluation.  

(D) SS-4, use the first data-merged model built in SS-3 and 

only use independent samples from Tong-Mao Mountain for 

model evaluation.  (E) SS-5, merge aforementioned four-site 

samples and separate the dataset into two subsets, the first 

subset containing two-thirds of the dataset for the second 
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data-merged model construction and the second subset 

containing the remaining (1/3) for model evaluation. 

 

3.3 Database Building 

 
The GIS database used in the study was constructed by using 

ERDAS Imagine software module Layer Stack to overlay 

elevation, slope, aspect, terrain position, and vegetation index 

layers.  The cycad-fern sample layer was overlaid with five 

data layers, and those pixels of the five layers lying at the same 

position with the cycad-fern pixels were clipped out.  To build 

statistical models, the sample data for both target groups 

(cycad-fern) and non-target groups (background) were taken 

from data layers by the random sampling to minimize spatial 

autocorrelation in the independent variables (Pereira and Itami, 

1991).  Because non-target sites (background) correspond to 

the vast majority of the study area, larger variation is expected 

in environmental characteristics for this group.  The number 

of non-target pixels (sites) should be three times more than that 

of target pixels to increase the probability of acquiring a more 

representative sample of the habitat characteristics at non-target 

sites (Pereira and Itami, 1991; Sperduto and Congalton, 1996). 

 

3.4 Model Development 

 
The predictive models for selecting potential habitat of CFs 

were created using four statistical methods: (1) maximum 

entropy (MAXENT), (2) genetic algorithm for rule-set 

prediction (GARP), (3) generalized linear models (GLM), and 

(4) discriminant analysis (DA).  Model development and 

validation can be done by split-sample validation approach.  

Split-sample validation approach can be implemented via 

dividing a dataset into two subsets, the first one (training data) 

typically comprising one-half to two-thirds of all data and the 

other (test data) comprising one-third to one-half of all data.  

The first one is used to build and test a model.  The other one 

(an independent dataset) is just used to test the model, not used 

to build the model. 

 

MAXENT was implemented by using free software MAXENT 

(http://www.cs.princeton.edu/~schapire/maxent/) in the study.  

GARP was implemented by using free software 

(http://www.nhm.ku.edu/desktopgarp/Download.html), named 

“DesktopGARP.”  GLM was implemented by using free 

software (http://gis.ucmerced.edu/ModEco/), and DA was 

implemented by using SPSS software package. 

 

3.4.1 Maximum Entropy 
 

MAXENT is a general-purpose method for making predictions 

or inferences from incomplete information (Pearson et al., 

2007).  In estimating the unknown probability distribution 

defining a species’ distribution across a study area, MAXENT 

formalizes the principle that the estimated distribution must 

agree with everything that is known (or inferred from the 

environmental conditions at the occurrence localities) but 

should avoid placing any unfounded constraints.  The 

approach is thus to find the probability distribution of 

maximum entropy—that which is closest to uniform—subject 

to constraints imposed by the information available regarding 

the observed distribution of the species and environmental 

conditions across the study area.  MAXENT needs 

species-presence data and does not need species absence or 

pseudo-absence data per se, but distinguishes between species 

presences and random points from a background area using a 

probability distribution.  MAXENT offers many advantages 

and a few drawbacks; the advantages include the following: (1) 

It needs only presence data, together with environmental 

information for the study area. (2) It can use both continuous 

and categorical data, and can incorporate interactions between 

different variables. (3) Efficient deterministic algorithms have 

been developed that are ensured to converge to the optimal 

(maximum entropy) probability distribution. (4) The MAXENT 

probability distribution has a clear mathematical definition, and 

is therefore suitable to analysis (Phillips et al., 2006). 

 

3.4.2 Genetic Algorithm for Rule-set Prediction 

 

GARP has recently seen an extensive use only in recent studies.  

It seeks a collection of rules that together produce a binary 

prediction (Phillips et al., 2006).  GARP uses a set of point 

position records of species presence and a set of environmental 

layers that might limit the species' capabilities to survive.  The 

model will use genetic algorithm to search heuristically for a 

good rule-set.  There are four rules available currently in 

GARP software (DesktopGARP): atomic, logistic regression, 

bioclimatic envelope, and negated bioclimatic envelope rules, it 

uses the rules to search the correlation between species 

presence and absence and environmental variables for 

predicting suitable conditions for each pixel (Stockwell and 

Noble, 1992).  It repeats times of statistical calculation based 

on runs set by user, and each of runs would generate a 

predictive distribution map.  The GARP algorithm starts by 

inputting an initial set of rules generated by the initial program 

(Stockwell and Peters 1999).  The first step in the GARP 

iterative loop is to select a data set by randomly sampling half 

the available data.  The next step is to evaluate the rules on the 

sampled data. 

 

3.4.3 Generalized Linear Models 
 

GLM is an extended version of linear models that do not force 

data into unnatural scales, allow for non-linearity and 

non-constant variance in the data.  GLM has an assumed 

relationship between the mean of the response variable and the 

linear combination of the explanatory variables.  GLM is 

more flexible and better fitted for analyzing ecological 

relationships. (Guisan et al., 2002)  The assumptions above 

are implicit in OLS regression.  In GLMs, the predictor 

variables Xj (j=1,…,p) are combined to produce a linear 

predictor LP which is related to the expected value µ = E(Y) of 

the response variable Y through a link function g() : 

 

 

g(E(Y))=LP=α=XTβ                      (2) 

 

 

where α is a constant called the intercept 

X=/(X1,…,Xp) is a vector of p predictor variables 

β=/{β1,...,βp} is the vector of p regression coefficients 

(one for each predictor) 

We have written the model for generic variables X and Y; the 

corresponding terms for the ith observation in the sample is:  

 

 

g(µi)=α+β1xi1+β2xi2+…+βpxip             (3) 

 

 

3.4.4 Discriminant Analysis 

 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

243



DA is a technique, which discriminates among k classes 

(objects) based on a set of independent or predictor variables.  

The objectives of DA are to (1) find linear composites of n 

independent variables which maximize among-groups to 

within-groups variability; (2) test if the group centroids of the k 

dependent classes are different; (3) determine which of the n 

independent variables contribute significantly to class 

discrimination; and (4) assign unclassified or “new” 

observations to one of k classes (Lowell, 1991).  The variates 

for a discriminant analysis, also known as the discriminant 

function takes the following form: 

 

 

Yjk = α + β1X1k + β2 X 2k + . . . + βn X nk      (4) 

 

 

where 

Yjk = discriminant Y score of discriminant function j 

for object (class) k 

α = intercept 

β = discriminant weight for independent variable i 

Xik = independent variable i object (class) k 

 

3.5 Model validation 

 
Model validation (evaluation) can be done by split-sample 

validation, as mentioned previously.  For each model, predict 

the response of the remaining data, and calculate the error from 

the predictions and the observed values (De’ath and Fabricius, 

2000).  We also used overall accuracy and kappa coefficient to 

assess models, because overall accuracy only include the data 

along the major diagonal and excludes the errors of omission 

and commission, kappa incorporates the non-diagonal elements 

of the error matrix as a product of the row and column marginal 

(Lillesand et al., 2008). 

 

 

4. Results and Discussion 
 

For the base models shown in Table 1, the accuracy of 

MAXENT (kappa value 0.84) was the best in SS-1, followed 

by GLM (0.7) and GARP (0.6), and DA (0.55) was the worst.  

The kappa values of non-parametric algorithms, MAXENT 

(0.46) and GARP (0.12) in SS-2, dropped sharply, while 

parametric GLM (0.7) and DA (0.55) dropped slightly in SS-2 

as tested by independent samples from the Kuandaushan-trail, 

with 076 km away from aforementioned two training sites in 

Huisun.  For the first data-merged models in SS-3, the kappa 

values of four models lifted back to almost the same values as 

those in SS-1 from SS-2 or even better, and the four models 

still kept the same order in accuracy as that in SS-1.  As the 

first data-merged models built in SS-3 were applied to a larger 

area in SS-4 including Tong-Mao Mountain, with 10 km away 

from the three sites at Huisun, the kappa values of MAXENT 

and DA declined to near zero, as well as GARP and GLM 

could not work possibly due to a limit on the size of data layer, 

a big difference in the domain values of predictor variables 

between Huisun and Tong Mao, or some other possible 

unknown factors which we will figure out later.  In contrast, 

the kappa value of MAXENT in SS-5 rebounded strikingly as 

the second data-merged models built in SS-5 were applied to 

the same area as that in SS-4 (Table 2), while that of DA rose 

back slightly.  Consequently, it was unlikely to accurately 

extend spatial patterns of CFs from the Huisun area to 

Tong-Mao Mountain area with 10 km gap or to the entire study 

area encompassing Huisun by predictive models merely based 

on topographic (indirectly operating) variables. 

 

The models, either base models in SS-1 or the first data-merged 

models in SS-3, accurately predicted the potential habitats of 

CFs in Huisun, and substantially reduced the area of field 

survey to less than 10% of the entire study area, even less than 

2.5% with MAXENT (Tables 3 and 4 and Figure 2).  In 

Huisun study area, all the potential CF habitats predicted 

occurred in the Kuan-Dau watershed, and none occurred in the 

Tong-Feng watershed because of remarkable differences in 

humidity and solar illumination between them.  The outcome 

had been proved true by field surveys through which almost no 

cycad-ferns were found in the Tong-Feng watershed. In 

contrast, neither the first data-merged models in SS-3 nor the 

second data-merged models in SS-5 could not accurately 

extrapolated CF spatial patterns when they were applied to the 

larger area encompassing Ton Mao Mountain.  Consequently, 

they could not reduce the area of field survey to less than 10% 

of the entire study area, even greater than 25% with DA (Tables 

5 and 6 and Figure 3). 

 

MAXENT GARP GLM DA Class 

SS1 SS2 SS3 SS1 SS2 SS3 SS1 SS2 SS3 SS1 SS2 SS3 

Overall (%) 97 97 96 88 88 95 95 95 95 86 86 87 Training 

Kappa .89 .89 .88 .62 .62 .87 .83 .83 .85 .63 .63 .68 

Overall (%) 95 90 95 88 78 91 96 92 92 85 84 85 Test 

Kappa .84 .46 .86 .60 .12 .77 .70 .70 .77 .66 .55 .62 

Table 1 SS-1, SS-2, SS-3: the accuracies of the models with elevation, slope, and terrain position variables for predicting 

the potential habitat of CFs. 

 

MAXENT GARP GLM DA Class 

SS4 SS5 SS4 SS5 SS4 SS5 SS4 SS5 

Overall (%) 86 91 — — — — 70 69 Training 

Kappa .64 .75 — — — — .34 .33 

Overall (%) 82 91 — — — — 64 66 Test 

Kappa .06 .75 — — — — .05 0.25 

Table 2 SS-4 and SS–5: the accuracies of the models with elevation, slope, and aspect variables for predicting 

the potential habitat of CFs. 
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MAXENT GARP GLM DA 
Class 

Area (ha) % Area (ha) % Area (ha) % Area (ha) % 

Habitat 290 1.7 1406 8.2 991 5.8 1582 9.2 

Non-Habitat 16846 98.3 15730 91.8 16145 94.2 15554 90.8 

Sum 17136 100 17136 100 17136 100 17136 100 

Table 3 SS-1: distribution statistics of predictive maps of the CF potential habitat generated from the models 

with elevation, slope, and terrain position variables. 

 

MAXENT GARP GLM DA 
Class 

Area (ha) % Area (ha) % Area (ha) % Area (ha) % 

Habitat 374 2.2 998 5.8 1006 5.9 1527 8.9 

Non-Habitat 16762 97.8 16138 94.2 16130 94.1 15609 91.1 

Sum 17136 100 17136 100 17136 100 17136 100 

Table 4 SS-3: distribution statistics of predictive maps of the CF potential habitat generated from the first 

data-merged models with elevation, slope, and terrain position variables. 

 

MAXENT DA 
Class 

Area (ha) % Area (ha) % 

Habitat 4395 15.4 7549 26.46 

Non-Habitat 24130 84.6 20976 73.54 

Sum 28525 100 28525 100 

Table 5 SS-4: distribution statistics of predictive maps of the CF potential habitat 

generated from the two models with elevation, slope, and aspect variables. 

 

MAXENT DA 
Class 

Area (ha) % Area (ha) % 

Habitat 2924 10.3 7567 26.53 

Non-Habitat 25601 89.7 20958 73.47 

Sum 28525 100 28525 100 

Table 6 SS-5: distribution statistics of predictive maps of the CF potential habitat generated 

from the second data-merged models with elevation, slope, and aspect variables. 

 

 (a)                      (b)                       (c)                      (d) 

 

Figure 2 SS-3: four models for mapping the potential habitat of cycad-ferns in the Huisun study area, (a) MAXENT; (b) GARP; 

(c) GLM; (d) DA. 

 

(a)                    (b) 

 
Figure 3 SS-5: two models for mapping the potential habitat of cycad-ferns in the 

          Huisun and Tong-Mao Mountain study area, (a) MAXENT and (b) DA. 
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5. CONCLUSIONS 
 

The study developed the four models that related the 

known CF sites to habitat characteristics and predicted the 

plant’s potential sites in the study area.  For the case of Huisun 

area, the four models accurately predicted the potential habitats 

of CFs in Huisun, and substantially reduced the area of field 

survey to less than 10% of the Huisun study area, and were 

implemented efficiently.  As a result, they were well suited for 

spatial distribution modeling of CFs.  MAXENT was the best 

because it had highest accuracy and reliability among them. 

More importantly, they can prioritize either the field-survey 

areas where it is viable to collect fine spatial-resolution 

microclimatic, edaphic, or biotic data for refining predictions of 

potential habitat in the later rounds of SDM or search areas for 

new population discovery under the conditions of limited 

funding and manpower.  However, the outcome showed that it 

is unlikely to accurately extrapolate the spatial patterns of CFs 

from one area to another area with a big separation or to a 

larger area encompassing the original one by predictive models 

merely based on topographic variables, as in the case of our 

entire study area.  Follow-up studies will attempt to 

incorporate proxy indicators that can be extracted from 

hyperspectral images or LIDAR DEM and substitute for direct 

parameters, and so that predictive models are applicable on a 

broader scale. 
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